Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-17T04:30:03.587Z Has data issue: false hasContentIssue false

Questions for review (basics)

from Section 2 - Basics in cardiopulmonary resuscitation of newborn infants

Published online by Cambridge University Press:  05 March 2012

Georg Hansmann
Affiliation:
Children's Hospital Boston, Harvard Medical School
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Neonatal Emergencies , pp. 210 - 211
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

O'Donnell, C, Davis, P, Morley, C. Positive end-expiratory pressure for resuscitation of newborn infants at birth. Cochrane Database Syst Rev 2004(4):CD004341.CrossRefGoogle ScholarPubMed
Stenson, BJ, Boyle, DW, Szyld, EG. Initial ventilation strategies during newborn resuscitation. Clin Perinatol 2006;33(1):65–82, vi–vii.CrossRefGoogle ScholarPubMed
Leone, TA, Rich, W, Finer, NN. A survey of delivery room resuscitation practices in the United States. Pediatrics 2006;117(2):e164–75.CrossRefGoogle ScholarPubMed
Hansmann, G. Neonatal resuscitation on air: it is time to turn down the oxygen tanks [corrected]. Lancet 2004;364(9442):1293–4.CrossRefGoogle Scholar
Davis, PG, Tan, A, O'Donnell, CP, Schulze, A. Resuscitation of newborn infants with 100 % oxygen or air: a systematic review and meta-analysis. Lancet 2004;364(9442):1329–33.CrossRefGoogle ScholarPubMed
Saugstad, OD, Ramji, S, Vento, M. Resuscitation of depressed newborn infants with ambient air or pure oxygen: a meta-analysis. Biol Neonate 2005;87(1):27–34.CrossRefGoogle ScholarPubMed
Vento, M, Sastre, J, Asensi, MA, Vina, J. Room-air resuscitation causes less damage to heart and kidney than 100 % oxygen. Am J Respir Crit Care Med 2005;172(11):1393–8.CrossRefGoogle ScholarPubMed
Ralston, M, Hazinski, MF, Zaritsky, AL, Schexnayder, SM, Kleinman, ME. PALS Provider Manual. Dallas: American Heart Association and American Academy of Pediatrics, 2006.Google Scholar
Kattwinkel, J. Neonatal Resuscitation, 5th edn. Elk Grove Village: American Academy of Pediatrics and American Heart Association, 2006.Google Scholar
O'Donnell, CP, Davis, PG, Lau, R, Dargaville, PA, Doyle, LW, Morley, CJ. Neonatal resuscitation 2: an evaluation of manual ventilation devices and face masks. Arch Dis Child Fetal Neonatal Ed 2005;90(5):F392–6.CrossRefGoogle ScholarPubMed
Leone, TA, Lange, A, Rich, W, Finer, NN. Disposable colorimetric carbon dioxide detector use as an indicator of a patent airway during noninvasive mask ventilation. Pediatrics 2006;118(1):e202–4.CrossRefGoogle ScholarPubMed
Bührer, C, Bahr, S, Siebert, J, Wettstein, R, Geffers, C, Obladen, M. Use of 2 % 2-phenoxyethanol and 0.1 % octenidine as antiseptic in premature newborn infants of 23–26 weeks gestation. J Hosp Infect 2002;51(4):305–7.CrossRefGoogle ScholarPubMed
Young, TE, Mangum, B. Neofax 2007, 20th edn. London: Thomson PDR, 2007.Google Scholar
Allen, HD, Driscoll, DJ, Shaddy, RE, Feltes, TF. Moss and Adams' Heart Disease in Infants, Children, and Adolescents: Including the Fetus and Young Adult, 7th edn. Philadelphia:Lippincott Williams and Wilkins, 2008.Google Scholar
Nichols, DG, Ungerleider, RM, Spevak, PJ, et al. Critical Heart Disease in Infants and Children, 2nd edn. Philadelphia: Mosby, 2006.Google Scholar
Park, MK. Pediatric Cardiology for Practitioners, 5th edn. St. Louis: Mosby, 2008.Google Scholar
Rennie, JM, Robertson, NRC. Robertson's Textbook of Neonatology, 4th edn. Edinburgh:Churchill Livingstone, 2005.Google Scholar
Kliegman, R. Fetal and neonatal medicine. In: Behrman, R, Kliegman, R, eds. Nelson Essentials of Pediatrics, 4th edn. Philadelphia: W. R. Saunders Company, 2002: 179–249.Google Scholar
Roth, P, Harris, M, Vega-Rich, C, Marro, P. Neonatology. In: Polin, RA, Ditmar, MF eds. Pediatric Secrets. Philadelphia: Hanley & Belfus, 2001: 409–65.Google Scholar
Cordero, L, Hon, EH. Neonatal bradycardia following nasopharyngeal stimulation. J Pediatr 1971;78(3):441–7.CrossRefGoogle ScholarPubMed
Vain, NE, Szyld, EG, Prudent, LM, Wiswell, TE, Aguilar, AM, Vivas, NI. Oropharyngeal and nasopharyngeal suctioning of meconium-stained neonates before delivery of their shoulders: multicentre, randomised controlled trial. Lancet 2004;364(9434):597–602.CrossRefGoogle ScholarPubMed
,International Liaison Committee on Resuscitation. 2005 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Part 7: Neonatal resuscitation. Resuscitation 2005;67(2–3):293–303.
Halliday, HL. Endotracheal intubation at birth for preventing morbidity and mortality in vigorous, meconium-stained infants born at term. Cochrane Database Syst Rev 2001(1):CD000500.Google ScholarPubMed
Wiswell, TE, Gannon, CM, Jacob, J, et al. Delivery room management of the apparently vigorous meconium-stained neonate: results of the multicenter international collaborative trial. Pediatrics 2000;105(1):1–7.CrossRefGoogle ScholarPubMed
Niermeyer, S, Kattwinkel, J, Reempts, P, et al. International Guidelines for Neonatal Resuscitation: an excerpt from the Guidelines 2000 for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care: International Consensus on Science. Contributors and Reviewers for the Neonatal Resuscitation Guidelines. Pediatrics 2000;106(3):E29 (http://pediatrics.aappublications.org/cgi/reprint/106/3/e29).Google ScholarPubMed
Wiswell, TE, Knight, GR, Finer, NN, et al. A multicenter, randomized, controlled trial comparing Surfaxin (Lucinactant) lavage with standard care for treatment of meconium aspiration syndrome. Pediatrics 2002;109(6):1081–7.CrossRefGoogle ScholarPubMed
Kattwinkel, J. Surfactant lavage for meconium aspiration: a word of caution. Pediatrics 2002;109(6):1167–8.CrossRefGoogle ScholarPubMed
Lundstrom, KE, Pryds, O, Greisen, G. Oxygen at birth and prolonged cerebral vasoconstriction in preterm infants. Arch Dis Child Fetal Neonatal Ed 1995;73(2):F81–6.CrossRefGoogle ScholarPubMed
Beasley, R, McNaughton, A, Robinson, G. New look at the oxyhaemoglobin dissociation curve. Lancet 2006;367(9517):1124–6.CrossRefGoogle Scholar
Saugstad, OD. Oxygen saturations immediately after birth. J Pediatr 2006;148(5): 569–70.CrossRefGoogle ScholarPubMed
Collins, MP, Lorenz, JM, Jetton, JR, Paneth, N. Hypocapnia and other ventilation-related risk factors for cerebral palsy in low birth weight infants. Pediatr Res 2001;50(6):712–19.CrossRefGoogle ScholarPubMed
Fabres, J, Carlo, WA, Phillips, V, Howard, G, Ambalavanan, N. Both extremes of arterial carbon dioxide pressure and the magnitude of fluctuations in arterial carbon dioxide pressure are associated with severe intraventricular hemorrhage in preterm infants. Pediatrics 2007;119(2):299–305.CrossRefGoogle ScholarPubMed
Askie, LM, Henderson-Smart, DJ, Irwig, L, Simpson, JM. Oxygen-saturation targets and outcomes in extremely preterm infants. N Engl J Med 2003;349(10):959–67.CrossRefGoogle ScholarPubMed
Tin, W, Milligan, DW, Pennefather, P, Hey, E. Pulse oximetry, severe retinopathy, and outcome at one year in babies of less than 28 weeks gestation. Arch Dis Child Fetal Neonatal Ed 2001;84(2):F106–10.CrossRefGoogle ScholarPubMed
Finer, NN, Rich, WD. Neonatal resuscitation: raising the bar. Curr Opin Pediatr 2004;16(2):157–62.CrossRefGoogle Scholar
Tin, W, Walker, S, Lacamp, C. Oxygen monitoring in preterm babies: too high, too low?Paediatr Respir Rev 2003;4(1):9–14.CrossRefGoogle ScholarPubMed
Saugstad, OD, Rootwelt, T, Aalen, O. Resuscitation of asphyxiated newborn infants with room air or oxygen: an international controlled trial: the Resair 2 study. Pediatrics 1998;102(1):e1 (http://pediatrics.aappublications.org/cgi/content/full/102/1/e1).CrossRefGoogle ScholarPubMed
Vento, M, Asensi, M, Sastre, J, Garcia-Sala, F, Pallardo, FV, Vina, J. Resuscitation with room air instead of 100 % oxygen prevents oxidative stress in moderately asphyxiated term neonates. Pediatrics 2001;107(4):642–7.CrossRefGoogle ScholarPubMed
Vento, M, Asensi, M, Sastre, J, Lloret, A, Garcia-Sala, F, Vina, J. Oxidative stress in asphyxiated term infants resuscitated with 100 % oxygen. J Pediatr 2003;142(3):240–6.CrossRefGoogle ScholarPubMed
Niermeyer, S, Vento, M. Is 100 % oxygen necessary for the resuscitation of newborn infants?J Matern Fetal Neonatal Med 2004;15(2):75–84.CrossRefGoogle ScholarPubMed
O'Donnell, CP, Davis, PG, Morley, CJ. Positive pressure ventilation at neonatal resuscitation: review of equipment and international survey of practice. Acta Paediatr 2004;93(5):583–8.CrossRefGoogle Scholar
Jobe, AH, Bancalari, E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med 2001;163(7):1723–9.CrossRefGoogle ScholarPubMed
Jobe, AH, Kramer, BW, Moss, TJ, Newnham, JP, Ikegami, M. Decreased indicators of lung injury with continuous positive expiratory pressure in preterm lambs. Pediatr Res 2002;52(3):387–92.CrossRefGoogle ScholarPubMed
Naik, AS, Kallapur, SG, Bachurski, CJ, et al. Effects of ventilation with different positive end-expiratory pressures on cytokine expression in the preterm lamb lung. Am J Respir Crit Care Med 2001;164(3):494–8.CrossRefGoogle ScholarPubMed
Vanpee, M, Walfridsson-Schultz, U, Katz-Salamon, M, Zupancic, JA, Pursley, D, Jonsson, B. Resuscitation and ventilation strategies for extremely preterm infants: a comparison study between two neonatal centers in Boston and Stockholm. Acta Paediatr 2007;96(1):10–16; discussion 8–9.CrossRefGoogle ScholarPubMed
Lindner, W, Pohlandt, F. Oxygenation and ventilation in spontaneously breathing very preterm infants with nasopharyngeal CPAP in the delivery room. Acta Paediatr 2007;96(1):17–22.CrossRefGoogle ScholarPubMed
Halamek, LP, Morley, C. Continuous positive airway pressure during neonatal resuscitation. Clin Perinatol 2006;33(1):83–98, vii.CrossRefGoogle ScholarPubMed
Courtney, SE, Barrington, KJ. Continuous positive airway pressure and noninvasive ventilation. Clin Perinatol 2007;34(1):73–92, vi.CrossRefGoogle ScholarPubMed
Marter, LJ, Allred, EN, Pagano, M, et al. Do clinical markers of barotrauma and oxygen toxicity explain interhospital variation in rates of chronic lung disease? The Neonatology Committee for the Developmental Network. Pediatrics 2000;105(6):1194–201.CrossRefGoogle ScholarPubMed
Blennow, M, Jonsson, B, Dahlstrom, A, Sarman, I, Bohlin, K, Robertson, B. [Lung function in premature infants can be improved. Surfactant therapy and CPAP reduce the need of respiratory support.]Lakartidningen 1999;96(13):1571–6.Google Scholar
Stevens, TP, Blennow, M, Soll, RF. Early surfactant administration with brief ventilation vs selective surfactant and continued mechanical ventilation for preterm infants with or at risk for respiratory distress syndrome. Cochrane Database Syst Rev 2004(3):CD003063.Google ScholarPubMed
Kribs, A. Is it safer to intubate premature infants in the delivery room?Pediatrics 2006;117(5):1858–9; author reply 1859.CrossRefGoogle ScholarPubMed
Kribs, A, Pillekamp, F, Hunseler, C, Vierzig, A, Roth, B. Early administration of surfactant in spontaneous breathing with nCPAP: feasibility and outcome in extremely premature infants (postmenstrual age ≤27 weeks). Paediatr Anaesth 2007;17(4):364–9.CrossRefGoogle Scholar
Clark, RH, Gerstmann, DR, Jobe, AH, Moffitt, ST, Slutsky, AS, Yoder, BA. Lung injury in neonates: causes, strategies for prevention, and long-term consequences. J Pediatr 2001;139(4):478–86.CrossRefGoogle ScholarPubMed
Auten, RL, Vozzelli, M, Clark, RH. Volutrauma. What is it, and how do we avoid it?Clin Perinatol 2001;28(3):505–15.CrossRefGoogle Scholar
Carlton, DP, Cummings, JJ, Scheerer, RG, Poulain, FR, Bland, RD. Lung overexpansion increases pulmonary microvascular protein permeability in young lambs. J Appl Physiol 1990;69(2):577–83.CrossRefGoogle ScholarPubMed
Carlton, DP, Cho, SC, Davis, P, Bland, RD. Inflation pressure and lung vascular injury in preterm lambs. Chest 1994;105(3 Suppl):115S–116S.CrossRefGoogle ScholarPubMed
Bittigau, P, Sifringer, M, Genz, K, et al. Antiepileptic drugs and apoptotic neurodegeneration in the developing brain. Proc Nat Acad Sci USA 2002;99(23):15089–94.CrossRefGoogle ScholarPubMed
Roberts, KD, Leone, TA, Edwards, WH, Rich, WD, Finer, NN. Premedication for nonemergent neonatal intubations: a randomized, controlled trial comparing atropine and fentanyl to atropine, fentanyl, and mivacurium. Pediatrics 2006;118(4):1583–91.CrossRefGoogle ScholarPubMed
Barrington, KJ, Byrne, PJ. Premedication for neonatal intubation. Am J Perinatol 1998;15(4):213–16.CrossRefGoogle ScholarPubMed
Dempsey, EM, Al Hazzani, F, Faucher, D, Barrington, KJ. Facilitation of neonatal endotracheal intubation with mivacurium and fentanyl in the neonatal intensive care unit. Arch Dis Child Fetal Neonatal Ed 2006;91(4):F279–82.CrossRefGoogle ScholarPubMed
Saarenmaa, E, Huttunen, P, Leppaluoto, J, Meretoja, O, Fellman, V. Advantages of fentanyl over morphine in analgesia for ventilated newborn infants after birth: a randomized trial. J Pediatr 1999;134(2):144–50.CrossRefGoogle ScholarPubMed
Hall, RW, Kronsberg, SS, Barton, BA, Kaiser, JR, Anand, KJ. Morphine, hypotension, and adverse outcomes among preterm neonates: who's to blame? Secondary results from the NEOPAIN trial. Pediatrics 2005;115(5):1351–9.CrossRefGoogle ScholarPubMed
Straaten, HL, Rademaker, CM, Vries, LS. Comparison of the effect of midazolam or vecuronium on blood pressure and cerebral blood flow velocity in the premature newborn. Dev Pharmacol Ther 1992;19(4):191–5.CrossRefGoogle ScholarPubMed
Ghanta, S, Abdel-Latif, ME, Lui, K, Ravindranathan, H, Awad, J, Oei, J. Propofol compared with the morphine, atropine, and suxamethonium regimen as induction agents for neonatal endotracheal intubation: a randomized, controlled trial. Pediatrics 2007;119(6):e1248–55.CrossRefGoogle ScholarPubMed
Mellon, RD, Simone, AF, Rappaport, BA. Use of anesthetic agents in neonates and young children. Anesth Analg 2007;104(3):509–20.CrossRefGoogle ScholarPubMed
O'Donnell, CP, Kamlin, CO, Davis, PG, Morley, CJ. Endotracheal intubation attempts during neonatal resuscitation: success rates, duration, and adverse effects. Pediatrics 2006;117(1):e16–21.CrossRefGoogle ScholarPubMed
Falck, AJ, Escobedo, MB, Baillargeon, JG, Villard, LG, Gunkel, JH. Proficiency of pediatric residents in performing neonatal endotracheal intubation. Pediatrics 2003;112(6 Pt 1):1242–7.CrossRefGoogle ScholarPubMed
Grein, AJ, Weiner, GM. Laryngeal mask airway versus bag-mask ventilation or endotracheal intubation for neonatal resuscitation. Cochrane Database Syst Rev 2005(2):CD003314.Google ScholarPubMed
Micaglio, M, Trevisanuto, D, Doglioni, N, Zanette, G, Zanardo, V, Ori, C. The size 1 LMA-ProSeal: comparison with the LMA-Classic during pressure controlled ventilation in a neonatal intubation manikin. Resuscitation 2007;72(1):124–7.CrossRefGoogle Scholar
Goldmann, K, Roettger, C, Wulf, H. The size 1(1/2) ProSeal laryngeal mask airway in infants: a randomized, crossover investigation with the Classic laryngeal mask airway. Anesth Analg 2006;102(2):405–10.CrossRefGoogle ScholarPubMed
Shem, S. House of God. New York: Dell Publishing, 1978.Google Scholar
Kabra, NS, Kumar, M, Shah, SS. Multiple versus single lumen umbilical venous catheters for newborn infants. Cochrane Database Syst Rev 2005(3):CD004498.Google ScholarPubMed
Anderson, J, Leonard, D, Braner, DA, Lai, S, Tegtmeyer, K.Videos in clinical medicine. Umbilical vascular catheter isahon. N Eng 1 J Med 2008;359(15):e18.Google Scholar
Barrington, KJ. Umbilical artery catheters in the newborn: effects of catheter design (end vs side hole). Cochrane Database Syst Rev 2000(2):CD000508.Google Scholar
Barrington, KJ. Umbilical artery catheters in the newborn: effects of position of the catheter tip. Cochrane Database Syst Rev 2000(2):CD000505.PubMed
O'Grady, NP, Alexander, M, Dellinger, EP, et al. Guidelines for the prevention of intravascular catheter-related infections. The Hospital Infection Control Practices Advisory Committee, Center for Disease Control and Prevention, US. Pediatrics 2002;110(5):e51.CrossRefGoogle Scholar
Cetta, F, Graham, LC, Eidem, BW. Gaining vascular access in pediatric patients: use of the P.D. access Doppler needle. Catheter Cardiovasc Interv 2000;51(1):61–4.3.0.CO;2-U>CrossRefGoogle Scholar
Latto, IP, Rosen, M. Percutaneous Central Venous and Arterial Catheterisation, 3rd edn. London: Saunders, 2000.Google Scholar
Alderson, PJ, Burrows, FA, Stemp, LI, Holtby, HM. Use of ultrasound to evaluate internal jugular vein anatomy and to facilitate central venous cannulation in paediatric patients. Br J Anaesth 1993;70(2):145–8.CrossRefGoogle ScholarPubMed
Verghese, ST, McGill, WA, Patel, RI, Sell, JE, Midgley, FM, Ruttimann, UE. Ultrasound-guided internal jugular venous cannulation in infants: a prospective comparison with the traditional palpation method. Anesthesiology 1999;91(1):71–7.CrossRefGoogle ScholarPubMed
Arai, T, Yamashita, M. Central venous catheterization in infants and children – small caliber audio-Doppler probe versus ultrasound scanner. Paediatr Anaesth 2005;15(10):858–61.CrossRefGoogle ScholarPubMed
Higgs, ZC, Macafee, DA, Braithwaite, BD, Maxwell-Armstrong, CA. The Seldinger technique: 50 years on. Lancet 2005;366(9494):1407–9.CrossRefGoogle Scholar
Fiorito, BA, Mirza, F, Doran, TM, et al. Intraosseous access in the setting of pediatric critical care transport. Pediatr Crit Care Med 2005;6(1):50–3.CrossRefGoogle ScholarPubMed
Engle, WA. Intraosseous access for administration of medications in neonates. Clin Perinatol 2006;33(1):161–8, ix.CrossRefGoogle ScholarPubMed
Lake, W, Emmerson, AJ. Use of a butterfly as an intraosseous needle in an oedematous preterm infant. Arch Dis Child Fetal Neonatal Ed 2003;88(5):F409.CrossRefGoogle Scholar
Hillewig, E, Aghayev, E, Jackowski, C, Christe, A, Plattner, T, Thali, MJ. Gas embolism following intraosseous medication application proven by post-mortem multislice computed tomography and autopsy. Resuscitation 2007;72(1):149–53.CrossRefGoogle ScholarPubMed
Haas, NA, Haas, SA. Central venous catheter techniques in infants and children. Curr Opin Anaesthesiol 2003;16(3):291–303.CrossRefGoogle ScholarPubMed
Haas, NA. Clinical review: vascular access for fluid infusion in children. Crit Care 2004;8(6):478–84.CrossRefGoogle ScholarPubMed
Skippen, P, Kissoon, N. Ultrasound guidance for central vascular access in the pediatric emergency department. Pediatr Emerg Care 2007;23(3):203–7.CrossRefGoogle ScholarPubMed
Hutton, EK, Hassan, ES. Late vs early clamping of the umbilical cord in full-term neonates: systematic review and meta-analysis of controlled trials. J Am Med Assoc 2007;297(11):1241–52.CrossRefGoogle ScholarPubMed
Rabe, H, Reynolds, G, Diaz-Rossello, J. Early versus delayed umbilical cord clamping in preterm infants. Cochrane Database Syst Rev 2004(4):CD003248.Google ScholarPubMed
Sham, S. House of God. New York: Dell Publishing, 1978.Google Scholar
Brady, MT. Health care-associated infections in the neonatal intensive care unit. Am J Infect Control 2005;33(5):268–75.CrossRefGoogle ScholarPubMed
Lam, BC, Lee, J, Lau, YL. Hand hygiene practices in a neonatal intensive care unit: a multimodal intervention and impact on nosocomial infection. Pediatrics 2004;114(5):e565–71.CrossRefGoogle Scholar
Brunetti, L, Santoro, E, Caro, F, et al. Surveillance of nosocomial infections: a preliminary study on hand hygiene compliance of healthcare workers. J Prev Med Hyg 2006;47(2):64–8.Google ScholarPubMed
,CDC. Recommendations and Reports. MMWR Morb Mortal Wkly Rep 2002;51.
Webster, J, Pritchard, MA. Gowning by attendants and visitors in newborn nurseries for prevention of neonatal morbidity and mortality. Cochrane Database Syst Rev 2003(3):CD003670.Google ScholarPubMed
Dettenkofer, M, Wenzler, S, Amthor, S, Antes, G, Motschall, E, Daschner, FD. Does disinfection of environmental surfaces influence nosocomial infection rates? A systematic review. Am J Infect Control 2004;32(2):84–9.CrossRefGoogle ScholarPubMed
Casey, BM, McIntire, DD, Leveno, KJ. The continuing value of the Apgar score for the assessment of newborn infants. N Engl J Med 2001;344(7):467–71.CrossRefGoogle ScholarPubMed
Papile, . The Apgar score in the 21st century. N Engl J Med 2001;344(7):519–20.CrossRefGoogle ScholarPubMed
Cockburn, F, Cooke, R, Gamsu, H. The CRIB (Clinical Risk Index for Babies) score: a tool for assessing initial neonatal risk and comparing performance of neonatal intensive care units. The International Neonatal Network. Lancet 1993;342(8865):193–8.Google Scholar
Nelson, KB, Emery, ES, 3rd. Birth asphyxia and the neonatal brain: what do we know and when do we know it?Clin Perinatol 1993;20(2):327–44.CrossRefGoogle Scholar
Richmond, S. ILCOR and neonatal resuscitation 2005. Arch Dis Child Fetal Neonatal Ed 2007;92(3):F163–5.CrossRefGoogle ScholarPubMed
Gunn, AJ, Hoehn, T, Hansmann, G, et al. Hypothermia, an evolving treatment for neonatal hypoxic ischemic encephalopathy. Pediatrics 2008;121:648–49.CrossRefGoogle ScholarPubMed
Dawes, GS. Birth asphyxia, resuscitation, and brain damage. In: Foetal and Neonatal Physiology. Chicago: Year Book Publisher, 1968:141–59.Google Scholar
Carter, BS, Haverkamp, AD, Merenstein, GB. The definition of acute perinatal asphyxia. Clin Perinatol 1993;20(2):287–304.CrossRefGoogle ScholarPubMed
Owen, CJ, Wyllie, JP. Determination of heart rate in babies at birth. Resuscitation 2004;60:213–17.CrossRefGoogle ScholarPubMed
Perlman, JM, Risser, R. Cardiopulmonary resuscitation in the delivery room – associated clinical events. Arch Pediatr Adolesc Med 1995;149:20–5.CrossRefGoogle ScholarPubMed
Adamsons, K, Behrman, R, Dawes, GS, James, LS, Koford, C. Resuscitation by positive pressure ventilation and Tris-hydroxymethylaminomethane of Rhesus monkeys asphyxiated at birth. J Pediatr 1964;65:807–18.CrossRefGoogle ScholarPubMed
Campbell, AG, Cockburn, F, Dawes, GS, Milligan, JE. Pulmonary blood flow and cross-circulation between twin foetal lambs. J Physiol (Lond) 1966;186(2):96P–97P.Google ScholarPubMed
Dawes, GS. Circulatory adjustments in the newborn. Heart Bull 1963;12:17–19.Google ScholarPubMed
Richmond, S, Goldsmith, J. Air or 100 % oxygen in neonatal resuscitation?Clin Perinatol 2006;33(1):11–27.CrossRefGoogle ScholarPubMed
Hoehn, T, Hansmann, G, Bührer, C, et al. Therapeutic hypothermia in neonates. Review of current clinical data, ILCOR recommendations and suggestions for implementation in neonatal intensive care units. Resuscitation 2008;78(1):7–12.CrossRefGoogle ScholarPubMed
Hansmann, G, Humpl, T, Zimmermann, A, et al. [ILCOR's new resuscitation guidelines in preterm and term infants: critical discussion and suggestions for implementation.]Klin Padiatr 2007;219(2):50–7.CrossRefGoogle Scholar
Vohra, S, Roberts, RS, Zhang, B, Janes, M, Schmidt, B. Heat loss prevention (HeLP) in the delivery room: a randomized controlled trial of polyethylene occlusive skin wrapping in very preterm infants. J Pediatr 2004;145:750–3.CrossRefGoogle ScholarPubMed
Cotten, CM, Goldberg, RU. Air leak syndromes. In: Spitzer, A (ed.) Intensive Care of the Fetus and Neonate, 2nd edn. Philadelphia: Elsevier Mosby, 2005; pp. 715–18.Google Scholar
McGuire, W, Fowlie, PW. Naloxone for narcotic-exposed newborn infants. Cochrane Database Syst Rev 2002(4):CD003483.Google ScholarPubMed
Rennie, J, Chorley, G, Boylan, G, Pressler, R, Nguyen, Y, Hopper, R.Non-expert use of the cerebral function monitor for neonatal seizure detection. Arch Dis Child Fetal Neonatal Ed 2004;89(1):F37–40.CrossRefGoogle ScholarPubMed
Ammari, AN, Schulze, KF. Uses and abuses of sodium bicarbonate in the neonatal intensive care unit. Curr Opin Pediatr 2002;14(2):151–6.CrossRefGoogle ScholarPubMed
Dixon, H, Hawkins, K, Stephenson, T. Comparison of albumin versus bicarbonate treatment for neonatal metabolic acidosis. Eur J Pediatr 1999;158(5):414–15.CrossRefGoogle ScholarPubMed
Moore, FD. The desperate case: CARE (costs, applicability, research, ethics). J Am Med Assoc 1989;261(10):1483–4.CrossRefGoogle Scholar
Annas, GJ. Extremely preterm birth and parental authority to refuse treatment – the case of Sidney Miller. N Engl J Med 2004;351(20):2118–23.CrossRefGoogle ScholarPubMed
Duff, RS, Campbell, AG. Moral and ethical dilemmas in the special-care nursery. N Engl J Med 1973;289(17):890–4.CrossRefGoogle ScholarPubMed
Ryan, CA, Byrne, P, Kuhn, S, Tyebkhan, J. No resuscitation and withdrawal of therapy in a neonatal and a pediatric intensive care unit in Canada. J Pediatr 1993;123(4):534–8.CrossRefGoogle Scholar
Cuttini, M, Kaminski, M, Garel, M, Lenoir, S, Saracci, R. End-of-life decisions in neonatal intensive care. Lancet 2000;356(9248):2190–1.CrossRefGoogle ScholarPubMed
Provoost, V, Cools, F, Mortier, F, et al. Medical end-of-life decisions in neonates and infants in Flanders. Lancet 2005;365(9467):1315–20.CrossRefGoogle ScholarPubMed
Gold, F. Exigence et refus de soins en néonatologie: le point de vue d'un pédiatre néonatologiste. [When parents require or refuse neonatal intensive care: one French neonatologist's opinion.]Arch Pediatr 2006;13(7):1005–8.CrossRefGoogle Scholar
,2005 American Heart Association (AHA) guidelines for cardiopulmonary resuscitation (CPR) and emergency cardiovascular care (ECC) of pediatric and neonatal patients: neonatal resuscitation guidelines. Pediatrics 2006;117(5):e1029–38.
Silverman, WA. Compassion or opportunism?Pediatrics 2004;113(2):402–3.CrossRefGoogle ScholarPubMed
Janvier, A, Barrington, KJ. Advocating for the very preterm infant. Pediatrics 2006;118(1):429–30; author reply 430–2.CrossRefGoogle ScholarPubMed
, Österreichische Gesellschaft für Kinder- und Jugendheilkunde. Erstversorgung von Frühgeborenen an der Grenze zur Lebensfähigkeit. Monatsschrift Kinderheilkunde 2005;153:711–15.Google Scholar
,Nuffield Council on Bioethics. Critical Care Decisions in Fetal and Neonatal Medicine: Ethical Issues – Conclusions and Recommendations. London: The Nuffield Council on Bioethics, 2006.
Berger, TM, Büttiker, V, Fauchère, JC, et al. Empfehlungen zur Betreuung von Frühgeborenen an der Grenze der Lebensfähigkeit (Gestationsalter 22–26 SSW). Schweizerische Aerztezeitung 2002;83:1589–95.Google Scholar
Kaempf, JW, Tomlinson, M, Arduza, C, et al. Medical staff guidelines for periviability pregnancy counseling and medical treatment of extremely premature infants. Pediatrics 2006;117(1):22–9.CrossRefGoogle ScholarPubMed
Wood, NS, Marlow, N, Costeloe, K, Gibson, AT, Wilkinson, AR. Neurologic and developmental disability after extremely preterm birth. EPICure Study Group. N Engl J Med 2000;343(6):378–84.CrossRefGoogle ScholarPubMed
Marlow, N, Wolke, D, Bracewell, MA, Samara, M. Neurologic and developmental disability at six years of age after extremely preterm birth. N Engl J Med 2005;352(1):9–19.CrossRefGoogle ScholarPubMed
Hentschel, R, Lindner, K, Krueger, M, Reiter-Theil, S. Restriction of ongoing intensive care in neonates: a prospective study. Pediatrics 2006;118(2):563–9.CrossRefGoogle ScholarPubMed
Baumann-Hölzle, R, Maffezzoni, M, Bucher, HU. A framework for ethical decision making in neonatal intensive care. Acta Paediatr 2005;94(12):1777–83.CrossRefGoogle ScholarPubMed
Oransky, I.William, Silverman. Lancet 2005;365(9454):116.CrossRef
Raju, TN. William Sealy, Gosset and William, A. Silverman: two “students” of science. Pediatrics 2005;116(3):732–5.CrossRefGoogle Scholar
Kavanaugh, K, Savage, T, Kilpatrick, S, Kimura, R, Hershberger, P. Life support decisions for extremely premature infants: report of a pilot study. J Pediatr Nurs 2005;20(5):347–59.CrossRefGoogle ScholarPubMed
Partridge, JC, Martinez, AM, Nishida, H, et al. International comparison of care for very low birth weight infants: parents' perceptions of counseling and decision-making. Pediatrics 2005;116(2):e263–71.CrossRefGoogle ScholarPubMed
Emanuel, EJ, Emanuel, LL. Four models of the physician–patient relationship. J Am Med Assoc 1992;267(16):2221–6.CrossRefGoogle ScholarPubMed
Heide, A, Maas, PJ, Wal, G, Kollee, , Leeuw, R, Holl, RA. The role of parents in end-of-life decisions in neonatology: physicians' views and practices. Pediatrics 1998;101(3 Pt 1):413–18.CrossRefGoogle ScholarPubMed
Isaacs, D, Kilham, H, Gordon, A, et al. Withdrawal of neonatal mechanical ventilation against the parents' wishes. J Paediatr Child Health 2006;42(5):311–15.CrossRefGoogle ScholarPubMed
Tyson, JE, Broyles, RS. Progress in assessing the long-term outcome of extremely low-birth-weight infants. J Am Med Assoc 1996;276(6):492–3.CrossRefGoogle ScholarPubMed
Tyson, JE, Younes, N, Verter, J, Wright, LL. Viability, morbidity, and resource use among newborns of 501-g to 800-g birth weight.National Institute of Child Health and Human Development Neonatal Research Network. J Am Med Assoc 1996;276(20):1645–51.CrossRefGoogle Scholar
,Perinatal care at the threshold of viability. American Academy of Pediatrics Committee on Fetus and Newborn. American College of Obstetricians and Gynecologists Committee on Obstetric Practice. [No authors listed.] Pediatrics 1995;96(5 Pt 1):974–6.
Leeuw, R, Cuttini, M, Nadai, M, et al. Treatment choices for extremely preterm infants: an international perspective. J Pediatr 2000;137(5):608–16.CrossRefGoogle Scholar
Sauer, PJ. Ethical dilemmas in neonatology: recommendations of the Ethics Working Group of the CESP (Confederation of European Specialists in Paediatrics). Eur J Pediatr 2001;160(6):364–8.CrossRefGoogle Scholar
McHaffie, HE, Cuttini, M, Brolz-Voit, G, et al. Withholding/withdrawing treatment from neonates: legislation and official guidelines across Europe. J Med Ethics 1999;25(6):440–6.CrossRefGoogle ScholarPubMed
Verhagen, E, Sauer, PJ. The Groningen protocol – euthanasia in severely ill newborns. N Engl J Med 2005;352(10):959–62.CrossRefGoogle ScholarPubMed
Verhagen, AA, Sauer, PJ, Verhagen, E, Sauer, PJ. End-of-life decisions in newborns: an approach from The Netherlands. The Groningen protocol – euthanasia in severely ill newborns. Pediatrics 2005;116(3):736–9.CrossRefGoogle Scholar
Polimeni, V, Claure, N, D'Ugard, C, Bancalari, E. Effects of volume-targeted synchronized intermittent mandatory ventilation on spontaneous episodes of hypoxemia in preterm infants. Biol Neonate 2006;89(1):50–5.CrossRefGoogle ScholarPubMed
Imanaka, H, Nishimura, M, Miyano, H, Uemura, H, Yagihara, T. Effect of synchronized intermittent mandatory ventilation on respiratory workload in infants after cardiac surgery. Anesthesiology 2001;95(4):881–8.CrossRefGoogle ScholarPubMed
,High-frequency oscillatory ventilation compared with conventional mechanical ventilation in the treatment of respiratory failure in preterm infants. The HIFI Study Group. [No authors listed.] N Engl J Med 1989;320(2):88–93.
Courtney, SE, Durand, DJ, Asselin, JM, Hudak, ML, Aschner, JL, Shoemaker, CT. High-frequency oscillatory ventilation versus conventional mechanical ventilation for very-low-birth-weight infants. N Engl J Med 2002;347(9):643–52.CrossRefGoogle ScholarPubMed
Henderson-Smart, DJ, Bhuta, T, Cools, F, Offringa, M. Elective high frequency oscillatory ventilation versus conventional ventilation for acute pulmonary dysfunction in preterm infants. Cochrane Database Syst Rev 2003(4):CD000104.Google ScholarPubMed
Arnold, JH, Hanson, JH, Toro-Figuero, LO, Gutierrez, J, Berens, RJ, Anglin, DL. Prospective, randomized comparison of high-frequency oscillatory ventilation and conventional mechanical ventilation in pediatric respiratory failure. Crit Care Med 1994;22(10):1530–9.CrossRefGoogle ScholarPubMed
Calvert, S. Prophylactic high-frequency oscillatory ventilation in preterm infants.Acta Paediatr Suppl 2002;91(437):16–18.CrossRefGoogle ScholarPubMed
Day, RW, Lynch, JM, White, KS, Ward, RM. Acute response to inhaled nitric oxide in newborns with respiratory failure and pulmonary hypertension. Pediatrics 1996;98(4 Pt 1):698–705.Google ScholarPubMed
Ballard, RA, Truog, WE, Cnaan, A, et al. Inhaled nitric oxide in preterm infants undergoing mechanical ventilation. N Engl J Med 2006;355(4):343–53.CrossRefGoogle ScholarPubMed
Kinsella, JP, Cutter, GR, Walsh, WF, et al. Early inhaled nitric oxide therapy in premature newborns with respiratory failure. N Engl J Med 2006;355(4):354–64.CrossRefGoogle ScholarPubMed
Kugelman, A, Gangitano, E, Taschuk, R, et al. Extracorporeal membrane oxygenation in infants with meconium aspiration syndrome: a decade of experience with venovenous ECMO. J Pediatr Surg 2005;40(7):1082–9.CrossRefGoogle ScholarPubMed
Simon, BA. Non-invasive imaging of regional lung function using X-ray computed tomography. J Clin Monit Comput 2000;16(5–6):433–42.CrossRefGoogle ScholarPubMed
Weber, T, Tschernich, H, Sitzwohl, C, et al. Tromethamine buffer modifies the depressant effect of permissive hypercapnia on myocardial contractility in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 2000;162(4 Pt 1):1361–5.CrossRefGoogle ScholarPubMed
Gothberg, S, Parker, TA, Griebel, J, Abman, SH, Kinsella, JP. Lung volume recruitment in lambs during high-frequency oscillatory ventilation using respiratory inductive plethysmography. Pediatr Res 2001;49(1):38–44.CrossRefGoogle ScholarPubMed
Brazelton, TB, Watson, KF, Murphy, M, Al-Khadra, E, Thompson, JE, Arnold, JH. Identification of optimal lung volume during high-frequency oscillatory ventilation using respiratory inductive plethysmography. Crit Care Med 2001;29(12):2349–59.CrossRefGoogle ScholarPubMed
Wolf, GK, Arnold, JH. Noninvasive assessment of lung volume: respiratory inductance plethysmography and electrical impedance tomography. Crit Care Med 2005;33(3 Suppl):S163–9.CrossRefGoogle ScholarPubMed
Greenough, A. Expanded use of surfactant replacement therapy. Eur J Pediatr 2000;159(9):635–40.CrossRefGoogle ScholarPubMed
Finer, NN. Surfactant use for neonatal lung injury: beyond respiratory distress syndrome. Paediatr Respir Rev 2004;5 (Suppl A):S289–97.CrossRefGoogle ScholarPubMed
Silberbach, M, Hannon, D. Presentation of congenital heart disease in the neonate and young infant. Pediatr Rev 2007;28(4):123–31.CrossRefGoogle ScholarPubMed
Greenough, A, Milner, AD, Dimitriou, G. Synchronized mechanical ventilation for respiratory support in newborn infants. Cochrane Database Syst Rev 2004(4):CD000456.Google ScholarPubMed
Mizuno, K, Takeuchi, T, Itabashi, K, Okuyama, K. Efficacy of synchronized IMV on weaning neonates from the ventilator. Acta Paediatr Jpn 1994;36(2):162–6.CrossRefGoogle ScholarPubMed
McCallion, N, Davis, PG, Morley, CJ. Volume-targeted versus pressure-limited ventilation in the neonate. Cochrane Database Syst Rev 2005(3):CD003666.Google ScholarPubMed
Singh, J, Sinha, SK, Clarke, P, Byrne, S, Donn, SM. Mechanical ventilation of very low birth weight infants: is volume or pressure a better target variable?J Pediatr 2006;149(3):308–13.CrossRefGoogle ScholarPubMed
Reyes, C, Chang, LK, Waffarn, F, Mir, H, Warden, MJ, Sills, J. Delayed repair of congenital diaphragmatic hernia with early high-frequency oscillatory ventilation during preoperative stabilization. J Pediatr Surg 1998;33(7):1010–14; discussion 1014–16.CrossRefGoogle ScholarPubMed
Marlow, N, Greenough, A, Peacock, JL, et al. Randomised trial of high frequency oscillatory ventilation or conventional ventilation in babies of gestational age 28 weeks or less: respiratory and neurological outcomes at 2 years. Arch Dis Child Fetal Neonatal Ed 2006;91(5):F320–6.CrossRefGoogle ScholarPubMed
Jaegere, A, Veenendaal, MB, Michiels, A, Kaam, AH. Lung recruitment using oxygenation during open lung high-frequency ventilation in preterm infants. Am J Respir Crit Care Med 2006;174(6):639–45.CrossRefGoogle ScholarPubMed
Bhuta, T, Henderson-Smart, DJ. Elective high-frequency oscillatory ventilation versus conventional ventilation in preterm infants with pulmonary dysfunction: systematic review and meta-analyses. Pediatrics 1997;100(5):E6.CrossRefGoogle ScholarPubMed
Hoehn, T, Krause, MF, Buhrer, C. Meta-analysis of inhaled nitric oxide in premature infants: an update. Klin Padiatr 2006;218(2):57–61.CrossRefGoogle ScholarPubMed
Lin, HC, Su, BH, Lin, TW, Tsai, CH, Yeh, TF. System-based strategy for the management of meconium aspiration syndrome: 198 consecutive cases observations. Acta Paediatr Taiwan 2005;46(2):67–71.Google ScholarPubMed
Sinn, JK, Ward, MC, Henderson-Smart, DJ. Developmental outcome of preterm infants after surfactant therapy: systematic review of randomized controlled trials. J Paediatr Child Health 2002;38(6):597–600.CrossRefGoogle ScholarPubMed
Ward, M, Sinn, J. Steroid therapy for meconium aspiration syndrome in newborn infants. Cochrane Database Syst Rev 2003(4):CD003485.Google ScholarPubMed
Huang, QW, Sun, B, Gao, F, et al. Effects of inhaled nitric oxide and high-frequency ventilation in rabbits with meconium aspiration. Biol Neonate 1999;76(6):374–82.CrossRefGoogle ScholarPubMed
Boloker, J, Bateman, DA, Wung, JT, Stolar, CJ. Congenital diaphragmatic hernia in 120 infants treated consecutively with permissive hypercapnea/spontaneous respiration/elective repair. J Pediatr Surg 2002;37(3):357–66.CrossRefGoogle ScholarPubMed
Cacciari, A, Ruggeri, G, Mordenti, M, et al. High-frequency oscillatory ventilation versus conventional mechanical ventilation in congenital diaphragmatic hernia. Eur J Pediatr Surg 2001;11(1):3–7.CrossRefGoogle ScholarPubMed
Okuyama, H, Kubota, A, Oue, T, et al. Inhaled nitric oxide with early surgery improves the outcome of antenatally diagnosed congenital diaphragmatic hernia. J Pediatr Surg 2002;37(8):1188–90.CrossRefGoogle ScholarPubMed
Lally, KP, Lally, PA, Meurs, KP, et al. Treatment evolution in high-risk congenital diaphragmatic hernia: ten years' experience with diaphragmatic agenesis. Ann Surg 2006;244(4):505–13.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×