Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-28T14:32:58.309Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  18 December 2009

Raphael D. Levine
Affiliation:
Hebrew University of Jerusalem
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, M. H. (1974). “Solvent effects on transition states and reaction rates.” Prog. Phys. Org. Chem. 11, 1Google Scholar
Adelman, S. A. (1980). “Generalized Langevin equations and many-body problems in chemical dynamics.” Adv. Chem. Phys. 44, 143Google Scholar
Adelman, S. A. and Doll, J. D. (1977). “Brownian motion and chemical dynamics on solid surfaces.” Acc. Chem. Res. 10, 378CrossRefGoogle Scholar
Agmon, N. (2003). “Elementary steps in excited-state proton transfer.” J. Phys. Chem. A (submitted)
Agranovich, V. M. and M. D. Galanin (1982). Electronic Excitation Energy Transfer in Condensed Matter. Amsterdam, Elsevier/North Holland
Aharoni, A., Hou, B., et al. (2001). “Non-isomerizable artificial pigments: implications for the primary light-induced events in bacteriorhodopsin.” Biochemistry 66, 1499Google ScholarPubMed
Aker, P. M. and Valentini, J. J. (1993). “Experimental characterization and computational simulation of chemical reaction dynamics.” Int. Rev. Phys. Chem. 12, 363CrossRefGoogle Scholar
Albery, W. J. (1980). “The application of the Marcus relation to reactions in solution.” Ann. Rev. Phys. Chem. 31, 227CrossRefGoogle Scholar
Alexander, A. J., Brouard, M., et al. (1998). “Chemistry with a sense of direction – the stereodynamics of bimolecular reactions.” Chem. Soc. Rev. 27, 405CrossRefGoogle Scholar
Alexander, A. J. and Zare, R. N. (1998). “Anatomy of elementary chemical reactions.” J. Chem. Educ. 75, 1105CrossRefGoogle Scholar
Allen, M. P. and D. J. Tildesley (1987). Computer Simulation of Liquids. Oxford, Clarendon Press
Althorpe, S. C. and Clary, D. C. (2003). “Quantum scattering calculations on chemical reactions.” Ann. Rev. Phys. Chem. 54, 493CrossRefGoogle ScholarPubMed
Althorpe, S. C., Fernandez-Alonso, F., et al. (2002). “Observation and interpretation of a time-delayed mechanism in the hydrogen exchange reaction.” Nature 416, 67CrossRefGoogle ScholarPubMed
Amirav, A., Even, U., et al. (1983). “Rotational cooling of aniline in axisymmetric and planar pulsed expansions.” Canad. J. Phys. 61, 278CrossRefGoogle Scholar
Ammal, S. C., Yamataka, H., et al. (2003). “Dynamics-driven reaction pathway in an intramolecular rearrangement.” Science 299, 1555CrossRefGoogle Scholar
Anderson, J. G. (1987). “Free radicals in the Earth's atmosphere: their measurement and interpretation.” Ann. Rev. Phys. Chem. 38, 489CrossRefGoogle Scholar
Anderson, S. M., R. G. Sadygov, et al. (2001). Quantum dynamics and spectroscopy. In Encyclopedia of Chemical Physics and Physical Chemistry, J. H. Moore and N. D. Spencer (eds.). Bristol, IOP Publishing, Vol. 2, p. 2027CrossRef
Ando, K. and Hynes, J. T. (1999). “Acid–base proton transfer and ion pair formation in solution.” Adv. Chem. Phys. 110, 381Google Scholar
Andrews, D. L. (1990). Lasers in Chemistry. Berlin, Springer-Verlag
Anfinrud, P. A. (2002). “Ultrafast infrared studies of biological systems.” Ann. Rev. Phys. Chem. 53
Aquilanti, V., A. Giardini-Guidoni, et al. (eds.) (1994). Photon-Induced Molecular Dynamics. Chem. Phys. Amsterdam, Elsevier
Armentrout, P. B. (1990). “Electronic state-specific transition metal ion chemistry.” Ann. Rev. Phys. Chem. 41, 313CrossRefGoogle Scholar
Armentrout, P. B. (2001). “Reactions and thermochemistry of small transition metal cluster ions.” Ann. Rev. Phys. Chem. 52, 423CrossRefGoogle ScholarPubMed
Armentrout, P. B. and Baer, T. (1996). “Gas-phase ion dynamics and chemistry.” J. Phys. Chem. 100, 12 866CrossRefGoogle Scholar
Armstrong, M. R., et al. (2003). Proc. Natl. Acad. Sci.100, 4990CrossRef
Arnaut, L. G. and Formosinho, S. J. (1993). “Excited-state proton transfer reactions I. Fundamentals and intermolecular reactions.” J. Photochem. Photobiol. A: Chem. 75, 1CrossRefGoogle Scholar
Arumainayagam, C. R. and Madix, R. J. (1991). “Molecular beam studies of gas–surface collision dynamics.” Prog. Surf. Sci. 38, 1CrossRefGoogle Scholar
Ashfold, M. N. R. and J. E. Baggott (eds.) (1989). Bimolecular Collisions. Advances in Gas-Phase Photochemistry and Kinetics. London, Royal Society of Chemistry
Ashfold, M. N. R. and J. E. Baggott (1997). Molecular Photodissociation Dynamics. London, Royal Society of Chemistry
Ashfold, M. N. R., K. Obi, et al. (eds.) (1998). New Aspects of Photochemistry and Reaction Dynamics. Chem. Phys. Amsterdam, Elsevier
Ashkenazi, G., Banin, U., et al. (1997). “Quantum description of the impulsive photodissociation dynamics of I-3 in solution.” Adv. Chem. Phys. 100, 229Google Scholar
Asscher, M. and Zeiri, Y. (2003). “Surface processes induced by collisions with adsorbates.” J. Phys. Chem. B 107, 6903CrossRefGoogle Scholar
Ausloos, P. (ed.) (1979). Kinetics of Ion–Molecule Reactions. New York, Plenum Press
Avouris, P., Gelbart, W. M., et al. (1977). “Nonradiative electronic relaxation under collision-free conditions.” Chem. Rev. 27, 793CrossRefGoogle Scholar
Avouris, P. and Walkup, R. E. (1989). “Fundamental mechanisms of desorption and fragmentation induced by electronic transitions at surfaces.” Ann. Rev. Phys. Chem. 40, 173CrossRefGoogle Scholar
Bacic, Z. and Miller, R. E. (1996). “Molecular clusters: structure and dynamics of weakly bound systems.” J. Phys. Chem. 100, 12 945CrossRefGoogle Scholar
Baede, A. P. M. (1975). “Charge transfer between neutrals at hyperthermal energies.” Adv. Chem. Phys. 30, 463Google Scholar
Baer, M. (ed.) (1985). The Theory of Chemical Reaction Dynamics. Boca Raton, FL, CRC Press
Baer, M. (2002). “Introduction to the theory of electronic non-adiabatic coupling terms in molecular systems.” Phys. Rep. 358, 75CrossRefGoogle Scholar
Baer, T. (1986). “The dissociation dynamics of energy-selected ions.” Adv. Chem. Phys. 64, 111Google Scholar
Baer, T. and W. L. Hase (1996). Unimolecular Reaction Dynamics. Theory and Experiments. New York, Oxford University Press
Bagchi, B. (1989). “Dynamics of solvation and charge transfer reactions in dipolar fluids.” Ann. Rev. Phys. Chem. 40, 115CrossRefGoogle Scholar
Bagchi, B. and Biswas, R. (1999). “Polar and nonpolar solvation dynamics, ion diffusion, and vibration relaxation: role of biphasic solvent response in chemical dynamics.” Adv. Chem. Phys. 109, 207Google Scholar
Bagchi, B. and Chandra, A. (1991). “Collective orientational relaxation in dense dipolar liquids.” Adv. Chem. Phys. 80, 1Google Scholar
Bagchi, B. and Fleming, G. R. (1990). “Dynamics of activationless reactions in solution.” J. Phys. Chem. 94, 9CrossRefGoogle Scholar
Bagchi, B. and Gayathri, N. (1999). “Interplay between ultrafast polar solvation and vibrational dynamics in electron transfer reactions: role of high-frequency vibrational modes.” Adv. Chem. Phys. 107, 1Google Scholar
Balucani, N., Asvany, O., et al. (2000). “Laboratory investigation on the formation of unsaturated nitriles in Titan's atmosphere.” Planet. Space Sci. 48, 447CrossRefGoogle Scholar
Balzani, V. (ed.) (2001). Electron Transfer in Chemistry. Chichester, John Wiley & Sons
Balzani, V., Credi, A., et al. (2000). “Artificial molecular machines.” Angew. Chem.-Int. Ed. Engl. 39, 33483.0.CO;2-X>CrossRefGoogle ScholarPubMed
Balzani, V., M. Venturi, et al. (2003). Molecular Devices and Machines: A Journey into the Nanoworld. Weinheim, Wiley-VCH
Bandrauk, A. D. (1999). “Intense field ionization of molecules by ultra-short laser pulses – charge resonance enhanced ionization and coulomb explosion.” Comm. Mod. Phys. 1(3), 97Google Scholar
Banin, U., Bartana, A., et al. (1994). “Impulsive excitation of coherent vibrational motion ground surface dynamics induced by intense short pulses.” J. Chem. Phys. 107, 8461CrossRefGoogle Scholar
Bar, I. and Rosenwaks, S. (2001). “Controlling bond cleavage and probing intramolecular dynamics via photodissociation of rovibrationally excited molecules.” Int. Rev. Phys. Chem. 20, 711CrossRefGoogle Scholar
Barbara, P. F., Meyer, T. J., et al. (1996). “Contemporary issues in electron transfer research.” J. Phys. Chem. 100, 13 148CrossRefGoogle Scholar
Bardeen, C. J. (2001). “Sometimes you can go home again.” Science 293, 444CrossRefGoogle Scholar
Bardeen, C. J., Che, J., et al. (1997). “Quantum control of NaI photodissociation reaction product states by ultrafast tailored light pulses.” J. Phys. Chem. A 101, 3815CrossRefGoogle Scholar
Bardeen, C. J., Wang, Q., et al. (1998). “Femtosecond chirped pulse excitation of vibrational wave packets in bacteriorhodopsin.” J. Phys. Chem. A 102, 2759CrossRefGoogle Scholar
Barker, J. A. and Auerbach, D. J. (1985). “Gas–surface interactions and dynamics: thermal energy atomic and molecular beam studies.” Surf. Sci. Rep. 4, 1CrossRefGoogle Scholar
Barker, J. R. (1984). “Direct measurements of energy transfer involving large molecules in the electronic ground state.” J. Phys. Chem. 88, 11CrossRefGoogle Scholar
Barker, J. R., Brenner, J. D., et al. (1995). “The vibrational deactivation of large molecules by collisions and by spontaneous infrared emission.” Adv. Chem. Kin. Dyn. 2B, 393Google Scholar
Barron, L. D. and Buckingham, A. D. (2001). “Time reversal and molecular properties.” Acc. Chem. Res. 34, 781CrossRefGoogle ScholarPubMed
Barthel, E. R., I. B. Martini, et al. (2001). “How does the solvent control electron transfer? Experimental and theoretical studies of the simplest charge transfer reaction.” J. Phys. Chem. B, 12 230CrossRef
Barzykin, A. V., Frantsuzov, P. A., et al. (2002). “Solvent effects in nonadiabatic electron-transfer reactions: theoretical aspects.” Adv. Chem. Phys. 123, 511Google Scholar
Basov, N. G., A. S. Bashkin, et al. (1990). Chemical Lasers. Berlin, Springer-Verlag
Bauer, S. H. (1978). “How energy accumulation and disposal affect the rates of reactions.” Chem. Rev. 78, 147CrossRefGoogle Scholar
Bauer, S. H. (1979). “Four center metathesis reactions.” Ann. Rev. Phys. Chem. 30, 271CrossRefGoogle Scholar
Baumert, T., Helbing, J., et al. (1997). “Coherent control with femtosecond laser pulses.” Adv. Chem. Phys. 101, 47Google Scholar
Becker, O. M. and Karplus, M. (1997). “The topology of multidimensional potential energy surfaces: theory and application to peptide structure and kinetics.” J. Chem. Phys. 106, 1495CrossRefGoogle Scholar
Ben-Amotz, D., Gift, A., et al. (2003). “Updated principle of corresponding states.” J. Chem. Educ. 81, 142CrossRefGoogle Scholar
Benkovic, S. J. and Hammes-Schiffer, S. (2003). “A perspective on enzyme catalysis.” Science 301, 1196CrossRefGoogle ScholarPubMed
Ben-Nun, M. and Levine, R. D. (1994). “Liquid state control of chemical reactions – toward a molecular description.” Acc. Chem. Res. 27, 166CrossRefGoogle Scholar
Ben-Nun, M. and Levine, R. D. (1995). “Kinetics and dynamics of reactions in liquids.” Int. Rev. Phys. Chem. 14, 215CrossRefGoogle Scholar
Ben-Nun, M. and Martinez, T. J. (2002). “Ab initio quantum molecular dynamics.” Adv. Chem. Phys. 121, 439Google Scholar
Ben-Nun, M., Quenneville, J., et al. (2000). “Ab initio multiple spawning: photochemistry from first principles quantum molecular dynamics.” J. Phys. Chem. A 104, 5161CrossRefGoogle Scholar
Ben-Reuven, A. (1975). “Spectral line shapes in gases in the binary-collision approximation.” Adv. Chem. Phys. 33, 235Google Scholar
Ben-Shaul, A., Y. Haas, et al. (1981). Lasers and Chemical Change. New York, Springer-Verlag
Benjamin, I. (1997a). “Molecular structure and dynamics at liquid–liquid interfaces.” Ann. Rev. Phys. Chem. 48, 407CrossRefGoogle Scholar
Benjamin, I. (1997b). “Molecular dynamics simulations in interfacial electrochemistry.” Mod. Asp. Electrochem. 31, 115Google Scholar
Benjamin, I. (1998). “Solvent effects on electronic spectra at liquid interfaces. A continuum electrostatic model.” J. Phys. Chem. A 102, 9500CrossRefGoogle Scholar
Benjamin, I. (2002). “Chemical reaction dynamics at liquid interfaces.” Prog. React. Kin. Mech. 27, 87CrossRefGoogle Scholar
Bennett, C. H. (1977). Molecular Dynamics and Transition State Theory: The Simulation of Infrequent Events. ACS Symposium, Algorithms for Chemical Computation. Washington, D.C., American Chemical SocietyCrossRef
Bergman, R. G. (1984). “Activation of alkanes with organotransition metal complexes.” Science 223, 902CrossRefGoogle ScholarPubMed
Bergmann, K., Theuer, H., et al. (1998). “Coherent population transfer among quantum states of atoms and molecules.” Rev. Mod. Phys. 70, 1003CrossRefGoogle Scholar
Bernardi, F., Olivucci, M., et al. (1996). “Potential energy surface crossing in organic photochemistry.” Chem. Soc. Rev. 25, 321CrossRefGoogle Scholar
Bernstein, E. R. (1995). “Dynamics and photochemistry of neutral van der Waals clusters.” Ann. Rev. Phys. Chem. 46, 197CrossRefGoogle ScholarPubMed
Bernstein, R. B. (1966). “Quantum effects in elastic molecular scattering.” Adv. Chem. Phys. 10, 75Google Scholar
Bernstein, R. B. (ed.) (1979). Atom-Molecular Collision Theory: A Guide for the Experimentalist. New York, Plenum Press
Bernstein, R. B. (1982). Chemical Dynamics via Molecular Beam and Laser Techniques. New York, Oxford University Press
Bernstein, R. B. (1988a). Molecular Beams in Chemistry: A Subjective Account. The Robert A. Welch Foundation Conference on Chemical Research, Houston, TX
Bernstein, R. B. (1988b). Selectivity in elementary chemical reactions. In Selectivity in Chemical Reactions, J. C. Whitehead (ed.). Dordrecht, Kluwer
Bernstein, R. B., Herschbach, D. R., et al. (1987). “Dynamical aspects of stereochemistry.” J. Phys. Chem. 91, 5365CrossRefGoogle Scholar
Bernstein, R. B. and Zewail, A. H. (1988). “Real-time laser femtochemistry: viewing the transition from reagents to products.” Chem. Eng. News 66 (45), 24Google Scholar
Berry, R. S. (1993). “Potential surfaces and dynamics: what clusters tell us.” Chem. Rev. 93, 2379CrossRefGoogle Scholar
Bersohn, R. (1976). Reactions of electronically excited atoms: superalkalis and superhalogens. In Molecular Energy Transfer, R. D. Levine and J. Jortner (eds.). New York, John Wiley & Sons
Bersohn, R. (2003). “Some pleasures in chemical physics.” Ann. Rev. Phys. Chem. 54, 1CrossRefGoogle ScholarPubMed
Bersohn, R. and Lin, S. H. (1969). “Orientation of targets by beam excitation.” Adv. Chem. Phys. 16, 67Google Scholar
Beswick, J. A. and Jortner, J. (1981). “Intramolecular dynamics of van der Waals molecules.” Adv. Chem. Phys. 47, 363Google Scholar
Beynon, J. H. and J. R. Gilbert (1984). Application of Transition State Theory to Unimolecular Reactions. New York, John Wiley & Sons
Billing, G. D. and K. V. Mikkelsen (1996). Introduction to Molecular Dynamics and Chemical Kinetics. New York, John Wiley & Sons
Billing, G. D. and K. V. Mikkelsen (1997). Advanced Molecular Dynamics and Chemical Kinetics. New York, John Wiley & Sons
Birge, R. R. (1990). “Photophysics and molecular electronic applications of the rhodopsins.” Ann. Rev. Phys. Chem. 41, 683CrossRefGoogle ScholarPubMed
Birnbaum, G. (1976). “Microwave pressure broadening and its application to intermolecular forces.” Adv. Chem. Phys. 12, 487Google Scholar
Birnbaum, G. (ed.) (1985). Phenomena Induced by Intermolecular Interactions. New York, Plenum Press
Bixon, M. and J. Jortner (eds.) (1999). Electron transfer – from isolated molecules to biomolecules. Adv. Chem. Phys. 106CrossRef
Blanchet, V., Zgierski, M. Z., et al. (1999). “Discerning vibronic molecular dynamics using time-resolved photoelectron spectroscopy.” Nature 401, 52CrossRefGoogle Scholar
Bolhuis, P. G., Chandler, D., et al. (2002). “Transition path sampling: throwing ropes over rough mountain passes, in the dark.” Ann. Rev. Phys. Chem. 53, 291CrossRefGoogle Scholar
Bonacic-Koutecky, V., Koutecky, J., et al. (1987). “Neutral and charged biradicals, zwitterions, funnels in S1, and proton translocation: their role in photochemistry, photophysics, and vision.” Angew. Chem.-Int. Ed. Engl. 26, 170CrossRefGoogle Scholar
Bonn, M., Funk, S., et al. (1999). “Phonon versus electron-mediated desorption and oxidation of CO on Ru(0001).” Science 285, 1042CrossRefGoogle Scholar
Bonnet, L. and Rayez, J. C. (1999). “Some key factors of energy distributions in the products of complex-forming elementary reactions.” Phys. Chem. Chem. Phys. 1, 2383CrossRefGoogle Scholar
Borden, W. T., Loncharich, R. J., et al. (1988). “Synchronicity in multibond reactions.” Ann. Rev. Phys. Chem. 39, 213CrossRefGoogle Scholar
Born, M. (1920). “Volumen und Hydratationswaerme der Ionen.” Z. Phys. 1, 45CrossRefGoogle Scholar
Boudart, M. and G. Djéga-Mariadassou (1984). Kinetics of Heterogeneous Catalytic Reactions. Princeton, Princeton University Press
Bowers, M. T. (ed.) (1979–84). Gas Phase Ion Chemistry. New York, Academic Press
Bowman, J. M. (ed.) (1983). Molecular Collision Dynamics. Topics in Current Physics. Berlin, Springer-VerlagCrossRef
Bowman, J. M. (1998). “Resonances: bridge between spectroscopy and dynamics.” J. Phys. Chem. A 102, 3006CrossRefGoogle Scholar
Bowman, J. M. (2002). “Overview of reduced dimensionality quantum approaches to reactive scattering.” Theor. Chem. Acc. 108, 125CrossRefGoogle Scholar
Bowman, J. M. and Schatz, G. C. (1995). “Theoretical studies of polyatomic bimolecular reaction dynamics.” Ann. Rev. Phys. Chem. 46, 169CrossRefGoogle ScholarPubMed
Boyer, P. D. (1997). “The ATP synthase – a splendid molecular machine.” Ann. Rev. Biochem. 66, 717CrossRefGoogle ScholarPubMed
Boyer, P. D. (1999). “What makes ATP synthase spin?Nature 402, 247CrossRefGoogle ScholarPubMed
Breckenridge, W. H. (1989). “Chemical reactions and energy transfer processes of electronically excited group IIB metal atoms: full collisions and half collisions.” Acc. Chem. Res. 22, 21CrossRefGoogle Scholar
Breckenridge, W. H. and Umemoto, H. (1982). “Collisional quenching of electronically excited metal atoms.” Adv. Chem. Phys. 50, 325Google Scholar
Brixner, T., Damrauer, N. H., et al. (2001). “Femtosecond quantum control.” Adv. Mol. Opt. Phys. 46, 1CrossRefGoogle Scholar
Brixner, T. and Gerber, G. (2003). “Quantum control of gas-phase and liquid-phase reactivity.” Chem. Phys. Chem. 4, 419Google Scholar
Broeckhove, J. and L. Lathouwers (eds.) (1992). Time-Dependent Molecular Dynamics. New York, Plenum Press
Bromberg, S. E., Yang, H., et al. (1997). “The mechanism of a C‒H bond activation reaction in room-temperature alkane solution.” Science 278, 260CrossRefGoogle Scholar
Brooks, P. R. (1988). “Spectroscopy of transition region species.” Chem. Rev. 88, 407CrossRefGoogle Scholar
Brouard, M., O'Keeffe, P., et al. (2002). “The state resolved dynamics of elementary reactions.” J. Phys. Chem. 106, 3629CrossRefGoogle Scholar
Brouard, M. and J. P. Simmons (1995). Chemical Dynamics and Kinetics of Small Radicals. Singapore, World Scientific
Brown, N. J. and Miller, J. A. (1984). “Collisional energy transfer in the low-pressure-limit unimolecular dissociation of HO2.” J. Chem. Phys. 80, 5568CrossRefGoogle Scholar
Brumer, P. (1981). “Intramolecular energy transfer: theories for the onset of statistical behavior.” Adv. Chem. Phys. 47, 201Google Scholar
Brumer, P. and Shapiro, M. (1988). “Chaos and reaction dynamics.” Adv. Chem. Phys. 70, 365Google Scholar
Brumer, P. and Shapiro, M. (1992). “Laser control of molecular processes.” Ann. Rev. Phys. Chem. 43, 257CrossRefGoogle ScholarPubMed
Brumer, P. and Shapiro, M. (1995). “Laser control of chemical reactions.” Sci. Am. 272, 34CrossRefGoogle Scholar
Brumer, P. and Shapiro, M. (1997). “Coherent control of bimolecular scattering.” Adv. Chem. Phys. 101, 295Google Scholar
Brunner, T. A. and Pritchard, D. (1982). “Fitting laws for rotationally inelastic collisions.” Adv. Chem. Phys. 50, 589Google Scholar
Buchachenko, A., Halberstadt, N., et al. (2003). “Ar-12: a model system for complex dynamics.” Int. Rev. Phys. Chem. 22, 153CrossRefGoogle Scholar
Buckingham, A. D. (1967). “Permanent and induced molecular moments and long-range intermolecular forces.” Adv. Chem. Phys. 12, 107Google Scholar
Bunker, D. L. (1966). Theory of Elementary Gas Reaction Rates. New York, Pergamon Press
Butkovskaya, N. I. and Setser, D. W. (2003). “Infrared chemiluminescence from water-forming reactions: characterization of dynamics and mechanisms.” Int. Rev. Phys. Chem. 22, 1CrossRefGoogle Scholar
Butler, L. J. (1998). “Chemical reaction dynamics beyond the Born–Oppenheimer approximation.” Ann. Rev. Phys. Chem. 49, 125CrossRefGoogle ScholarPubMed
Butler, L. J. and Neumark, D. M. (1996). “Photodissociation dynamics.” J. Phys. Chem. 100, 12 801CrossRefGoogle Scholar
Caldin, E. F. (2001). The Mechanism of Fast Reactions in Solution. Amsterdam, IOS Press
Callear, A. B. (1978). “An overview of molecular energy transfer in gases.” Spec. Per. Rep. 3, 82Google Scholar
Campargue, R. (ed.) (2001). Atomic and Molecular Beams: The State of the Art 2000. Berlin, Springer-Verlag
Campbell, E. E. B. and Levine, R. D. (2000). “Delayed ionization and fragmentation en route to thermionic emission: statistics and dynamics.” Ann. Rev. Phys. Chem. 51, 65CrossRefGoogle ScholarPubMed
Campbell, E. E. B., Schmidt, H., et al. (1988). “Symmetry and angular momentum in collisions with laser excited polarised atoms.” Adv. Chem. Phys. 72, 37Google Scholar
Canning, N. D. S. and Madix, R. J. (1984). “Toward an organometallic chemistry of surfaces.” J. Phys. Chem. 88, 2437CrossRefGoogle Scholar
Cannon, W. R., Singleton, S. F., et al. (1996). “A perspective on biological catalysis.” Nature Struct. Biol. 3, 821CrossRefGoogle ScholarPubMed
Carpenter, B. K. (1998). “Dynamic behavior of organic reactive intermediates.” Angew. Chem.-Int. Ed. Engl. 37, 33403.0.CO;2-1>CrossRefGoogle ScholarPubMed
Carrette, L., Friedrich, K. A., et al. (2000). “Fuel cells: principles, types, fuels and applications.” Chem. Phys. Chem. 1, 1623.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Carrington, T. (1974). “The geometry of intersecting potential surfaces.” Acc. Chem. Res. 7, 20CrossRefGoogle Scholar
Casavecchia, P. (2000). “Chemical reaction dynamics with molecular beams.” Rep. Prog. Phys. 63, 355CrossRefGoogle Scholar
Casavecchia, P., Balucani, N., et al. (1998). “Reactive scattering of oxygen and nitrogen atoms.” Acc. Chem. Res. 32, 503CrossRefGoogle Scholar
Casavecchia, P., Balucani, N., et al. (1999). “Crossed-beam studies of reaction dynamics.” Ann. Rev. Phys. Chem. 50, 347CrossRefGoogle ScholarPubMed
Castillo, J. F. (2002). “The dynamics of the H + H2O reaction.” Chem. Phys. Chem. 3, 3203.0.CO;2-B>CrossRefGoogle ScholarPubMed
Castleman, A. W. (2001) An ultrafast look at cluster dynamics. In The Physics and Chemistry of Clusters, E. E. B. Campbell and M. Larsson (eds.). Singapore, World Scientific
Castleman, A. W. and Bowen, K. H. (1996). “Clusters: structure, energetics and dynamics of intermediate states of matter.” J. Phys. Chem. 100, 12 911CrossRefGoogle Scholar
Castleman, A. W. and Keesee, R. G. (1986). “Clusters – properties and formation.” Ann. Rev. Phys. Chem. 37, 525CrossRefGoogle Scholar
Castleman, A. W. and Wei, S. (1994). “Cluster reactions.” Ann. Rev. Phys. Chem. 45, 685CrossRefGoogle Scholar
Ceyer, S. T. (1988). “Dissociative chemisorption: dynamics and mechanisms.” Ann. Rev. Phys. Chem. 39, 479CrossRefGoogle Scholar
Ceyer, S. T. (1990). “New mechanisms for chemistry at surfaces.” Science 249, 133CrossRefGoogle ScholarPubMed
Ceyer, S. T. (2001). “The unique chemistry of hydrogen beneath the surface: catalytic hydrogenation of hydrocarbons.” Acc. Chem. Res. 34, 737CrossRefGoogle ScholarPubMed
Chabinyc, M. L., Craig, S. L., et al. (1998). “Gas-phase ionic reactions: dynamics and mechanism of nucleophilic displacements.” Science 279, 1882CrossRefGoogle ScholarPubMed
Chandler, D. W. and Houston, P. L. (1987). “Two-dimensional imaging of state-selected photodissociation products by multiphoton ionization.” J. Chem. Phys. 87, 1445CrossRefGoogle Scholar
Chandler, D. W. and Parker, D. H. (1999). “Velocity mapping studies of highly excited molecules.” Adv. Photochem. 25, 59Google Scholar
Chao, S. D. and Skodje, R. T. (2002). “Signatures of reactive resonances: three case studies.” Theor. Chem. Acc. 108, 273CrossRefGoogle Scholar
Cheatham, T. E. III and Kollman, P. A. (2000). “Molecular dynamics simulation of nucleic acids.” Ann. Rev. Phys. Chem. 51, 435CrossRefGoogle ScholarPubMed
Chelkowski, S. and Bandrauk, A. D. (1995). “Two-step coulomb explosions of diatoms in intense laser fields.” J. Phys. B: At. Mol. Opt. Phys. 28, L723CrossRefGoogle Scholar
Chen, P. and Meyer, T. J. (1998). “Medium effects on charge transfer in metal complexes.” Chem. Rev. 98, 1439CrossRefGoogle ScholarPubMed
Chergui, M. (ed.) (1996). Femtochemistry. Singapore, World Scientific
Chesnoy, J. and Gale, G. M. (1984). “Vibrational energy relaxation in liquids.” Ann. Phys., Paris 9, 893CrossRefGoogle Scholar
Child, M. S. (1974). Molecular Collision Theory. London, Academic Press
Child, M. S.(1991). Semiclassical Mechanics with Molecular Applications. Oxford, Clarendon Press
Child, M. S. and Halonen, L. O. (1984). “Overtone frequencies and intensities in the local mode picture.” Adv. Chem. Phys. 57, 1Google Scholar
Cho, M. and G. R. Fleming (1999). Electron transfer and solvent dynamics in two- and three-state systems. In Electron Transfer: From Isolated Molecules to Biomolecules, J. Jortner and M. Bixon (eds.). John Wiley & Sons, Part II, p. 311CrossRef
Christov, S. G. (ed.) (1980). Collision Theory and Statistical Theory of Chemical Reactions. Lecture Notes in Chemistry. Berlin, Springer-VerlagCrossRef
Clark, A. P., Dickinson, A. S., et al. (1977). “The correspondence principle in heavy-particle collisions.” Adv. Chem. Phys. 36, 63Google Scholar
Clary, D. C. (ed.) (1986). The Theory of Chemical Reaction Dynamics. Boston, Reidel
Clary, D. C. (1990). “Fast chemical reactions: theory challenges experiment.” Ann. Rev. Phys. Chem. 41, 61CrossRefGoogle Scholar
Clary, D. C. (1998). “Quantum theory of chemical reaction dynamics.” Science 279, 1879CrossRefGoogle ScholarPubMed
Clary, D. C., Gilbert, R. G., et al. (1995). “Mechanisms for supercollisions.” Faraday Disc. 102, 423CrossRefGoogle Scholar
Closs, G. L. and Miller, J. R. (1988). “Intramolecular long distance electron transfer in organic molecules.” Science 240, 440CrossRefGoogle ScholarPubMed
Cohen, R. C. and Saykally, R. J. (1991). “Multidimensional intermolecular potential surfaces from vibration–rotation tunneling (VRT) spectra of van der Waals complexes.” Ann. Rev. Phys. Chem. 42, 369CrossRefGoogle Scholar
Collins, M. (1996). “The interface between electronic structure theory and reaction dynamics by reaction path methods.” Adv. Chem. Phys. 93, 389Google Scholar
Comsa, G. and David, R. (1985). “Dynamical parameters of desorption.” Surf. Sci. 5, 145CrossRefGoogle Scholar
Cong, P. and J. D. Simon (eds.) (1994). Introduction to Ultrafast Laser Spectroscopic Techniques Used in the Investigation of Condensed Phase Chemical Reactivity. Ultrafast Dynamics of Chemical Systems. Dordrecht, KluwerCrossRef
Conroy, D., Aristov, V., et al. (2001). “Competitive pathways via nonadiabatic transitions in photodissociation.” Acc. Chem. Res. 34, 625CrossRefGoogle ScholarPubMed
Constant, E., Stapelfeldt, H., et al. (1999). “Using time resolved coulomb explosion imaging to measure dissociative molecular wave packets.” Comm. At. Mol. Phys. D1, 85Google Scholar
Continetti, R. E. (1998). “Photoelectron–photofragment coincidence studies of dissociation dynamics.” Int. Rev. Phys. Chem. 17, 227CrossRefGoogle Scholar
Continetti, R. E. (2001). “Coincidence spectroscopy.” Ann. Rev. Phys. Chem. 52, 165CrossRefGoogle ScholarPubMed
Corey, E. J. (1991). “The logic of chemical synthesis – multistep synthesis of complex carbogenic molecules.” Angew. Chem.-Int. Ed. Engl. 30, 455CrossRefGoogle Scholar
Corkum, P. B., Ivanov, M. Y., et al. (1997). “Subfemtosecond processes in strong laser fields.” Ann. Rev. Phys. Chem. 48, 387CrossRefGoogle ScholarPubMed
Cramer, C. J. (2002). Essentials of Computational Chemistry. Chichester, John Wiley & Sons
Cramer, C. J. and D. G. Truhlar (1996). Continuum Solvation Models. Dordrecht, Kluwer
Crane, J. C., Nam, H., et al. (1998). “Stimulated emission pumping spectra and intramolecular vibrational dynamics of DFCO(S0) from 9000 to 20 000 cm-1.” J. Phys. Chem. A 102, 9433CrossRefGoogle Scholar
Crim, F. F. (1984). “Selective excitation studies of unimolecular reaction dynamics.” Ann. Rev. Phys. Chem. 35, 657CrossRefGoogle Scholar
Crim, F. F. (1993). “Vibrationally mediated photodissociation: exploring excited-state surfaces and controlling decomposition pathways.” Ann. Rev. Phys. Chem. 44, 397CrossRefGoogle Scholar
Crim, F. F. (1996). “Bond-selected chemistry: vibrational state control of photodissociaation and bimolecular reaction.” J. Phys. Chem. 100, 12 725CrossRefGoogle Scholar
Crim, F. F. (1999). “Vibrational state control of bimolecular reactions: discovering and directing the chemistry.” Acc. Chem. Res. 32, 877CrossRefGoogle Scholar
Crim, F. F. (2001). “Close encounters.” Science 293, 2014CrossRefGoogle ScholarPubMed
Dagdigian, P. J. (1997). “State-resolved collision-induced electronic transitions.” Ann. Rev. Phys. Chem. 48, 95CrossRefGoogle ScholarPubMed
Dagdigian, P. J. (2001). Reactive scattering. In Encyclopedia of Chemical Physics and Physical Chemistry, J. H. Moore and N. D. Spencer (eds.). Bristol, IOP Publishing, Vol. 2, p. 1819CrossRef
Dai, D., Wang, C. C., et al. (2003). “Interference of quantized transition-state pathways in the H + D2 → D + HD chemical reaction.” Science 300, 1730CrossRefGoogle Scholar
Dai, E. H. L. and W. Ho (1995). Laser Spectroscopy and Photochemistry at Metal Surfaces. Singapore, World Scientific
Dantus, M. (2001). “Coherent nonlinear spectroscopy: from femtosecond dynamics to control.” Ann. Rev. Phys. Chem. 52, 639CrossRefGoogle Scholar
Darling, G. R. and Holloway, S. (1995). “The dissociation of diatomic molecules.” Rep. Prog. Phys. 58, 1595CrossRefGoogle Scholar
Darling, G. R., S. Holloway, et al. (2001). Molecular reaction dynamics: surfaces. In Encyclopedia of Chemical Physics and Physical Chemistry, J. H. Moore and N. D. Spencer (eds.). Bristol, IOP Publishing, Vol. 1, p. 775CrossRef
Dauben, W. G., Salem, L., et al. (1975). “A classification of photochemical reactions.” Acc. Chem. Res. 8, 41CrossRefGoogle Scholar
Davidson, E. R. (1993). “Molecular mechanics and modeling: overview.” Chem. Rev. 93, 2337CrossRefGoogle Scholar
Davies, J. W. and M. J. Pilling (1989). Association reactions. In Bimolecular Collisions, M. N. R. Ashfold and J. E. Baggott (eds.). London, Royal Society of Chemistry, p. 105
Davis, M. J., Koizumi, H., et al. (1994). “Experimental and theoretical study of the O + HCl transition state region by photodetachment of OHCl-.” J. Chem. Phys. 101, 4708CrossRefGoogle Scholar
DeBoeij, W. P., Pshenichnikov, M. S., et al. (1998). “Ultrafast solvation dynamics explored by femtosecond photon echo spectroscopies.” Ann. Rev. Phys. Chem. 49, 99CrossRefGoogle Scholar
DeFeyter, S., Diau, E. W.-G., et al. (2000). “Femtosecond dynamics of Norrish type-II reactions: nonconcerted hydrogen-transfer and diradical intermediacy.” Angew. Chem. 39, 2603.0.CO;2-R>CrossRefGoogle Scholar
Dellago, C., Bolhuis, P. G., et al. (2002). “Transition path sampling.” Adv. Chem. Phys. 123, 1Google Scholar
Delone, N. B. and V. P. Krainov (1985). Atoms in Strong Light Fields. Berlin, Springer-Verlag
Demidov, A. A. and D. L. Andrews (2001). Electronic energy transfer in condensed phases. In Encyclopedia of Chemical Physics and Physical Chemistry, J. H. Moore and N. D. Spencer (eds.). Bristol, IOP Publishing, Vol. 3, p. 2701CrossRef
Demtroder, W. (1981). Laser Spectroscopy – Basic Concepts and Instrumentation. Berlin, Springer-Verlag
DePristo, A. E. and Kara, A. (1990). “Molecule–surface scattering and reaction dynamics.” Adv. Chem. Phys. 77, 163Google Scholar
DePristo, A. E. and Rabitz, H. (1980). “Vibrational and rotational collision processes.” Adv. Chem. Phys. 42, 271Google Scholar
DeSchryver, F. C., S. DeFeyter, et al. (2001). Femtochemistry. Weinheim, Wiley-VCH
Desouter-Lecomte, M., Dehareng, D., et al. (1985). “Nonadiabatic unimolecular reactions of polyatomic molecules.” J. Phys. Chem. 89, 214CrossRefGoogle Scholar
deVivie-Riedle, R., H. Rabitz, et al. (eds.) (2001). Laser Control of Quantum Dynamics. Chem. Phys. Amsterdam, North-Holland
DeWit, A. (1999). “Spatial patterns and spatiotemporal dynamics in chemical systems.” Adv. Chem. Phys. 109, 435Google Scholar
Diau, E. W.-G., Herek, J. L., et al. (1998). “Femtosecond activation of reactions and the concept of nonergodic molecules.” Science 279, 847CrossRefGoogle ScholarPubMed
Diestler, D. (1980). “Theoretical studies of vibrational relaxation of small molecules in dense media.” Adv. Chem. Phys. 42, 305Google Scholar
Dietrich, P. and Corkum, P. B. (1992). “Ionization and dissociation of diatomic molecules in intense infrared laser fields.” J. Chem. Phys. 97, 3187CrossRefGoogle Scholar
Dill, K. A. and Chan, H. S. (1997). “From Levinthal to pathways to funnels.” Nat. Struct. Biol. 4, 10CrossRefGoogle ScholarPubMed
Dixon, R. N. (1994). “The dynamics of photodissociation.” Chem. Soc. Rev. 23, 375CrossRefGoogle Scholar
Dixon, R. N., Hwang, D. H., et al. (1999). “Chemical ‘double slits’: dynamical interference of photodissociation pathways in water.” Science 285, 1249CrossRefGoogle Scholar
Dlott, D. D. (1999). “Ultrafast spectroscopy of shock waves in molecular materials.” Ann. Rev. Phys. Chem. 50, 251CrossRefGoogle ScholarPubMed
Dobson, C. M., Sali, A., et al. (1998). “Protein folding: a perspective from theory and experiment.” Angew. Chem. 37, 8693.0.CO;2-H>CrossRefGoogle ScholarPubMed
Dolbier, W. R. Jr, Koroniak, H., et al. (1996). “Electronic control of stereoselectivities of electrocyclic reactions of cyclobutenes: a triumph of theory in the prediction of organic reactions.” Acc. Chem. Res. 29, 471CrossRefGoogle Scholar
Doll, J. D. and Voter, A. F. (1987). “Recent developments in the theory of surface diffusion.” Ann. Rev. Phys. Chem. 38, 413CrossRefGoogle Scholar
Domcke, W., P. Hanggi, et al. (eds.) (1997). Dynamics of Driven Quantum Systems. Chem. Phys. Amsterdam, Elsevier
Domcke, W. and Stock, G. (1997). “Theory of ultrafast nonadiabatic excited-state processes and their spectroscopic detection in real time.” Adv. Chem. Phys. 100, 1Google Scholar
Donahue, N. M. (2001). “Revisiting the Hammond postulate: the role of reactant and product ionic states in regulating barrier heights, locations, and transition state frequencies.” J. Phys. Chem. A 105, 1489CrossRefGoogle Scholar
Doren, D. J. (1996a). “Kinetics and dynamics of hydrogen adsorption and desorption on silicon surfaces.” Adv. Chem. Phys. 95, 1Google Scholar
Doren, D. J. (1996b). “Kinetics and dynamics of hydrogen adsorption on silicon surfaces.” Adv. Chem. Phys. 95, 1Google Scholar
Douhal, A. and J. Santamaria (eds.) (1999). Femtochemistry in Molecular Science. Toledo, World Scientific
Dressler, R. A. (ed.) (2001). Chemical Dynamics in Extreme Environments. Singapore, World Scientific
Duley, W. W. and D. A. Williams (1984). Interstellar Chemistry. London, Harcourt Brace Jovanovich
Duncan, M. A. (2003). “Infrared spectroscopy to probe structure and dynamics in metal ion–molecule complexes.” Int. Rev. Phys. Chem. 22, 407CrossRefGoogle Scholar
Dunning, F. B. and Stebbings, R. F. (1982). “Collisions of Rydberg atoms with molecules.” Ann. Rev. Phys. Chem. 33, 173CrossRefGoogle Scholar
Duren, R., Hasselbrink, E., et al. (1982). “On the interaction of excited alkali atoms with rare gas targets in scattering processes.” Z. Phys.A 307, 1CrossRefGoogle Scholar
Dykstra, C. E. (2003). “Intermolecular interaction: from properties to potentials and back.” Adv. Chem. Phys. 126, 1Google Scholar
Eisenthal, K. B. (1996). “Photochemistry and photophysics of liquid interfaces by second harmonic spectroscopy.” J. Phys. Chem. 100, 12997CrossRefGoogle Scholar
El-Sayed, M. A., I. Tanaka, et al. (eds.) (1995). Ultrafast Processes in Chemistry and Photobiology. Oxford, Blackwell
Elber, R., Cardenas, A., et al. (2003). “Bridging the gap between long time trajectories and reaction pathways.” Adv. Chem. Phys. 126, 93Google Scholar
Elber, R. and Karplus, M. (1987). “Multiple conformational states of proteins: a molecular dynamics analysis of myoglobin.” Science 235, 318CrossRefGoogle ScholarPubMed
Elsaesser, T. and Kaiser, W. (1991). “Vibrational and vibronic relaxation of large polyatomic molecules in liquids.” Ann. Rev. Phys. Chem. 42, 83CrossRefGoogle Scholar
Eppink, A. T. J. B. and Parker, D. H. (1997). “Velocity map imaging of ions and electrons using electrostatic lenses; application in photoelectron and photofragment ion imaging of molecular oxygen.” Rev. Sci. Instrum. 68, 3477CrossRefGoogle Scholar
Epstein, I. R. (1989). “The role of flow systems in far-from-equilibrium dynamics.” J. Chem. Educ. 66, 191CrossRefGoogle Scholar
Epstein, I. R. and J. A. Pojman (1998). An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos. Oxford, Oxford University Press
Epstein, I. R. and Showalter, K. (1996). “Nonlinear chemical dynamics: oscillations, patterns, and chaos.” J. Phys. Chem. 100, 13132CrossRefGoogle Scholar
Ertl, G. (1982). “Chemical dynamics in surface reactions.” Ber. Bunsenges. Phys. Chem. 86, 425CrossRefGoogle Scholar
Ertl, G. (1991). “Oscillatory kinetics and spatio-temporal self-organization in reactions at solid surfaces.” Science 254, 1750CrossRefGoogle ScholarPubMed
Ertl, G. (1993). “Reactions at well-defined surfaces.” Surf. Sci. 299/300, 742CrossRefGoogle Scholar
Eu, B. C. (1984). Semiclassical Theories of Molecular Scattering. Berlin, Springer-Verlag
Even, U., Jortner, J., et al. (2000). “Cooling of large molecules below 1K and He clusters.” J. Chem. Phys. 112, 8068CrossRefGoogle Scholar
Eyring, H., J. Walter, et al. (1944). Quantum Chemistry. New York, John Wiley & Sons
Farrar, J. M. (1995). “Ion reaction dynamics.” Ann. Rev. Phys. Chem. 46, 525CrossRefGoogle ScholarPubMed
Faubel, M. (1983). “Vibrational and rotational excitation in molecular collisions.” Adv. At. Mol. Phys. 19, 345CrossRefGoogle Scholar
Faubel, M. and Toennies, J. P. (1977). “Scattering studies of rotational and vibrational excitation of molecules.” Adv. At. Mol. Phys. 13, 229CrossRefGoogle Scholar
Fayer, M. D. (2001). “Fast protein dynamics probed with infrared vibrational echo experiments.” Ann. Rev. Phys. Chem. 52, 315CrossRefGoogle ScholarPubMed
Felker, P. M. and Zewail, A. H. (1988). “Picosecond time-resolved dynamics of vibrational-energy redistribution and coherence in beam-isolated molecules.” Adv. Chem. Phys. 70, 265Google Scholar
Fenn, J. B., Mann, M., et al. (1989). “Electrospray ionization for mass spectrometry of large biomolecules.” Science 246, 64CrossRefGoogle ScholarPubMed
Ferguson, E. E. (1986). “Vibrational quenching of small molecular ions in neutral collisions.” J. Phys. Chem. 90, 731CrossRefGoogle Scholar
Fernandez-Alonso, F. and Zare, R. N. (2002). “Scattering resonances in the simplest chemical reaction.” Ann. Rev. Phys. Chem. 53, 67CrossRefGoogle ScholarPubMed
Feynman, R. P., R. B. Leighton, et al. (1966). The Feynman Lectures on Physics. Reading, Addison-Wesley
Field, R. W., Brien, J. P. O', et al. (1997). “Intramolecular dynamics in the frequency domain.” Adv. Chem. Phys. 101, 463Google Scholar
Finlayson-Pitts, B. J. and J. J. N. Pitts (1986). Atmospheric Chemistry: Fundamentals and Experimental Techniques. New York, Wiley-Interscience
Fischer, I. and Chen, P. (2002). “Allyl – a model system for the chemical dynamics of radicals.” J. Phys. Chem. A 106, 711CrossRefGoogle Scholar
Fisk, G. A. and Crim, F. F. (1977). “Single collision studies of vibrational energy transfer mechanisms.” Acc. Chem. Res. 10, 73CrossRefGoogle Scholar
Fleming, G. and P. Hanggi (eds.) (1993). Activated Barrier Crossing. New Jersey, World Scientific
Fleming, G. R. (1986). Chemical Applications of Ultrafast Spectroscopy. Oxford, Oxford University Press
Fleming, G. R. and Cho, M. (1996). “Chromophore–solvent dynamics.” Ann. Rev. Phys. Chem. 47, 109CrossRefGoogle Scholar
Fleming, G. R., Joo, T., et al. (1997). “Femtosecond chemical dynamics in condensed phases.” Adv. Chem. Phys. 101, 141Google Scholar
Fleming, G. R. and P. G. Wolynes (1990). “Chemical dynamics in solution.” Physics Today, 36CrossRef
Flygare, W. H. (1978). Molecular Structure and Dynamics. Englewood Cliffs, NJ, Prentice-Hall
Flygare, W. H. and Schmalz, T. G. (1976). “Transient experiments and relaxation processes involving rotational states.” Acc. Chem. Res. 9, 385CrossRefGoogle Scholar
Flynn, G. W. (1981). “Collision-induced energy flow between vibrational modes of small polyatomic molecules.” Acc. Chem. Res. 14, 334CrossRefGoogle Scholar
Flynn, G. W. (2001). Energy transfer in gases. In Encyclopedia of Chemical Physics and Physical Chemistry, J. H. Moore and N. D. Spencer (eds.). Bristol, IOP Publishing, Vol. 3, p. 2681CrossRef
Flynn, G. W., Parmenter, C. S., et al. (1996). “Vibrational energy transfer.” J. Phys. Chem. 100, 12817CrossRefGoogle Scholar
Flynn, G. W. and Weston, J. R. E. (1986). “Hot atoms revisited: laser photolysis and product detection.” Ann. Rev. Phys. Chem. 37, 551CrossRefGoogle Scholar
Fontijn, A. (ed.) (1985). Gas-Phase Chemiluminescence and Chemi-Ionization. Amsterdam, North-Holland
Foote, C. S., J. S. Valentine, et al. (1995). Active Oxygen in Chemistry. Glasgow, Chapman & Hall
Ford, K. W. and Wheeler, J. A. (1959). Ann. Phys. 7, 259CrossRef
Formosinho, S. J., Arnaut, L. G., et al. (1998). “A critical assessment of classical and semi-classical models for electron transfer reactions in solution.” Prog. React. Kinet. 23, 1Google Scholar
Forst, W. (1973). Theory of Unimolecular Reactions. New York, Academic Press
Fourkas, J. T. (2002). “Higher-order optical correlation spectroscopy in liquids.” Ann. Rev. Phys. Chem. 53, 17CrossRefGoogle ScholarPubMed
Frauenfelder, H., Sliger, S. G., et al. (1991). “The energy landscapes and motions of proteins.” Science 254, 1598CrossRefGoogle ScholarPubMed
Freed, K. F. (1978). “Radiationless transitions in molecules.” Acc. Chem. Res. 11, 74CrossRefGoogle Scholar
Freed, K. F. (1980). “Collisional effects on electronic relaxation processes.” Adv. Chem. Phys. 42, 207Google Scholar
Freed, K. F. (1981). “Collision induced intersystem crossing.” Adv. Chem. Phys. 47(2), 291Google Scholar
Freeman, D. L. and Doll, J. D. (1987). “The quantum mechanics of clusters.” Adv. Chem. Phys. 70, 139Google Scholar
Freeman, D. L. and Doll, J. D. (1996). “Computational studies of clusters: methods and results.” Ann. Rev. Phys. Chem. 47, 43CrossRefGoogle Scholar
Frenkel, D. and B. Smit (2002). Understanding Molecular Simulation. San Diego, Academic Press
Frey, E. (2002). “On the physics of biopolymers and molecular motors.” Chem. Phys. Chem. 3, 270Google ScholarPubMed
Friedrich, B. and Herschbach, D. (1996). “Statistical mechanics of pendular molecules.” Int. Rev. Phys. Chem. 15, 325CrossRefGoogle Scholar
Frommhold, L. (1981). “Collision-induced scattering of light and the diatom polarizabilities.” Adv. Chem. Phys. 46, 1Google Scholar
Fueno, T. (1999). The Transition State: A Theoretical Approach. Tokyo, Gordon and Breach
Fuke, K., Hashimoto, K., et al. (1999). “Structures, spectroscopies, and reactions of atomic ions with water clusters.” Adv. Chem. Phys. 110, 431Google Scholar
Fukui, K. (1971). “Recognition of stereochemical paths by orbital interaction.” Acc. Chem. Res. 4, 57CrossRefGoogle Scholar
Fukui, K. (1982). “The role of frontier orbitals in chemical reactions.” Angew. Chem.-Int. Ed. Engl. 21, 801CrossRefGoogle Scholar
Gadzuk, J. W. (1988). “The semiclassical way to molecular dynamics at surfaces.” Ann. Rev. Phys. Chem. 39, 395CrossRefGoogle Scholar
Gai, F., Hasson, K. C., et al. (1998). “Chemical dynamics in proteins: the photoisomerization of retinal in bacteriorhodopsin.” Science 279, 1886CrossRefGoogle ScholarPubMed
Gao, J. and Truhlar, D. G. (2002). “Quantum mechanical methods for enzyme kinetics.” Ann. Rev. Phys. Chem. 53, 467CrossRefGoogle ScholarPubMed
Gardiner, C. W. (1983). Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences. Berlin, Springer-Verlag
Gardiner, W. C. (ed.) (1984). Combustion Chemistry. New York, Springer-Verlag
Garrison, B. J. and Srivastava, D. (1995). “Potential energy surfaces for chemical reactions at solid surfaces.” Ann. Rev. Phys. Chem. 46, 373CrossRefGoogle ScholarPubMed
Gaspard, P. and I. Burghardt (eds.) (1997). “Chemical Reactions and their Control on the Femtosecond Time Scale.” Adv. Chem. Phys. 101
Gellman, A. J. (2000). “Transition states for surface-catalyzed chemistry.” Acc. Chem. Res. 33, 19CrossRefGoogle ScholarPubMed
George, T. F., Zimmermann, I. H., et al. (1977). “A new concept in laser-assisted chemistry: electronic-field representation.” Acc. Chem. Res. 10, 449CrossRefGoogle Scholar
Gerber, R. B., McCoy, A. B., et al. (1994). “Photochemical reactions in weakly bound clusters.” Ann. Rev. Phys. Chem. 45, 275CrossRefGoogle Scholar
Gerber, R. B. and Ratner, M. A. (1988). “Self-consistent-field methods for vibrational excitations.” Adv. Chem. Phys. 70, 97Google Scholar
Gianturco, F. A. (1979). The Transfer of Molecular Energies by Collision: Recent Quantum Treatments. Berlin, Springer-Verlag
Gianturco, F. A. (ed.) (1982). Atomic and Molecular Collision Theory. New York, Plenum Press
Gilbert, R. G. and S. C. Smith (1990). Theory of Unimolecular and Recombination Reactions. Oxford, Blackwell Scientific
Glasstone, S., K. J. Laidler, et al. (1941). Theory of Rate Processes. New York, McGraw-Hill
Gobeli, D. A., Yang, J. J., et al. (1985). “Laser multiphoton ionization–dissociation spectrometry.” Chem. Rev. 85, 529CrossRefGoogle Scholar
Goldstein, H. (1950). Classical Mechanics. New York, Addison-Wesley
Gomer, R. (1983). Mechanisms of electron-stimulated desorption. In Desorption Induced by Electronic Transitions DIET I, N. H. Tolk, M. M. Traum, et al. (eds.). Berlin, Springer-Verlag, Vol. 24, p. 40CrossRef
Goodman, D. W. (1996). “Correlations between surface science models and ‘real world’ catalysis.” J. Phys. Chem. 100, 13090CrossRefGoogle Scholar
Gordon, R. G., Klemperer, W. A., et al. (1968). “Vibrational and rotational relaxation.” Ann. Rev. Phys. Chem. 19, 215CrossRefGoogle Scholar
Gordon, R. J. and Hall, G. E. (1996). “Applications of Doppler spectroscopy in photofragmentation.” Adv. Chem. Phys. 96, 1Google Scholar
Gordon, R. J. and Rice, S. A. (1997). “Active control of the dynamics of atoms and molecules.” Ann. Rev. Phys. Chem. 48, 601CrossRefGoogle ScholarPubMed
Gordon, R. J., Zhu, L., et al. (1999). “Coherent control of chemical reactions.” Acc. Chem. Res. 32, 1007CrossRefGoogle Scholar
Gordon, R. J., Zhu, L., et al. (2001). “Using the phase of light as a photochemical tool.” J. Phys Chem. A 105, 4387CrossRefGoogle Scholar
Gray, P. and S. K. Scott (1994). Chemical Oscillations and Instabilities. Oxford, Oxford University Press
Greeley, J., Nirskov, J. K., et al. (2002). “Electronic structure and catalysis on metal surfaces.” Ann. Rev. Phys. Chem. 53, 319CrossRefGoogle ScholarPubMed
Green, R. J. and Anderson, S. L. (2001). “Complex formation and decay in ion–molecule reactions: mode-selective scattering as a dynamical probe.” Int. Rev. Phys. Chem. 20, 165CrossRefGoogle Scholar
Green, W. H., Moore, C. B., et al. (1992). “Transition states and rate constants for unimolecular reactions.” Ann. Rev. Phys. Chem. 43, 591CrossRefGoogle Scholar
Greene, C. H. and Zare, R. N. (1982). “Photofragment alignment and orientation.” Ann. Rev. Phys. Chem. 33, 119CrossRefGoogle Scholar
Grice, R. (1975). “Reactive scattering.” Adv. Chem. Phys. 30, 247Google Scholar
Grice, R. and A. H. Zewail (eds.) (1996). Laser and Molecular Beam Studies of Chemical Reaction Dynamics. Chem. Phys. Amsterdam, Elsevier
Gross, A. (1998). “Reactions at surfaces studied by ab initio dynamics calculations.” Surf. Sci. Rep. 32, 291CrossRefGoogle Scholar
Gross P. and Dantus M. (1997). J. Chem. Phys.106, 801
Grosser, J., Hoffmann, O., et al. (1999). “Direct observation of collisions by laser excitation of the collision pair.” Comm. Mod. Phys. 1, 117Google Scholar
Gruebele, M. (1999). “The fast protein folding problem.” Ann. Rev. Phys. Chem. 50, 485CrossRefGoogle ScholarPubMed
Gruebele, M. (2003). “Mechanism and control of molecular energy flow.” Theor. Chem. Acc. 109, 53CrossRefGoogle Scholar
Gruebele, M. and Bigwood, R. (1998). “Molecular vibrational energy flow: beyond the Golden Rule.” Int. Rev. Phys. Chem. 17, 91CrossRefGoogle Scholar
Grunze, M. and H. J. Kreuzer (1987). Kinetics of Interface Reactions. New York, Springer-Verlag
Guo, X.-C. and Madix, R. J. (2003). “Real-time observation of surface reactivity and mobility with scanning tunneling microscopy.” Acc. Chem. Res. 36, 471CrossRefGoogle ScholarPubMed
Gust, D. A., Moore, T. A., et al. (1993). “Molecular mimicry of photosynthetic energy and electron transfer.” Acc. Chem. Res. 26, 198CrossRefGoogle Scholar
Gutman, M. and Nachliel, E. (1997). “Time-resolved dynamics of proton transfer in proteinous systems.” Ann. Rev. Phys. Chem. 48, 329CrossRefGoogle ScholarPubMed
Haas, Y., M. Klessinger, et al. (eds.) (2000). Conical Intersections in Photochemistry, Spectroscopy, and Chemical Dynamics. Chem Phys. Amsterdam, ElsevierCrossRef
Hall, G. E. and Houston, P. L. (1989). “Vector correlations in photodissociation dynamics.” Ann. Rev. Phys. Chem. 40, 375CrossRefGoogle Scholar
Halonen, L. O. (1998). “Local mode vibrations in polyatomic molecules.” Adv. Chem. Phys. 104, 41Google Scholar
Hamaguchi, H. and Gustafson, T. L. (1994). “Ultrafast time-resolved spontaneous and coherent Raman spectroscopy: the structure and dynamics of photogenerated transient species.” Ann. Rev. Phys. Chem. 45, 593CrossRefGoogle Scholar
Hamilton, C. E., Kinsey, J. L., et al. (1986). “Stimulated emission pumping: new methods in spectroscopy and molecular dynamics.” Ann. Rev. Phys. Chem. 37, 493CrossRefGoogle Scholar
Hammes-Schiffer, S. (2001). “Theoretical perspectives on proton-coupled electron transfer reactions.” Acc. Chem. Res. 34, 273CrossRefGoogle ScholarPubMed
Hammes-Schiffer, S. (2002). “Comparison of hydride, hydrogen atom, and proton-coupled electron transfer reactions.” Chem. Phys. Chem. 3, 333.0.CO;2-6>CrossRefGoogle ScholarPubMed
Hanggi, P., Talkner, P., et al. (1990). “Reaction-rate theory: fifty years after Kramers.” Rev. Mod. Phys. 62, 251CrossRefGoogle Scholar
Harren, F., Parker, D. H., et al. (1991). “Hexapole orientation and scattering of oriented gas-phase molecules.” Comm. At. Mol. Phys. 26, 109Google Scholar
Harris, A. L., Brown, J. K., et al. (1988). “The nature of simple photodissociation reactions in liquids on ultrafast time scales.” Ann. Rev. Phys. Chem. 39, 341CrossRefGoogle Scholar
Harris, C. B., Smith, D. E., et al. (1990). “Vibrational relaxation of diatomic molecules in liquids.” Chem. Rev. 90, 481CrossRefGoogle Scholar
Harris, J. (1987). “Notes on the theory of atom–surface scattering.” Phys. Scr. 36, 156CrossRefGoogle Scholar
Harris, J. and Kasemo, B. (1981). “On precursor mechanisms for surface reactions.” Surf. Sci. 105, L281CrossRefGoogle Scholar
Hase, W. L. (1976). Dynamics of unimolecular reactions. In Modern Theoretical Chemistry, Dynamics of Molecular Collisions, W. H. Miller (ed.). New York, Plenum Press, Part BCrossRef
Hase, W. L. (1998). “Some recent advances and remaining questions regarding unimolecular rate theory.” Acc. Chem. Res. 31, 659CrossRefGoogle Scholar
Hase, W. L. (2001). Statistical mechanical description of chemical kinetics: RRKM. In Encyclopedia of Chemical Physics and Physical Chemistry, J. H. Moore and N. D. Spencer (eds.). Bristol, IOP Publishing, Vol. 1, p. 865CrossRef
Hase, W. L. and D. M. Wardlaw (1989). Transition state theory rate constants for association reactions without potential energy barriers. In Bimolecular Collisions, M. N. R. Ashfold and J. E. Baggott (eds.). London, Royal Society of Chemistry, p. 171
Hay, P. J., Wadt, W. R., et al. (1979). “Theoretical studies of molecular electronic transition lasers.” Ann. Rev. Phys. Chem. 30, 311CrossRefGoogle Scholar
Hayden, C. (2002). “Ultrafast photoelectron/photoion coincidence.” Ann. Rev. Phys. Chem.53
Hayes, S. C., Wallace, P. M., et al. (2002). “Investigating the phase-dependent photochemical reaction dynamics of chlorine dioxide using resonance Raman spectroscopy.” Int. Rev. Phys. Chem. 21, 405CrossRefGoogle Scholar
Hayward, S. and Go, N. (1995). “Collective variable description of native protein dynamics.” Ann. Rev. Phys. Chem. 46, 223CrossRefGoogle ScholarPubMed
Head-Gordon, M. (1996). “Quantum chemistry and molecular processes.” J. Phys. Chem. 100, 13213CrossRefGoogle Scholar
Heck, A. J. R. and Chandler, D. W. (1995). “Imaging techniques for the study of chemical reaction dynamics.” Ann. Rev. Phys. Chem. 46, 335CrossRefGoogle Scholar
Heilweil, E. J., Casassa, M. P., et al. (1989). “Picosecond vibrational energy transfer studies of surface adsorbates.” Ann. Rev. Phys. Chem. 40, 143CrossRefGoogle Scholar
Heilweil, E. J., M. P. Casassa, et al. (eds.) (1993). Vibrational Energy Dynamics. Chem Phys. Amsterdam, Elsevier
Heller, E. J. (1981). “The semiclassical way to molecular spectroscopy.” Acc. Chem. Res. 14, 368CrossRefGoogle Scholar
Hemminger, J. C. (1999). “Heterogeneous chemistry in the troposphere: a modern surface chemistry approach to the study of fundamental processes.” Int. Rev. Phys. Chem. 18, 387CrossRefGoogle Scholar
Henderson, D. (ed.) (1981). Theoretical Chemistry: Theory of Scattering. New York, Academic Press
Henderson, M. A. (2002). “The interaction of water with solid surfaces: fundamental aspects revisited.” Surf. Sci. Rep. 46, 1CrossRefGoogle Scholar
Henriksen, N. E. and Engel, V. (2001). “Femtosecond pump–probe spectroscopy: a theoretical analysis of transient signals and their relation to nuclear wave-packet motion.” Int. Rev. Phys. Chem. 20, 93CrossRefGoogle Scholar
Henry, B. R. (1977). “Use of local modes in the description of highly vibrationally excited molecules.” Acc. Chem. Res. 10, 207CrossRefGoogle Scholar
Henry, B. R. and Kasha, M. (1968). “Radiationless molecular electronic transitions.” Ann. Rev. Phys. Chem. 19, 161CrossRefGoogle Scholar
Herbst, E. (1995). “Chemistry in the interstellar medium.” Ann. Rev. Phys. Chem. 46, 27CrossRefGoogle Scholar
Herek, J., Wohlleben, W., et al. (2002). “Quantum control of energy flow in light harvesting.” Nature 417, 533CrossRefGoogle ScholarPubMed
Herman, M., J. Lievin, et al. (eds.) (1999). “Global and Accurate Vibration Hamiltonians from High-Resolution Molecular Spectroscopy.” Adv. Chem. Phys.108
Herman, M. F. (1994). “Dynamics by semiclassical methods.” Ann. Rev. Phys. Chem. 45, 83CrossRefGoogle Scholar
Herschbach, D. (2000). “Fifty years in physical chemistry: homage to mentors, methods, and molecules.” Ann. Rev. Phys. Chem. 51, 1CrossRefGoogle ScholarPubMed
Herschbach, D. R. (1966). “Reactive scattering in molecular beams.” Adv. Chem. Phys. 10Google Scholar
Herschbach, D. R. (1973). “Reactive scattering.” Faraday Disc. 55, 233CrossRefGoogle Scholar
Herschbach, D. R. (1987). “Molecular dynamics of elementary chemical reactions.” Angew. Chem.-Int. Ed. Engl. 26, 1221CrossRefGoogle Scholar
Hertel, I. V. (1982). “Progress in electronic-to-vibrational energy transfer.” Adv. Chem. Phys. 50, 475Google Scholar
Hertel, I. V., Schmidt, H., et al. (1985). “Angular momentum transfer and charge cloud alignment in atomic collisions: intuitive concepts, experimental observations and semiclassical models.” Rep. Prog. Phys. 48, 375CrossRefGoogle Scholar
Herzberg, G. (1950). Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules. Princeton, Van Nostrand
Herzberg, G. (1966). Molecular Spectra and Molecular Structure III. Electronic Spectra and Electronic Structure of Polyatomic Molecules. Princeton, Van Nostrand
Hill, T. L. (1989). Free Energy Transduction and Biochemical Cycle Kinetics. New York, Springer-Verlag
Hines, M. A. (2003). “Understanding the highly defect-selective chemistry of anisotropic etching.” Ann. Rev. Phys. Chem. 54, 29CrossRefGoogle ScholarPubMed
Hinze, J. (ed.) (1983). Energy Storage and Redistribution in Molecules. New York, Plenum Press
Hippler, H. and J. Troe (1989). Recent direct studies of collisional energy transfer in vibrationally highly excited molecules in the ground electronic state. In Bimolecular Collisions, M. N. R. Ashfold and J. E. Baggott (eds.). London, Royal Society of Chemistry, p. 209
Hirschfelder, J. O. (ed.) (1967). Intermolecular Forces. New York, John Wiley & Sons
Hirschfelder, J. O., C. F. Curtiss, et al. (1954). Molecular Theory of Gases and Liquids. New York, John Wiley & Sons
Hirst, D. M. (1985). Potential Energy Surfaces–Molecular Structure and Reaction Dynamics. London, Taylor and Francis
Hla, S. W. and Rieder, K.-H. (2003). “STM control of chemical reactions: single-molecule synthesis.” Ann. Rev. Phys. Chem. 54, 307CrossRefGoogle ScholarPubMed
Ho, W. (1996). “Reactions at metal surfaces induced by femtosecond lasers, tunneling electrons, and heating.” J. Phys. Chem. 100, 13 050CrossRefGoogle Scholar
Ho, W. (1998). “Inducing and viewing bond selected chemistry with tunneling electrons.” Acc. Chem. Res. 31, 567CrossRefGoogle Scholar
Hochstrasser, R. M. (2002). “Two-dimensional infrared spectroscopy.” Ann. Rev. Phys. Chem. 53
Hodgson, A. (2000). “State resolved desorption measurements as a probe of surface reactions.” Prog. Surf. Sci. 63, 1CrossRefGoogle Scholar
Hoffmann, R. (1971). “Interaction of orbitals through space and through bonds.” Acc. Chem. Res. 4, 1CrossRefGoogle Scholar
Hoffmann, R. A. (1999). “A really moving story.” Am. Sci. 87, 21CrossRefGoogle Scholar
Holbrook, K. A., M. J. Pilling, et al. (1996). Unimolecular Reactions. Chichester, John Wiley & Sons
Hollebeek, T., Ho, T.-S., et al. (1999). “Constructing multi-dimensional molecular potential energy surfaces from ab initio data.” Ann. Rev. Phys. Chem. 50, 537CrossRefGoogle Scholar
Holloway, S. (1993). “Dynamics of gas–surface interactions.” Surf. Sci. 299/300, 656CrossRefGoogle Scholar
Honig, B. and Nicholls, A. (1995). “Classical electrostatics in biology and chemistry.” Science 268, 1144CrossRefGoogle ScholarPubMed
Hou, H., Gulding, S. J., et al. (1997). “The stereodynamics of a gas–surface reaction.” Science 277, 80CrossRefGoogle Scholar
Houston, P. L. (1987). “Vector correlations in photodissociation dynamics.” J. Phys. Chem. 91, 5388CrossRefGoogle Scholar
Houston, P. L. (1989). “Correlated photochemistry: the legacy of Johann Christian Doppler.” Acc. Chem. Res. 22, 309CrossRefGoogle Scholar
Houston, P. L. (1995). “Snapshots of chemistry: product imaging of molecular reactions.” Acc. Chem. Res. 28, 453CrossRefGoogle Scholar
Houston, P. L. (1996). “New laser-based and imaging methods for studying the dynamics of molecular collisions.” J. Phys. Chem. 100, 12 757CrossRefGoogle Scholar
Houston, P. L. (2001). Chemical Kinetics and Reaction Dynamics. New York, McGraw-Hill
Howard, J. (2001). Mechanics of Motor Proteins and the Cytoskeleton. Sunderland, MA, Sinauer Associates
Hunt, K. L. C., Hunt, P. M., et al. (1990). “Nonlinear dynamics and thermodynamics of chemical reactions far from equilibrium.” Ann. Rev. Phys. Chem. 41, 409CrossRefGoogle Scholar
Hurley, S. M. and Castleman, A. W. (2001). “Keeping reactions under quantum control.” Science 292, 648CrossRefGoogle ScholarPubMed
Husain, D. and G. Roberts (1989). Bimolecular collisions involving electronically excited alkaline earth atoms. In Bimolecular Collisions, M. N. R. Ashfold and J. E. Baggott (eds.). London, Royal Society of Chemistry, p. 263
Hutson, J. M. (1990). “Intermolecular forces and the spectroscopy of van der Waals molecules.” Ann. Rev. Phys. Chem. 41, 123CrossRefGoogle Scholar
Hutson, J. M. (2001). Van der Waals molecules. In Encyclopedia of Chemical Physics and Physical Chemistry, J. H. Moore and N. D. Spencer (eds.). Bristol, IOP Publishing, Vol. 3CrossRef
Hynes, J. T. (1985a). The theory of reactions in solution. In Theory of Chemical Reaction Dynamics, M. Baer (ed.). Boca Raton, FL, CRC Press, Vol. IV, p. 171
Hynes, J. T. (1985b). “Chemical reaction dynamics in solution.” Ann. Rev. Phys. Chem. 36, 573CrossRefGoogle Scholar
Hynes, J. T. (ed.) (1994). “Charge Transfer Reactions and Solvation Dynamics.” Ultrafast Dynamics of Chemical Systems. Dordrecht, KluwerCrossRef
Imbihl, R. and Ertl, G. (1995). “Oscillatory kinetics in heterogeneous catalysis.” Chem. Rev. 95, 697CrossRefGoogle Scholar
Imre, D., Kinsey, J. L., et al. (1984). “Chemical dynamics studied by emission spectroscopy of dissociating molecules.” J. Phys. Chem. 88, 3956CrossRefGoogle Scholar
Ishikawa, H., Field, R. W., et al. (1999). “HCP ↔ CPH isomerization: caught in the act.” Ann. Rev. Phys. Chem. 50, 443CrossRefGoogle Scholar
Iversen, G., Kharkats, Y. I., et al. (1999). “Fluctuations and coherence in long-range and multicenter electron transfer.” Adv. Chem. Phys. 106, 453Google Scholar
Iwaki, L. K. and D. D. Dlott (2001). Vibrational energy transfer in condensed phases. In Encyclopedia of Chemical Physics and Physical Chemistry, J. H. Moore and N. D. Spencer (eds.). Bristol, IOP Publishing, Vol. 3, p. 2717CrossRef
Jackson, B. (1995). “Time-dependent wave packet approach to Quantum Reactive Scattering.” Ann. Rev. Phys. Chem. 46, 251CrossRefGoogle ScholarPubMed
Jacobs, D. C. (1995). “The role of internal energy and approach geometry in molecule–surface reactive scattering.” J. Phys.: Condens. Matter 7, 1023Google Scholar
Jacobs, D. C. (2002). “Reactive collisions of hyperthermal energy molecular ions with solid surfaces.” Ann. Rev. Phys. Chem. 53, 379CrossRefGoogle ScholarPubMed
Jakubetz, W. (ed.) (2001). Methods in Reaction Dynamics. Berlin, Springer-Verlag
Janda, K. C. (1984). “Predissociation of polyatomic van der Waals molecules.” Adv. Chem. Phys. 60, 201Google Scholar
Janssen, M. H. M., Mastenbroek, J. W. G., et al. (1997). “Imaging of oriented molecules.” J. Phys. Chem. 101, 7605CrossRefGoogle Scholar
Jencks, W. P. (1986). Catalysis in Chemistry and Enzymology. New York, Dover
Johnson, M. R. and Kearley, G. J. (2000). “Quantitative atom–atom potentials from rotational tunneling: their extraction and their use.” Ann. Rev. Phys. Chem. 51, 297CrossRefGoogle Scholar
Johnson, P. M. (1980). “Molecular multiphoton ionization spectroscopy.” Acc. Chem. Res. 13, 20CrossRefGoogle Scholar
Johnson, R. E. (1982). Introduction to Atomic and Molecular Collisions. New York, Plenum Press
Johnston, H. S. (1966). Gas Phase Reaction Rate Theory. New York, Ronald
Jonas, D. M. (2003). “Two-dimensional femtosecond spectroscopy.” Ann. Rev. Phys. Chem. 54, 425CrossRefGoogle ScholarPubMed
Jortner, J. (1982). “Is the Marcus equation valid only in the classical limit?Faraday Disc. Chem. Soc. 74, 306Google Scholar
Jortner, J. (1992). “Cluster size effects.” Z. Phys. D 24, 247CrossRefGoogle Scholar
Jortner, J. and Levine, R. D. (1981). “Photoselective chemistry.” Adv. Chem. Phys. 47, 1Google Scholar
Jortner, J. and Levine, R. D. (1990). “Selective chemistry.” Isr. J. Chem. 30, 207CrossRefGoogle Scholar
Jortner, J. and R. D. Levine (eds.) (1981). Photoselective Chemistry. Adv. Chem. Phys.47CrossRef
Jortner, J., R. D. Levine, et al. (eds.) (1991). Mode Selective Chemistry. Dordrecht, Kluwer
Jortner, J., R. D. Levine, et al. (eds.) (1993). Reaction Dynamics in Clusters and Condensed Phases. Dordrecht, Kluwer
Jortner, J., Levine, R. D., et al. (1988). “Level structure and dynamics from diatomics to clusters.” Adv. Chem. Phys. 70, 1Google Scholar
Jortner, J. and Mukamel, S. (1975). “Radiationless transitions.” Int. Rev. Sci. Phys. Chem. 1, 329Google Scholar
Jortner, J. and B. Pullman (eds.) (1982). Intramolecular Dynamics. Dordrecht, Reidel
Jortner, J., Rice, S. A., et al. (1969). “Radiationless transitions in photochemistry.” Adv. Photochem. 7, 149Google Scholar
Jouvet, C., Boivineau, M., et al. (1987). “Photochemistry in excited states of van der Waals complexes.” J. Phys. Chem. 91, 5416CrossRefGoogle Scholar
Kaiser, R. I. (2002). “An experimental investigation on the formation of carbon-bearing molecules in the interstellar medium via neutral–neutral reactions.” Chem. Rev. 102, 1309CrossRefGoogle ScholarPubMed
Kaiser, R. I. (2003). The Chemical Evolution of the Interstellar Medium: From Astrochemistry to Astrobiology. Cambridge, Cambridge University Press
Kaiser, R. I. and Balucani, N. (2001). “The formation of nitriles in hydrocarbon-rich atmospheres of planets and their satellites: laboratory investigations by the crossed molecular beam technique.” Acc. Chem. Res. 34, 699CrossRefGoogle ScholarPubMed
Kaiser, R. I., Ochsenfeld, C., et al. (1998). “Combined crossed molecular beams and ab initio investigation of the formation of carbon-bearing molecules in the interstellar medium via neutral–neutral reactions.” Faraday Disc. 109, 183CrossRefGoogle Scholar
Kaiser, W. (ed.) (1988). Ultrashort Laser Pulses and Applications. Berlin, Springer-Verlag
Kajimoto, O. (1999). “Solvation in supercritical fluids: its effects on energy transfer and chemical reactions.” Chem. Rev. 99, 355CrossRefGoogle ScholarPubMed
Kaledin, A. L. (2001). “Recent developments in the theory of surface diffusion.” J. Phys. Chem. A 105, 2731CrossRefGoogle Scholar
Kapral, R. (1981). “Kinetic theory of chemical reactions in liquids.” Adv. Chem. Phys. 48, 71Google Scholar
Kapral, R. and S. J. Fraser (2001). Chaos and complexity in chemical systems. In Encyclopedia of Chemical Physics and Physical Chemistry, J. H. Moore and N. D. Spencer (eds.). Bristol, IOP Publishing, Vol. 3, p. 2737CrossRef
Kapral, R. and K. Showalter (eds.) (1995). Chemical Waves and Patterns. Dordrecht, Kluwer
Karplus, M. (2002). “Molecular dynamics simulations of biomolecules.” Acc. Chem. Res. 35, 321CrossRefGoogle ScholarPubMed
Kasemo, B. (1996). “Charge transfer, electronic quantum processes, and dissociation dynamics in molecule–surface collisions.” Surf. Sci. 363, 22CrossRefGoogle Scholar
Kawashima, H., Wefers, M. M., et al. (1995). “Femtosecond pulse shaping, multiple-pulse spectroscopy, and optical control.” Ann. Rev. Phys. Chem. 46, 627CrossRefGoogle ScholarPubMed
Keske, J., McWhorter, D. A., et al. (2000). “Molecular rotation in the presence of intramolecular vibrational energy redistribution.” Int. Rev. Phys. Chem. 19, 363CrossRefGoogle Scholar
Keske, J. C. and Pate, B. H. (2000). “Decoding the dynamical information embedded in highly mixed quantum states.” Ann. Rev. Phys. Chem. 51, 323CrossRefGoogle ScholarPubMed
Khundkar, L. R. and Zewail, A. H. (1990). “Ultrafast molecular reaction dynamics in real-time: progress over a decade.” Ann. Rev. Phys. Chem. 41, 15CrossRefGoogle Scholar
Kim, M., Bertram, M., et al. (2001). “Controlling chemical turbulence by global delayed feedback: pattern formation in catalytic CO oxidation on Pt(110).” Science 292, 1357CrossRefGoogle Scholar
Kim, S. K., Guo, J., et al. (1996). “Femtosecond chemically activated reactions: concept of nonstatistical activation at high thermal energies.” J. Phys. Chem. 100, 9202CrossRefGoogle Scholar
King, D. A. and D. P. Woodruff (eds.) (1983). The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis: Adsorption at Solid Surfaces. Amsterdam, Elsevier
Kinsey, J. L. (1977). “Laser-induced fluorescence.” Ann. Rev. Phys. Chem. 28, 349CrossRefGoogle Scholar
Kinsey, J. L. and Johnson, B. R. (1998). “Angular distributions of products in the photodissociation of diatomic molecules.” J. Phys. Chem. A 102, 9660CrossRefGoogle Scholar
Kinsey, J. L. and R. D. Levine (1979). Information theoretic approach: application to molecular collisions. In Atom-Molecular Collision Theory, R. B. Bernstein (ed.). New York, Plenum Press
Kleiber, P. D., Stwalley, W. C., et al. (1993). “Scattering-state spectroscopy as a probe of molecular dynamics.” Ann. Rev. Phys. Chem. 44, 13CrossRefGoogle Scholar
Klein, M. L. (2001). “Water on the move.” Science 291, 2106CrossRefGoogle ScholarPubMed
Klemperer, W. H. (1995). “Some spectroscopic reminiscences.” Ann. Rev. Phys. Chem. 46, 1CrossRefGoogle ScholarPubMed
Klessinger, M. and J. Michl (1995). Excited States and Photochemistry of Organic Molecules. New York, VCH Publications
Kleyn, A. W., Los, J., et al. (1982). “Vibronic coupling at intersections of covalent and ionic states.” Phys. Rep. 90, 1CrossRefGoogle Scholar
Kleyn, A. W. and Moutinho, A. M. C. (2001). “Negative ion formation in alkali-atom–molecule collisions.” J. Phys. B: At. Mol. Opt. Phys. 34, R1CrossRefGoogle Scholar
Kleyn, A. W., A. M. C. Moutinho, et al. (eds.) (1994). Vibronic Processes in Gas Phase and Surface Scattering. Chem Phys. Amsterdam, Elsevier
Kohguchi, H., Suzuki, T., et al. (2001). “Fully state-resolved differential cross sections for the inelastic scattering of the open-shell NO molecule by Ar.” Science 294, 832CrossRefGoogle ScholarPubMed
Kohler, B., Krause, J. L., et al. (1995). “Controlling the future of matter.” Acc. Chem. Res. 28, 133CrossRefGoogle Scholar
Kohn, W., Becke, A. D., et al. (1996). “Density functional theory of electronic structure.” J. Phys. Chem. 100, 12 974CrossRefGoogle Scholar
Kolasinski, K. W. (2002). Surface Science: Foundations of Catalysis and Nanoscience. New York, John Wiley & Sons
Komatsuzaki, T. and Berry, R. S. (2002). “Chemical reaction dynamics: many-body chaos and regularity.” Adv. Chem. Phys. 123, 79Google Scholar
Kondow, T. and Mafun, F. (2000). “Structures and dynamics of molecules on liquid beam surfaces.” Ann. Rev. Phys. Chem. 51, 731CrossRefGoogle ScholarPubMed
Koppel, H., Domcke, W., et al. (1984). “Multimode molecular dynamics beyond the Born–Oppenheimer approximation.” Adv. Chem. Phys. 57, 59Google Scholar
Kosloff, R. (1994). “Propagation methods for quantum molecular dynamics.” Ann. Rev. Phys. Chem. 45, 145CrossRefGoogle Scholar
Kouri, D. J. (1985). The general theory of reactive scattering: the integral equation approach. In The Theory of Chemical Reaction Dynamics, M. Baer (ed.). Boca Raton, FL, CRC Press
Kroes, G. J. (1999). “Six-dimensional quantum dynamics of dissociative chemisorption of H-2 on metal surfaces.” Prog. Surf. Sci. 60, 1CrossRefGoogle Scholar
Kroes, G. J., Gross, A., et al. (2002). “Quantum theory of dissociative chemisorption on metal surfaces.” Acc. Chem. Res. 35, 193CrossRefGoogle ScholarPubMed
Kropman, M. F. and Bakker, H. J. (2001). “Dynamics of water molecules in aqueous solvation shells.” Science 291, 2118CrossRefGoogle ScholarPubMed
Kuipers, E. W., Tenner, M. G., et al. (1988). “Observation of steric effects in gas–surface scattering.” Nature 334, 420CrossRefGoogle Scholar
Kuppermann, A. and Greene, E. F. (1968). “Chemical reaction cross sections and rate constants.” J. Chem. Educ. 45, 361CrossRefGoogle Scholar
Laane, J. (1994). “Vibrational potential energy surfaces and conformations of molecules in ground and excited electronic states.” Ann. Rev. Phys. Chem. 45, 179CrossRefGoogle Scholar
Laane, J. (1999). “Spectroscopic determination of ground and excited state vibrational potential energy surfaces.” Int. Rev. Phys. Chem. 18, 301CrossRefGoogle Scholar
Lagana, A. and A. Riganelli (eds.) (1999). Reaction and Molecular Dynamics. Berlin, Springer-Verlag
Laidler, K. J. (1969). Theories of Chemical Reaction Rates. New York, McGraw-Hill
Laidler, K. J. (1984). “The development of the Arrhenius equation.” J. Chem. Educ. 61, 494CrossRefGoogle Scholar
Lambert, J. D. (1977). Vibrational and Rotational Relaxation in Gases. Oxford, Clarendon Press
Landau, L. D. and L. M. Lifschitz (1971). Quantum Mechanics. Reading, MA, Addison-Wesley
Last, I. and Jortner, J. (1998). “Multielectron ionization of large rare gas clusters.” J. Phys. Chem. A 102, 9655CrossRefGoogle Scholar
Lau, A. M. F. (1982). “The photon-as-catalyst effect in laser induced predissociation and autoionization.” Adv. Chem. Phys. 50, 191Google Scholar
Laubereau, A. and Kaiser, W. (1978). “Vibrational dynamics of liquids and solids investigated by picosecond light pulses.” Rev. Mod. Phys. 50, 607CrossRefGoogle Scholar
Lawless, M. K., P. J. Reid, et al. (eds.) (1994). Analysis of Condensed Phase Photochemical Reaction Mechanisms with Resonance Raman Spectroscopy. Ultrafast Dynamics of Chemical Systems. Dordrecht, KluwerCrossRef
Lawley, K. P. (ed.) (1975). Molecular Beam Scattering. Adv. Chem. Phys.30
Lawley, K. P. (ed.) (1985). Photodissociation and Photoionization. Adv. Chem. Phys.60
Lawrence, W. D., Moore, C. B., et al. (1985). “Understanding molecular dynamics quantum-state by quantum-state.” Science 227, 895CrossRefGoogle Scholar
Leach, A. R. (2001). Molecular Modeling: Principles and Applications. Englewood Cliffs, Prentice-Hall
Lee, Y.-P. (2003). “State-resolved dynamics of photofragmentation.” Ann. Rev. Phys. Chem. 54, 215CrossRefGoogle ScholarPubMed
Lee, Y. T. (1987a). “Molecular beam studies of elementary chemical processes.” Science 236, 793CrossRefGoogle Scholar
Lee, Y. T. (1987b). “Molecular beam studies of elementary chemical processes.” Science 236, 789CrossRefGoogle Scholar
Lee, Y. T. and Shen, Y. R. (1980). “Studies with crossed lasers and molecular beams.” Phys. Today 33, 52CrossRefGoogle Scholar
Lehmann, K. H., Scoles, G., et al. (1994). “Intramolecular dynamics from eigenstate-resolved infrared spectra.” Ann. Rev. Phys. Chem. 45, 241CrossRefGoogle Scholar
Lehmann, K. K., M. Herman, et al. (eds.) (1995). Overtone Spectroscopy and Dynamics. Chem Phys. Amsterdam, Elsevier
Lemont, S. and Flynn, G. W. (1977). “Vibrational state analysis of electronic to vibrational energy transfer.” Ann. Rev. Phys. Chem. 28, 261CrossRefGoogle Scholar
Lennard-Jones, J. E. (1932). “Processes of adsorption and diffusion on solid surfaces.” Trans. Faraday Soc. 28, 333CrossRefGoogle Scholar
Leone, S. R. (1982). “Photofragmentation dynamics.” Ann. Rev. Phys. Chem. 50, 255Google Scholar
Leone, S. R. (1984). “State-resolved molecular reaction dynamics.” Ann. Rev. Phys. Chem. 35, 109CrossRefGoogle Scholar
Leone, S. R. (1985). “Laser probing of chemical reaction dynamics.” Science 227, 889CrossRefGoogle ScholarPubMed
Lester, M. I. (1996). “Vibrational predissociation dynamics of van der Waals complexes: product rotational state distributions.” Adv. Chem. Phys. 96, 51Google Scholar
Letokhov, V. S. (1983). Nonlinear Laser Chemistry. Berlin, Springer-Verlag
Lester, M. I. (1989). Laser Spectroscopy of Highly Vibrationally Excited Molecules. Bristol, Adam Hilger
Levine, I. N. (2000). Quantum Chemistry. New Jersey, Prentice-Hall
Levine, R. and J. Jortner (eds.) (1976). Molecular Energy Transfer. New York, John Wiley & Sons
Levine, R. D. (1969). Quantum Mechanics of Molecular Rate Processes. London, Oxford University Press
Levine, R. D. (1988). “Fluctuations in spectral intensities and transition rates.” Adv. Chem. Phys. 70, 53Google Scholar
Levine, R. D. (1990). “The chemical shape of molecules – an introduction to dynamical stereochemistry.” J. Phys. Chem. 94, 8872CrossRefGoogle Scholar
Levine, R. D. (2001). Chemical reaction dynamics looks to the understanding of complex systems. In Chemistry for the 21st Century, E. Keinan and I. Schechter (eds.). Weinheim, Wiley-VCH
Levine, R. D. and R. B. Bernstein (1976). Thermodynamic approach to collision processes. In Dynamics of Molecular Collisions, W. H. Miller (ed.). New York, Plenum PressCrossRef
Levine, R. D. and R. B. Bernstein (1987). Molecular Reaction Dynamics and Chemical Reactivity. New York, Oxford University Press
Levine, R. D. and Somorjai, G. A. (1990). “Kinetic model for cooperative dissociative chemisorption and catalytic activity via surface restructuring.” Surf. Sci. 232, 407CrossRefGoogle Scholar
Levine, R. D. and M. Tribus (eds.) (1979). Maximum Entropy Formalism. Cambridge, MA, MIT Press
Levis, R. J. (1994). “Laser desorption and ejection of biomolecules from the condensed phase into the gas phase.” Ann. Rev. Phys. Chem. 45, 483CrossRefGoogle ScholarPubMed
Levis, R. J. and DeWitt, M. J. (1999). “Photoexcitation, ionization, and dissociation of molecules using intense near-infrared radiation of femtosecond duration.” J. Phys. Chem. A 103, 6493CrossRefGoogle Scholar
Levis, R. J., Menkir, G. M., et al. (2001). “Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses.” Science 292, 709CrossRefGoogle ScholarPubMed
Levy, D. H. (1981). “Van der Waals molecules.” Adv. Chem. Phys. 47, 323Google Scholar
Levy, D. H. (1984). “The spectroscopy of supercooled gases.” Sci. Am. 245, 68Google Scholar
Levy, D. H. (1999). “Charge transfer in bichromophoric molecules in the gas phase.” Adv. Chem. Phys. 106, 203Google Scholar
Li, Y., Oslonovitch, J., et al. (2001). “Turing-type patterns on electrode surfaces.” Science 291, 2395CrossRefGoogle ScholarPubMed
Lifshitz, C. (1989). “Recent developments in application of RRKM-QET.” Adv. Mass. Spec. 11A, 713Google Scholar
Lightm, J. C. (1979). Complex mode chemical reactions: statistical theories of bimolecular reactions. Atom-Molecular Collision Theory: A Guide for the Experimentalist, R. B. Bernstein (ed.). New York, Plenum PressCrossRef
Lin, J. J., Zhou, J., et al. (2003). “State-specific correlation of coincident product pairs in the F + CD4 reaction.” Science 300, 966CrossRefGoogle Scholar
Lin, K.-C. and Vetter, R. (2002). “Alkali–hydrogen reactions.” Int. Rev. Phys. Chem. 21, 357CrossRefGoogle Scholar
Lin, M. C. and Ertl, G. (1986). “Laser probing of molecules desorbing and scattering from solid surfaces.” Ann. Rev. Phys. Chem. 37, 587CrossRefGoogle Scholar
Lin, S. H., Chang, C. H., et al. (2002). “Ultrafast dynamics and spectroscopy of bacterial photosynthetic reaction centers.” Adv. Chem. Phys. 121, 1Google Scholar
Lindenberg, K. and B. C. West (1990). The Nonequilibrium Statistical Mechanics of Open and Closed Systems. New York, VCH-Publications
Liu, K. (2001a). “Crossed-beam studies of neutral reactions: state-specific differential cross sections.” Ann. Rev. Phys. Chem. 52, 139CrossRefGoogle Scholar
Liu, K. (2001b). “Excitation functions of elementary chemical reactions: a direct link from crossed-beam dynamics to thermal kinetics?Int. Rev. Phys. Chem. 20, 189CrossRefGoogle Scholar
Liu, K., Skodje, R. T., et al. (2002). “Resonances in bimolecular chemical reactions.” Phys. Chem. Commun. 4, 27Google Scholar
Liu, R. S. H. (2001). “Photoisomerization by Hula-twist: a fundamental supramolecular photochemical reaction.” Acc. Chem. Res. 34, 555CrossRefGoogle ScholarPubMed
Llorente, J. M. G. and Pollak, E. (1992). “Classical dynamics methods for high energy vibrational spectroscopy.” Ann. Rev. Phys. Chem. 43, 91CrossRefGoogle Scholar
Loesch, H. J. (1980). “Scattering of non-spherical molecules.” Adv. Chem. Phys. 42, 421Google Scholar
Loesch, H. J. (1995). “Orientation and alignment in reactive beam collisions: recent progress.” Ann. Rev. Phys. Chem. 46, 555CrossRefGoogle ScholarPubMed
Loesch, H. J., Bulthuis, J., et al. (1996). “Molecules oriented by brute force.” Europhys. News 27, 12CrossRefGoogle Scholar
Logan, S. R. (1982). “The origin and status of the Arrhenius equation.” J. Chem. Educ. 59, 279CrossRefGoogle Scholar
Logan, S. R. (1996). Fundamentals of Chemical Kinetics. Essex, Longman House
Loomis, R. A. and Lester, M. I. (1997). “OH‒H2 entrance channel complexes.” Ann. Rev. Phys. Chem. 48, 643CrossRefGoogle Scholar
Lorenz, K. T., Chandler, D. W., et al. (2001). “Direct measurement of the preferred sense of NO rotation after collision with argon.” Science 293, 2063CrossRefGoogle ScholarPubMed
Lorenz, K. T., Westley, M., et al. (2000). “Velocity map imaging of inelastic scattering processes.” Phys. Chem. Chem. Phys. 2, 481Google Scholar
Lorquet, J. C. (1994). “Whither the statistical theory of mass spectra?Mass Spectr. Rev. 13, 233CrossRefGoogle Scholar
Lorquet, J. C. (1996). Non-adiabatic processes in ionic dissociation dynamics. In The Structure, Energetics, and Dynamics of Organic Ions, T. Baer, C. Y. Ng and I. Powis (eds.). New York, John Wiley & sons
Lorquet, J. C. (2000). “Landmarks in the theory of mass spectra.” Int. J. Mass Spectrom. 200, 43CrossRefGoogle Scholar
Lovejoy, E. R., Kim, S. K., et al. (1992). “Observation of transition-state vibrational thresholds in the rate of dissociation of ketene.” Science 256, 1542CrossRefGoogle ScholarPubMed
Lupo, D. W. and Quack, M. (1987). “IR-laser photochemistry.” Chem. Rev. 87, 181CrossRefGoogle Scholar
Machida, K. (1999). Principles of Molecular Mechanics. New York, John Wiley & Sons
MacRitchie, F. (1990). Chemistry at Interfaces. San Diego, Academic Press
Madix, R. J. and Benzinger, J. (1978). “Kinetic processes on metal single-crystal surfaces.” Ann. Rev. Phys. Chem. 29, 285CrossRefGoogle Scholar
Mahan, B. H. (1973). “Recombination of gaseous ions.” Adv. Chem. Phys. 23, 1Google Scholar
Mahan, B. H. (1975). “Electronic-structure and chemical dynamics.” Acc. Chem. Res. 8, 55CrossRefGoogle Scholar
Mahapatra, S., Chakrabarti, N., et al. (1999). “Time correlation function and its unifying role in molecular structure and dynamics.” Int. Rev. Phys. Chem. 18, 235CrossRefGoogle Scholar
Maitland, G. C., M. Rigby, et al. (1987). Intermolecular Forces: Their Origin and Determination. Oxford, Clarendon Press
Makri, N. (1999). “Time-dependent quantum methods for large systems.” Ann. Rev. Phys. Chem. 50, 167CrossRefGoogle ScholarPubMed
Malinovsky, A. L., Petrova, I. Y., et al. (1998). “Transition spectra in the vibrational quasicontinuum of polyatomic molecules: Raman spectra of highly excited SF6.” J. Phys. Chem. A 102, 9353CrossRefGoogle Scholar
Manolopoulos, D. E. (2002). “A delayed reaction.” Nature 419, 266CrossRefGoogle ScholarPubMed
Manolopoulos, D. E., Stark, K., et al. (1993). “The transition state of the F + H2 reaction.” Science 262, 1852CrossRefGoogle ScholarPubMed
Manz, J. and J. A. W. Castleman (eds.) (1993). Femtosecond Chemistry. J. Phys. Chem. A97
Manz, J. and C. S. Parmenter (eds.) (1989). Mode Selectivity in Unimolecular Reactions. Chem Phys. Amsterdam, North-Holland
Manz, J. and L. Woste (eds.) (1995). Femtosecond Chemistry. Weinheim, Verlag Chemie
Marcus, R. A. (1964). “Chemical and electrochemical electron-transfer theory.” Ann. Rev. Phys. Chem. 15, 155CrossRefGoogle Scholar
Marcus, R. A. (1992). “Skiing the reaction rate slopes.” Science 256, 1523CrossRefGoogle ScholarPubMed
Marcus, R. A. (1993). “Electron-transfer reactions in chemistry – theory and experiment.” Rev. Mod. Phys. 65, 599CrossRefGoogle Scholar
Marcus, R. A. (1997a). “Solvent dynamics and RRKM theory of clusters.” Adv. Chem. Phys. 101, 391Google Scholar
Marcus, R. A. (1997b). “Theory of rates of S(N)2 reactions and relation to those of outer sphere bond rupture electron transfers.” J. Phys. Chem. A 101, 4072CrossRefGoogle Scholar
Marquardt, R. and M. Quack (2001). Energy redistribution in reacting systems. In Encyclopedia of Chemical Physics and Physical Chemistry, J. H. Moore and N. D. Spencer (eds.). Bristol, IOP Publishing, Vol. 1, p. 897CrossRef
Martini, I. B., Barthel, E. R., et al. (2001). “Optical control of electrons during electron transfer.” Science 293, 462CrossRefGoogle ScholarPubMed
Masel, R. I. (1996). Principles of Adsorption and Reaction at Solid Surfaces. New York, John Wiley & Sons
Masel, R. I. (2001). Chemical Kinetics and Catalysis. New York, John Wiley & Sons
Mathies, R. A., Cruz, C. H. B., et al. (1988). “Direct observation of the femtosecond excited-state cis–trans isomerization in bacteriorhodopsin.” Science 240, 777CrossRefGoogle ScholarPubMed
May, V. (2000). Charge and Energy Transfer Dynamics in Molecular Systems: A Theoretical Introduction. New York, John Wiley & Sons
McCaffery, A. J., Proctor, M. J., et al. (1986). “Rotational energy transfer: polarization and scaling.” Ann. Rev. Phys. Chem. 37, 223CrossRefGoogle Scholar
McCaffery, A. J. (1981). “Reorientation by elastic and rotationally inelastic transitions.” Spec. Per. Rep. 4, 47Google Scholar
McCaffery, A. J. and Marsh, R. J. (2001). “Molecules as products; the good, the bad, and the eccentric.” Phys. Chem. Commun. 24, 1Google Scholar
McCammon, J. A. and S. C. Harvey (1983). Dynamics of Proteins and Nucleic Acids. Cambridge, Cambridge University Press
McCammon, J. A. and Karplus, M. (1983). “The dynamic picture of protein structure.” Acc. Chem. Res. 16, 187CrossRefGoogle Scholar
McCoy, A. B. and Naaman, R. (1999). “Reactions of oxygen atoms with van der Waals molecules in crossed molecular beams.” Int. Rev. Phys. Chem. 18, 459CrossRefGoogle Scholar
McGowan, J. W. (ed.) (1975, 1981). The Excited State in Chemical Physics. New York, John Wiley & Sons
Mchale, J. L. (2001). “Subpicosecond solvent dynamics in charge-transfer transitions: challenges and opportunities in resonance Raman spectroscopy.” Acc. Chem. Res. 34, 265CrossRefGoogle ScholarPubMed
Meerts, W. L., J. Jortner, et al. (eds.) (1991). Nonradiative Processes. Chem Phys. Amsterdam, Elsevier
Menzinger, M. and Wolfgang, R. (1969). “The meaning and use of the Arrhenius activation energy.” Angew. Chem.-Int. Ed. Engl. 8, 438CrossRefGoogle Scholar
Mestdagh, J.-M., Soep, B., et al. (2003). “Transition state in metal atom reactions.” Int. Rev. Phys. Chem. 22, 285CrossRefGoogle Scholar
Metz, R. B., Bradforth, S. E., et al. (1992). “Transition state spectroscopy of bimolecular reactions using negative ion photodetachment.” Adv. Chem. Phys. 81, 1Google Scholar
Meyer, S. and Engel, V. (2000). “Femtosecond time-resolved CARS and DFWM spectroscopy on gas-phase I2: a wave-packet description.” J. Raman Spectrosc. 31, 333.0.CO;2-H>CrossRefGoogle Scholar
Michalak, A. and Ziegler, T. (2001). “First-principle molecular dynamic simulations along the intrinsic reaction paths.” J. Phys. Chem. A 105, 4333CrossRefGoogle Scholar
Michelsen, H. A. (2001). “The reaction of Cl with CH4: a connection between kinetics and dynamics.” Acc. Chem. Res. 34, 331CrossRefGoogle Scholar
Michl, J. (1972). “Photochemical reactions of large molecules. I. A simple physical model of photochemical reactivity.” J. Mol. Photochem. 4, 243Google Scholar
Michl, J. and V. Bonacic-Koutecky (1990). Electronic Aspects of Organic Photochemistry. New York, John Wiley & Sons
Mikkelsen, K. V. and Ratner, M. A. (1987). “Electron-tunneling in solid-state electron-transfer reactions.” Chem. Rev. 87, 113CrossRefGoogle Scholar
Miller, J. A. (2002). “Combustion chemistry: concluding remarks.” Faraday Disc. 119, 461CrossRefGoogle Scholar
Miller, J. A., Kee, R. J., et al. (1990). “Chemical kinetics and combustion modeling.” Ann. Rev. Phys. Chem. 41, 345CrossRefGoogle Scholar
Miller, R. E. (2001). “Comparative studies of cluster dynamics in the gas and condensed phases.” Faraday Disc. 118, 1CrossRefGoogle Scholar
Miller, R. J. D. and J. C. Tully (eds.) (1996). Surface Reaction Dynamics. Chem Phys. Amsterdam, Elsevier
Miller, W. H. (1974). “Classical-limit quantum mechanics and the theory of molecular collisions.” Adv. Chem. Phys. 25, 69Google Scholar
Miller, W. H. (ed.) (1976a). Dynamics of Molecular Collisions. New York, Plenum Press
Miller, W. H. (1976b). “Importance of nonseparability in quantum mechanical transition state theory.” Acc. Chem. Res. 9, 306CrossRefGoogle Scholar
Miller, W. H. (1990). “Recent advances in quantum mechanical reactive scattering theory, including comparison of recent experiments with rigorous calculations of state-to-state cross sections for the H/D + H2 → H2HD + H reactions.” Ann. Rev. Phys. Chem. 41, 245CrossRefGoogle Scholar
Miller, W. H. (1998a). “‘Direct’ and ‘correct’ calculation of canonical and microcanonical rate constants for chemical reactions.” J. Phys. Chem. A 102, 793CrossRefGoogle Scholar
Miller, W. H. (1998b). “Quantum and semiclassical theory of chemical reaction rates.” Faraday Disc. 110, 1CrossRefGoogle Scholar
Mirny, L. and Shakhnovich, E. (2001). “Protein folding theory: from lattice to all-atom models.” Ann. Rev. Biophys. Biomol. Struct. 30, 361CrossRefGoogle ScholarPubMed
Moore, C. B. (1973). “Vibration → vibration energy transfer.” Adv. Chem. Phys. 23, 41Google Scholar
Moore, C. B. (ed.) (1974–1980). Chemical and Biochemical Applications of Lasers. New York, Academic Press
Moore, C. B. and Smith, I. W. M. (1996). “State-resolved studies of reactions in the gas phase.” J. Phys. Chem. 100, 12 848CrossRefGoogle Scholar
Moore, C. B. and Zittel, P. F. (1973). “State selected kinetics from laser-excited fluorescence.” Science 182, 541CrossRefGoogle ScholarPubMed
Moore, J. W. and R. G. Pearson (1981). Kinetics and Mechanism. New York, John Wiley & Sons
Morokuma, K. (1982). “Potential energy surface of the SN2 reaction in hydrated clusters.” J. Am. Chem. Soc. 104, 3732CrossRefGoogle Scholar
Mott, N. F. and H. S. W. Massey (1965). The Theory of Atomic Collisions. Oxford, Clarendon Press
Mukamel, S. (1990). “Femtosecond optical spectroscopy: a direct look at elementary chemical events.” Ann. Rev. Phys. Chem. 41, 647CrossRefGoogle Scholar
Mukamel, S. (1995). Principles of Non-linear Optical Spectroscopy. New York, Oxford University Press
Mukamel, S. (2000). “Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations.” Ann. Rev. Phys. Chem. 51, 691CrossRefGoogle ScholarPubMed
Mukamel, S. and R. M. Hochstrasser (eds.) (2001). Multidimensional Spectroscopies. Chem Phys. Amsterdam, Elsevier
Mullin, A. S. and G. C. Schatz (eds.) (1997). Highly Excited Molecules: Relaxation, Reaction and Structure. Washington, D.C., ACS BooksCrossRef
Murrell, J. N. and S. D. Bosanac (1989). Introduction to the Theory of Atomic and Molecular Collisions. New York, John Wiley & Sons
Musaev, D. G. and Morokuma, K. (1996). “Potential energy surfaces of transition-metal-catalyzed chemical reactions.” Adv. Chem. Phys. 95, 61Google Scholar
Myers, A. B. (1998). “Molecular electronic spectral broadening in liquids and glasses.” Ann. Rev. Phys. Chem. 49, 267CrossRefGoogle ScholarPubMed
Nakamura, H. (1997). “Theoretical studies of chemical dynamics: overview of some fundamental mechanisms.” Ann. Rev. Phys. Chem. 48, 299CrossRefGoogle ScholarPubMed
Nakamura, H. (2002). Nonadiabatic Transition. Singapore, World Scientific
Nandi, N., Bhattacharya, K., et al. (2000). “Dielectric relaxation and solvation dynamics of water in complex chemical and biological systems.” Chem. Rev. 100, 2013CrossRefGoogle ScholarPubMed
Nathanson, G. M., Davidovits, P., et al. (1996). “Dynamics and kinetics at the gas–liquid interface.” J. Phys. Chem. 100, 13 007CrossRefGoogle Scholar
Nauenberg, M., Stroud, C., et al. (1994). “The classical limit of an atom.” Sci. Am. 270, 44CrossRefGoogle Scholar
Nelson, P. (2003). Biological Physics. New York, W. H. Freeman
Nesbitt, D. J. (1994). “High-resolution, direct infrared-laser absorption spectroscopy in slit supersonic jets: intermolecular forces and unimolecular vibrational dynamics in clusters.” Ann. Rev. Phys. Chem. 45, 367CrossRefGoogle Scholar
Nesbitt, D. J. and Field, R. W. (1996). “Vibrational energy flow in highly excited molecules: role of intramolecular vibrational redistribution.” J. Phys. Chem. 100, 12 735CrossRefGoogle Scholar
Neumark, D. M. (1992). “Transition state spectroscopy of bimolecular chemical reactions.” Ann. Rev. Phys. Chem. 43, 153CrossRefGoogle Scholar
Neumark, D. M. (1993). “Transition state spectroscopy via negative-ion photodetachment.” Acc. Chem. Res. 26, 33CrossRefGoogle Scholar
Neumark, D. M. (2001a). Molecular reaction dynamics in the gas phase. In Encyclopedia of Chemical Physics and Physical Chemistry, J. H. Moore and N. D. Spencer (eds.). Bristol, IOP Publishing, Vol. 1, p. 745
Neumark, D. M. (2001b). “Time-resolved photoelectron spectroscopy of molecules and clusters.” Ann. Rev. Phys. Chem. 52, 255CrossRefGoogle Scholar
Newton, M. D. (1991). “Quantum chemical probes of electron-transfer kinetics – the nature of donor–acceptor interactions.” Chem. Rev. 91, 767CrossRefGoogle Scholar
Newton, M. D. (1999). “Control of electron transfer kinetics: models for medium reorganization and donor–acceptor coupling.” Adv. Chem. Phys. 106, 303Google Scholar
Newton, M. D. and Sutin, N. (1984). “Electron transfer reactions in condensed phases.” Ann. Rev. Phys. Chem. 35, 437CrossRefGoogle Scholar
Newton, R. G. (1982). Scattering Theory of Waves and Particles. New York, Springer-Verlag
Newton, T. W. (1968). “The kinetics of oxidation–reduction reactions – an alternative derivation of Marcus' cross relation.” J. Chem. Educ. 45, 571CrossRefGoogle Scholar
Ng, C. Y. (2002). “Vacuum ultraviolet spectroscopy and chemistry using photoionization and photoelectron methods.” Ann. Rev. Phys. Chem. 54, 101CrossRefGoogle Scholar
Ng, C. Y. and M. Baer (eds.) (1992). State-Selected and State-to-State Ion-Molecular Reaction Dynamics. New York, John Wiley & Sons
Nicolis, G. (2002). “Nonlinear kinetics: at the crossroads of chemistry, physics, and life sciences.” Faraday Disc. 120, 1CrossRefGoogle Scholar
Nikitin, E. E. (1974). Theory of Elementary Atomic and Molecular Processes in Gases. Oxford, Clarendon Press
Nikitin, E. E. (1975). “Theory of nonadiabatic collision processes including excited alkali atoms.” Adv. Chem. Phys. 28, 317Google Scholar
Nikitin, E. E. (1999). “Nonadiabatic transitions: what we learned from old masters and how much we owe them.” Ann. Rev. Phys. Chem. 50, 1CrossRefGoogle Scholar
Nikitin, E. E. and S. Y. Umanskii (1984). Theory of Slow Atomic Collisions. Berlin, Springer-Verlag
Nitzan, A. (1988). “Activated rate processes in condensed phases: the Kramers theory revised.” Adv. Chem. Phys. 70, 489Google Scholar
Nobusada, K., Tolstikhin, O. I., et al. (1998). “Quantum reaction dynamics of heavy–light–heavy systems: reduction of the number of potential curves and transitions at avoided crossings.” J. Phys. Chem. A 102, 9445CrossRefGoogle Scholar
Nohmi, T. and Fenn, J. B. (1992). “Electrospray mass spectrometry of poly(ethylene glycols) with molecular weights up to 5 million.” J. Am. Chem. Soc. 114, 3241CrossRefGoogle Scholar
Noid, D. W., Koszykowski, M. L., et al. (1981). “Quasi-periodic and stochastic behavior in molecules.” Ann. Rev. Phys. Chem. 32, 267CrossRefGoogle Scholar
Northrup, F. J. and Sears, T. J. (1992). “Stimulated emission pumping: applications to highly vibrationally excited transient molecules.” Ann. Rev. Phys. Chem. 43, 127CrossRefGoogle Scholar
Noyes, R. M. (1989). “Some models of chemical oscillators.” J. Chem. Educ. 66, 190CrossRefGoogle Scholar
Nyman, G. and Yu, H. G. (2000). “Quantum theory of bimolecular chemical reactions.” Rep. Prog. Phys. 63, 1001CrossRefGoogle Scholar
Ogilby, P. R. (1999). “Solvent effects on the radiative transitions of singlet oxygen.” Acc. Chem. Res. 32, 512CrossRefGoogle Scholar
Ohmine, I. and Saito, S. (1999). “Water dynamics: fluctuation, relaxation, and chemical reactions in hydrogen bond network rearrangement.” Acc. Chem. Res. 32, 741CrossRefGoogle Scholar
Omberg, K. M., Chen, P., et al. (1999). “Spectroscopic determination of electron transfer barriers and rate constants.” Adv. Chem. Phys. 106, 553Google Scholar
Onuchic, J. N., Luthey-Schulten, Z., et al. (1997). “Theory of protein folding: the energy landscape perspective.” Ann. Rev. Phys. Chem. 48, 545CrossRefGoogle ScholarPubMed
Oref, I. (1995). Supercollisions. In Advances in Chemical Kinetics and Dynamics, J. Barker (ed.). Greenwich, CT, JAI Press, Vol. 2B, p. 285
Oref, I. (1998). “Selective chemistry redux.” Science 279, 820CrossRefGoogle Scholar
Oref, I. and Rabinovitch, B. S. (1979). “Do highly excited reactive polyatomic molecules behave ergodically.” Acc. Chem. Res. 12, 166CrossRefGoogle Scholar
Oref, I. and Tardy, D. C. (1990). “Energy transfer in highly excited large polyatomic molecules.” Chem. Rev. 90, 1407CrossRefGoogle Scholar
Orr-Ewing, A. J. (1996). “The dynamical stereochemistry of bimolecular reactions.” J. Chem. Soc. Faraday Trans. 92, 881CrossRefGoogle Scholar
Orr-Ewing, A. J. and Zare, R. N. (1994). “Orientation and alignment of reaction products.” Ann. Rev. Phys. Chem. 45, 315CrossRefGoogle Scholar
Oudejans, L. and Miller, R. E. (2001). “Photofragment translational spectroscopy of weakly bound complexes: probing the interfragmentary correlated final state distributions.” Ann. Rev. Phys. Chem. 52, 607CrossRefGoogle Scholar
Owrutsky, J. C., Raftery, D., et al. (1994). “Vibrational relaxation dynamics in solutions.” Ann. Rev. Phys. Chem. 45, 519CrossRefGoogle ScholarPubMed
Oxtoby, D. W. (1981). “Vibrational relaxation in liquids.” Ann. Rev. Phys. Chem. 32, 77CrossRefGoogle Scholar
Ozkan, I. and Goodman, L. (1979). “Coupling of electronic and vibrational motions in molecules.” Chem. Rev. 79, 275CrossRefGoogle Scholar
Parker, D. H. (2000). “Laser photochemistry of molecular oxygen.” Acc. Chem. Res. 33, 563CrossRefGoogle ScholarPubMed
Parker, D. H. and Bernstein, R. B. (1989). “Oriented molecule beams via the electrostatic hexapole: preparation, characterization, and reactive scattering.” Ann. Rev. Phys. Chem. 40, 561CrossRefGoogle Scholar
Parmenter, C. S. (1972). “Radiative and nonradiative processes in benzene.” Adv. Chem. Phys. 22, 365Google Scholar
Parmenter, C. S., Clegg, S. M., et al. (1997). “Insightful experiment demonstrating that kinetic factors govern rotational transfer probabilities.” Proc. Natl. Acad. Sci. USA 94, 8387CrossRefGoogle Scholar
Parr, R. G. and W. Wang (1989). Density Functional Theory of Atoms and Molecules. Oxford, Oxford University Press
Pauly, H. (1979). Elastic scattering cross sections. In Atom-Molecular Collision Theory: A Guide for the Experimentalist, R. B. Bernstein (ed.). New York, Plenum PressCrossRef
Pauly, H. (2000). Atom, Molecule, and Cluster Beams: Basic Theory, Production, and Detection of Thermal Energy Beams. Berlin, Springer-Verlag
Pausch, R., Heid, M., et al. (2000). “Quantum control by stimulated Raman scattering.” J. Raman Spectrosc. 31, 73.0.CO;2-O>CrossRefGoogle Scholar
Pechukas, P. (1976). Statistical approximation in collision theory. In Dynamics of Molecular Collision, W. H. Miller (ed.). New York, Plenum Press, Part B, p. 299CrossRef
Pechukas, P. (1981). “Transition-state theory.” Ann. Rev. Phys. Chem. 32, 159CrossRefGoogle Scholar
Pechukas, P. and U. Weiss (eds.) (2001). Quantum Dynamics of Open Systems. Chem Phys. Amsterdam, ElsevierCrossRef
Pedersen, S., Herek, J. L., et al. (1994). “The validity of the diradical hypothesis – direct femtosecond studies of the transition-state structures.” Science 266, 1359CrossRefGoogle ScholarPubMed
Peng, T., Zhang, D. H., et al. (2000). “Dynasol: a visual quantum dynamics package.” Comput. Phys. Commun. 128, 492CrossRefGoogle Scholar
Petek, H. and Ogawa, S. (2002). “Surface femtochemistry: observation and quantum control of frustrated desorption of alkali atoms from noble metals.” Ann. Rev. Phys. Chem. 53, 507CrossRefGoogle ScholarPubMed
Pilling, M. J. (1996). “Radical–radical reactions.” Ann. Rev. Phys. Chem. 47, 81CrossRefGoogle Scholar
Pilling, M. J. and S. H. Robertson (2003). “Master equation models for chemical reactions of importance in combustion.” Ann. Rev. Phys. Chem. 54, 245CrossRefGoogle ScholarPubMed
Pilling, M. J., Robertson, S. H., et al. (1995). “Elementary radical reactions and autoignition.” J. Chem. Soc. Faraday Trans. 91, 4179CrossRefGoogle Scholar
Pilling, M. J. and I. W. M. Smith (eds.) (1987). Modern Gas Kinetics: Theory, Experiment, and Application. Oxford, Blackwell
Pimentel, G. C. (ed.) (1985). Opportunities in Chemistry. Washington, D.C., National Academy Press
Pogrebnya, S. K., et al. (2000). PCCP2, 693
Polanyi, J. C. (1972). “Some concepts in reaction dynamics.” Acc. Chem. Res. 5, 161CrossRefGoogle Scholar
Polanyi, J. C. (1987). “Some concepts in reaction dynamics.” Angew. Chem. 99, 981CrossRefGoogle Scholar
Polanyi, J. C. (2001). Macro, micro, and nanobeams. In Atomic and Molecular Beams: The State of the Art 2000, R. Campargue (ed.). Berlin, Springer-VerlagCrossRef
Polanyi, J. C. and Zewail, A. H. (1995). “Direct observation of the transition state.” Acc. Chem. Res. 28, 119CrossRefGoogle Scholar
Polanyi, M. (1932). Atomic Reactions. London, Williams and Norgate
Pollak, E. (1985). Periodic orbits and the theory of reactive scattering. In The Theory of Chemical Reaction Dynamics, M. Baer (ed.). Boca Raton, FL, CRC Press, Vol. III
Pollak, E. (1996). Theory of activated rate processes. In Dynamics of Molecules and Chemical Reactions, J. Zhang and R. E. Wyatt (eds.). New York, Marcel Dekker, p. 617
Pollard, W. T., Felts, A. K., et al. (1996). “The Redfield equation in condensed-phase quantum dynamics.” Adv. Chem. Phys. 93, 77Google Scholar
Pollard, W. T. and Mathies, R. A. (1992). “Analysis of femtosecond dynamic absorption spectra of nonstationary states.” Ann. Rev. Phys. Chem. 43, 497CrossRefGoogle ScholarPubMed
Porter, R. N. and L. M. Raff (1976). Classical trajectory methods in molecular collisions. In Dynamics of Molecular Collisions, W. H. Miller (ed.). New York, Plenum PressCrossRef
Pratt, D. W. (1998). “High resolution spectroscopy in the gas phase: even large molecules have well-defined shapes.” Ann. Rev. Phys. Chem. 49, 481CrossRefGoogle ScholarPubMed
Pritchard, H. O. (1984). The Quantum Theory of Unimolecular Reactions. New York, Cambridge University Press
Pross, A. (1985). “A general approach to organic reactivity – the configuration mixing model.” Adv. Phys. Org. Chem. 21, 99Google Scholar
Pross, A. (1995). Theoretical and Physical Principles of Organic Reactivity. New York, John Wiley & Sons
Pross, A. and Shaik, S. S. (1983). “A qualitative valence-bond approach to organic reactivity.” Acc. Chem. Res. 16, 363CrossRefGoogle Scholar
Pulay, P. (1995). Analytical derivative techniques and the calculation of vibrational spectra. In Modern Electronic Structure Theory, D. Yarkony (ed.). Singapore, World Scientific, p. 1191CrossRef
Pulay, P. and J. Baker (2001). Optimization and reaction path algorithms. In Encyclopedia of Chemical Physics and Physical Chemistry, J. H. Moore and N. D. Spencer (eds.). Bristol, IOP Publishing, Vol. 2, p. 2061CrossRef
Pullman, B. (ed.) (1978). Intermolecular Interactions from Diatomics to Biopolymers. New York, John Wiley & Sons
Pullman, B., J. Jortner, et al. (eds.) (1984). Dynamics on Surfaces. Boston, Reidel
Quack, M. (1982). “Reaction dynamics and statistical mechanics of the preparation of highly excited states by infrared radiation.” Adv. Chem. Phys. 50, 395Google Scholar
Quack, M. (1990). “Spectra and dynamics of coupled vibrations in polyatomic molecules.” Ann. Rev. Phys. Chem. 41, 839CrossRefGoogle Scholar
Quack, M. and Kutzelnigg, W. (1995). “Molecular spectroscopy and molecular dynamics – theory and experiment.” Ber. Bunsenges. Phys. Chem. Chem. Phys. 99, 231CrossRefGoogle Scholar
Rabinovitch, B. S. and Sester, D. W. (1964). “Unimolecular decomposition and some isotope effects of simple alkanes and alkyl radicals.” Adv. Photochem. 3, 1Google Scholar
Rabitz, H. (1974). “Rotation and rotation–vibration pressure-broadened spectral lineshapes.” Ann. Rev. Phys. Chem. 25, 155CrossRefGoogle Scholar
Rabitz, H., DeVivie-Riedle, R., et al. (2000). “Whither the future of controlling quantum phenomena.” Science 288, 824CrossRefGoogle ScholarPubMed
Rabitz, H. and Zhu, W. (2000). “Optimal control of molecular motion: design, implementation, and inversion.” Acc. Chem. Res. 33, 572CrossRefGoogle ScholarPubMed
Radeke, M. R. and Carter, E. A. (1997). “Ab initio dynamics of surface chemistry.” Ann. Rev. Phys. Chem. 48, 243CrossRefGoogle ScholarPubMed
Raghavachari, K. and J. Hutson (2002). “Theory of molecular clusters.” Ann. Rev. Phys. Chem. 53
Rahman, N. K. and C. Guidotti (eds.) (1984). Photon-Assisted Collisions and Related Topics. New York, Harwood
Raineri, F. O. and Friedman, H. L. (1999). “Solvent control of electron transfer reactions.” Adv. Chem. Phys. 107, 81Google Scholar
Rakitzis, T. P., Kandel, S. A., et al. (1998). “Photofragment helicity caused by matter–wave interference from multiple dissociative states.” Science 281, 1346CrossRefGoogle ScholarPubMed
Rapaport, D. C. (1997). The Art of Molecular Dynamics Simulation. Cambridge, Cambridge University Press
Rapp, D. and Kassal, T. (1969). “The theory of vibrational energy transfer between simple molecules in nonreactive collisions.” Chem. Rev. 69, 61CrossRefGoogle Scholar
Rappe, A. K. and C. J. Casewit (1997). Molecular Mechanics Across Chemistry. Fort Collins, University of Colorado Science Publishers
Rauk, A. (1994). Orbital Interaction Theory of Organic Chemistry. New York, John Wiley & Sons
Ravishankara, A. R., Hancock, G., et al. (1998). “Photochemistry of ozone: surprises and recent lessons.” Science 280, 60CrossRefGoogle Scholar
Regan, C. K., Craig, S. L., et al. (2002). “Steric effects and solvent effects in ionic reactions.” Science 295, 2245CrossRefGoogle ScholarPubMed
Reid, K. L. (2003). “Photoelectron angular distributions.” Ann. Rev. Phys. Chem. 54, 397CrossRefGoogle ScholarPubMed
Reid, S. A. and Reisler, H. (1996). “Experimental studies of resonances in unimolecular decomposition.” Ann. Rev. Phys. Chem. 47, 495CrossRefGoogle Scholar
Reisler, H. and Wittig, C. (1986). “Photo-initiated unimolecular reactions.” Ann. Rev. Phys. Chem. 37, 307CrossRefGoogle Scholar
Rettner, C. T. and M. N. R. Ashfold (1991). Dynamics of Gas–Surface Interactions. London, Royal Society of Chemistry
Rettner, C. T. and Auerbach, D. J. (1994). “Distinguishing the direct and indirect products of a gas–surface reaction.” Science 263, 365CrossRefGoogle ScholarPubMed
Rettner, C. T., Auerbach, D. J., et al. (1996). “Chemical dynamics at the gas–surface interface.” J. Phys. Chem. 100, 13 201CrossRefGoogle Scholar
Rettner, C. T., Schweizer, E. K., et al. (1990). “Dynamics of chemisorption of N2 on W(100): precursor-mediated and activated dissociation.” J. Chem. Phys. 93, 1442CrossRefGoogle Scholar
Reynolds, L., Gardecki, J. A., et al. (1996). “Dipole solvation in nondipolar solvents: experimental studies of reorganization energies and solvation dynamics.” J. Phys. Chem. 100, 10 337CrossRefGoogle Scholar
Rhodes, W. (1983). “Nonradiative relaxation and quantum beats in the radiative decay dynamics of large molecules.” J. Phys. Chem. 87, 30CrossRefGoogle Scholar
Rice, S. A. (1981a). “Collision induced intramolecular energy transfer in electronically excited polyatomic molecules.” Adv. Chem. Phys. 47(2), 237Google Scholar
Rice, S. A. (1981b). An overview of the dynamics of intramolecular transfer of vibrational energy. In Photoselective Chemistry, J. Jortner, R. D. Levine, and S. A. Rice (eds.). New York, John Wiley & Sons, Vol. 1, p. 117
Rice, S. A. (1997). “Perspectives on the control of quantum many-body dynamics: application to chemical reactions.” Adv. Chem. Phys. 101, 213Google Scholar
Rice, S. A. and M. Zhao (2000). Optical Control of Molecular Dynamics. New York, John Wiley & Sons
Ritz, T., Damjanovic, A., et al. (2002). “The quantum physics of photosynthesis.” Chem. Phys. Chem. 3, 2433.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Robb, M. A., M. Garavelli, et al. (2000). A Computational Strategy for Organic Photochemistry. Reviews in Computational Chemistry, K. B. Lipkowitz and D. B. Boyd (eds.). New York, Wiley-VCH, Vol. 15, p. 87CrossRef
Rohrbacher, A., Halberstadt, N., et al. (2000). “The dynamics of noble gas – halogen molecules and clusters.” Ann. Rev. Phys. Chem. 51, 405CrossRefGoogle ScholarPubMed
Rosker, M. J., Dantus, M., et al. (1988). “Femtosecond clocking of the chemical bond.” Science 241, 1200CrossRefGoogle ScholarPubMed
Ross, J. (ed.) (1966). “Molecular Beams.” Adv. Chem. Phys.10
Rotermund, H. H. (1997). “Imaging of dynamic processes on surfaces by light.” Surf. Sci. Rep. 29, 265CrossRefGoogle Scholar
Rowland, F. S. (1991). “Stratospheric ozone depletion.” Ann. Rev. Phys. Chem. 42, 731CrossRefGoogle Scholar
Rubahn, H. G. and Bergmann, K. (1990). “The effect of laser-induced vibrational bond stretching in atom–molecule collisions.” Ann. Rev. Phys. Chem. 41, 735CrossRefGoogle Scholar
Ruhman, S. and N. Scherer (eds.) (1998). Coherence in Chemical Dynamics. Chem Phys. Amsterdam, Elsevier
Sachs, C., Hildebrand, M., et al. (2001). “Spatiotemporal self organization in a surface reaction: from the atomic to the mesoscopic scale.” Science 293, 1635CrossRefGoogle Scholar
Sagdeev, R. Z., D. A. Usikov, et al. (eds.) (1988). Nonlinear Physics From the Pendum to Turbulence and Chaos. Chur, Harwood
Sandstroem, V. (ed.) (1997). Femtochemistry and Femtobiology. Singapore, World Scientific
Sathyamurthy, N. (1983). “Effect of reagent rotation on elementary exchange reactions.” Chem. Rev. 83, 601CrossRefGoogle Scholar
Sathyamurthy, N. (ed.) (1991). Reaction Dynamics: Recent Advances. Berlin, Springer-Verlag
Sato, H. (2001). “Photodissociation of simple molecules in the gas phase.” Chem. Rev. 101, 2687CrossRefGoogle ScholarPubMed
Schatz, G. C. (1988). “Quantum effects in gas phase chemical reactions.” Ann. Rev. Phys. Chem. 39, 317CrossRefGoogle Scholar
Schatz, G. C. (1989). “The analytical representation of electronic potential-energy surfaces.” Rev. Mod. Phys. 61, 669CrossRefGoogle Scholar
Schatz, G. C. (1993). “Transition states of chemical reactions.” Science 262, 1828CrossRefGoogle ScholarPubMed
Schatz, G. C. (1996). “Scattering theory and dynamics: time-dependent and time-independent methods.” J. Phys. Chem. 100, 12 839CrossRefGoogle Scholar
Schatz, G. C. (2000a). “Detecting resonances.” Science 288, 1599CrossRefGoogle Scholar
Schatz, G. C. (2000b). “Stretched water is more reactive.” Science 290, 950CrossRefGoogle Scholar
Schatz, G. C. (2001). Quantum mechanics of interacting systems: scattering theory. In Encyclopedia of Chemical Physics and Physical Chemistry, J. H. Moore and N. D. Spencer (eds.) Bristol, IOP Publishing, Vol. 1, p. 827CrossRef
Schatz, G. C. and M. A. Ratner (1993). Quantum Mechanics in Chemistry. Englewood Cliffs, Prentice-Hall
Schinke, R. (1988). “Rotational distributions in direct molecular photodissociation.” Ann. Rev. Phys. Chem. 39, 39CrossRefGoogle Scholar
Schinke, R. (1993). Photodissociation Dynamics. Cambridge, Cambridge University Press
Schinke, R. and J. M. Bowman (eds.) (1983). Molecular Collision Dynamics. Berlin, Springer-Verlag
Schinke, R., Keller, H.-M., et al. (1997). “Resonances in unimolecular dissociation: from mode-specific to statistical behavior.” Adv. Chem. Phys. 101, 745Google Scholar
Schlag, E. W. and Levine, R. D. (1997). “ZEKE spectroscopy of ions, radicals, reactive intermediates, and clusters and the dynamics of high molecular Rydberg states.” Comm. At. Mol. Phys. 33, 159Google Scholar
Schlag, E. W. and Neusser, H.-J. (1983). “Multiphoton mass spectrometry.” Acc. Chem. Res. 16, 355CrossRefGoogle Scholar
Schlag, E. W., S. Schneide, , et al. (1971). “Lifetimes in excited states.” Ann. Rev. Phys. Chem. 22, 465CrossRefGoogle Scholar
Schlag, E. W., R. Weinkauf, et al. (eds.) (1998). Molecular Clusters. Chem Phys. Amsterdam, Elsevier
Schlegel, H. B. (1995). Geometry optimization on potential energy surfaces. In Modern Electronic Structure Theory, D. Yarkony (ed.). Singapore, World Scientific, p. 459CrossRef
Schleyer, P. V. R. (ed.) (1998). Encyclopedia of Computational Chemistry. Chichester, John Wiley & Sons
Schlick, T. (2002). Molecular Modeling and Simulation. Berlin, Springer-Verlag
Schlier, C. (ed.) (1970). Molecular Beams and Reaction Kinetics. New York, Academic Press
Schmidt, H. and Hertel, I. V. (1988). “Symmetry and angular momentum in collisions with laser excited, polarised atoms.” Adv. Chem. Phys. 72, 37Google Scholar
Schnieder, L., Seekamp-Rahn, K., et al. (1991). “Hydrogen exchange reaction H + D2 in crossed beams.” Faraday Disc. Chem. Soc. 91, 259CrossRefGoogle Scholar
Schnieder, L., Seekamp-Rahn, K., et al. (1995). “Experimental studies and theoretical predictions for the H + D2 → HD + D reaction.” Science 269, 207CrossRefGoogle Scholar
Scholes, G. D. (2003). “Long-range resonance energy transfer in molecular systems.” Ann. Rev. Phys. Chem. 54, 57CrossRefGoogle ScholarPubMed
Schowen, R. L. (2003). “How an enzyme surmounts the activation energy barrier.” Proc. Natl. Acad. Sci. USA 100, 11 931CrossRefGoogle ScholarPubMed
Schroeder, J. (2001). Chemical kinetics in condensed phases. In Encyclopedia of Chemical Physics and Physical Chemistry J. H. Moore and N. D. Spencer (eds.). Bristol, IOP Publishing, Vol. 1, p. 711CrossRef
Schroeder, J. and Troe, J. (1987). “Elementary reactions in the gas–liquid transition range.” Ann. Rev. Phys. Chem. 38, 163CrossRefGoogle Scholar
Schroeder, J. and J. Troe (1993). Solvent effects in the dynamics of dissociation, recombination and isomerization reactions. In Activated Barrier Crossing, G. R. Fleming and P. Hanggi (eds.). Singapore, World Scientific, p. 206CrossRef
Schulz, P. A., Sudbo, A. S., et al. (1979). “Multi-photon dissociation of polyatomic-molecules.” Ann. Rev. Phys. Chem. 30, 379CrossRefGoogle Scholar
Schunemann, V. and Winkler, H. (2000). “Structure and dynamics of biomolecules studied by Mossbauer spectroscopy.” Rep. Prog. Phys. 63, 263CrossRefGoogle Scholar
Schuster, H. G. (1988). Deterministic Chaos: An Introduction. Weinheim, VCH
Schwartz, B. J., J. C. King, et al. (1994). The molecular basis of solvent caging. In Ultrafast Dynamics of Chemical Systems, J. D. Simon (ed.). Dordrecht, KluwerCrossRef
Scoles, G. (ed.) (1988). Atomic and Molecular Beam Methods. New York, Oxford University Press
Scott, S. K. (1987). “Oscillations in simple models of chemical systems.” Acc. Chem. Res. 20, 186CrossRefGoogle Scholar
Scott, S. K. (1994). Oscillations, Waves and Chaos in Chemical Kinetics. Oxford, Oxford University Press
Scott, S. K. (2001). Nonlinear reactions, feedback and self-organizing reactions. In Encyclopedia of Chemical Physics and Physical Chemistry, J. H. Moore and N. D. Spencer (eds.). Bristol, IOP Publishing, Vol. 1, p. 937CrossRef
Secrest, D. (1973). “Theory of rotational and vibrational energy transfer in molecules.” Ann. Rev. Phys. Chem. 24, 379CrossRefGoogle Scholar
Seideman, T. (2002). “Time-resolved photoelectron angular distributions: concepts, applications, and directions.” Ann. Rev. Phys. Chem. 53, 41CrossRefGoogle ScholarPubMed
Seideman, T., Ivanov, M. Y., et al. (1995). “Role of electron localization in intense-field molecular ionization.” Phys. Rev. Lett. 75, 2819CrossRefGoogle ScholarPubMed
Seilmeier, A. and W. Kaiser (eds.) (1988). Ultrashort Intramolecular and Intermolecular Vibrational Energy Transfer of Polyatomic Molecules in Liquids. Topics in Applied Physics. Berlin, Springer-Verlag
Shaik, S. S. (1985). “The collage of SN2 reactivity patterns.” Prog. Phys. Org. Chem. 15, 197Google Scholar
Shapiro, M. and Brumer, P. (1989). “Coherent chemistry – controlling chemical reactions with lasers.” Acc. Chem. Res. 22, 407Google Scholar
Shapiro, M. and Brumer, P. (1994). “Coherent and incoherent laser control of photochemical reactions.” Int. Rev. Phys. Chem. 13, 187CrossRefGoogle Scholar
Shapiro, M. and P. Brumer (2003). Principles of the Quantum Control of Molecular Processes. New York, John Wiley & Sons
Shatz, C. J. (1996). “Emergence of order in visual system development.” Proc. Natl. Acad. Sci. USA 93, 602CrossRefGoogle ScholarPubMed
Sheehy, B. and DiMauro, L. F. (1996). “Atomic and molecular dynamics in intense optical fields.” Ann. Rev. Phys. Chem. 47, 463CrossRefGoogle Scholar
Shepard, R. (1987). “The multiconfiguration self-consistent field method.” Adv. Chem. Phys. 69, 63Google Scholar
Shin, S. K., Chen, Y., et al. (1991). “Photoinitiated reactions in weakly bonded complexes.” Adv. Photochem. 16, 249Google Scholar
Siebrand, W. (1976). Nonradiative processes in molecular systems. In Dynamics of Molecular Collisions, W. H. Miller (ed.). New York, Plenum PressCrossRef
Silva, M., Jongma, R., et al. (2001). “The dynamics of ‘stretched molecules’: experimental studies of highly vibrationally excited molecules with stimulated emission pumping.” Ann. Rev. Phys. Chem. 52, 811CrossRefGoogle Scholar
Simons, J. (2001). Quantum structural methods for atoms and molecules. In Encyclopedia of Chemical Physics and Physical Chemistry, J. H. Moore and N. D. Spencer (eds.). Bristol, IOP Publishing, Vol. 1, p. 827CrossRef
Simons, J. P. (1984). “Photodissociation, a critical survey.” J. Phys. Chem. 88, 1287CrossRefGoogle Scholar
Simons, J. P. (1987). “Dynamic stereochemistry and the polarization of reaction products.” J. Phys. Chem. 91, 5378CrossRefGoogle Scholar
Simons, J. P. (1997). “The ins and outs of collision complexes.” J. Chem. Soc. Faraday Trans. 93, 4095CrossRefGoogle Scholar
Simons, J. P. (1999). “Stereochemistry and control in molecular reaction dynamics.” Faraday Disc. 113, 1CrossRefGoogle Scholar
Sims, I. R. and Smith, I. W. M. (1995). “Gas-phase reactions and energy transfer at very low temperatures.” Ann. Rev. Phys. Chem. 46, 109CrossRefGoogle ScholarPubMed
Sinha, A., Hsiao, M. C., et al. (1991). “Controlling bimolecular reactions – mode and bond selected reaction of water with hydrogen atoms.” J. Chem. Phys. 94, 4928CrossRefGoogle Scholar
Skodje, R. T. (1993). “The adiabatic theory of heavy–light–heavy chemical reactions.” Ann. Rev. Phys. Chem. 44, 145CrossRefGoogle Scholar
Skouteris, D., Castillo, J. F., et al. (2000). “ABC: a quantum reactive scattering program.” Comp. Phys. Com. 133, 128CrossRefGoogle Scholar
Skouteris, D., Manolopoulos, D. E., et al. (1999). “Van der Waals interactions in the Cl + HD reaction.” Science 286, 1713CrossRefGoogle Scholar
Skowronek, S. and Urena, A. G. (1999). “Spectroscopy and dynamics of the laser induced intracluster (Ba¨FCH3)* → BaF* + CH3 and Ba* + FCH3 reaction.” Prog. React. Kin. Mech. 24, 101CrossRefGoogle Scholar
Slinko, M. M. and N. Jaeger (1994). Oscillatory Heterogeneous Catalytic Systems. Amsterdam, Elsevier
Smith, I. W. M. (1976). “Relaxation in collisions of vibrationally excited molecules with potentially reactive atoms.” Acc. Chem. Res. 9, 161CrossRefGoogle Scholar
Smith, I. W. M. (1980a). Kinetics and Dynamics of Elementary Gas Reactions. London, Butterworth
Smith, I. W. M. (ed.) (1980b). Physical Chemistry of Fast Reactions: Reaction Dynamics. New York, Plenum Press
Smith, I. W. M. (1989). Vibrational excitation in bimolecular reactions. In Bimolecular Collisions, M. N. R. Ashfold and J. E. Baggott (eds.). London, Royal Society of Chemistry, p. 53
Smith, I. W. M. (1990). “Vibrational adiabaticity in chemical reactions.” Acc. Chem. Res. 23, 101CrossRefGoogle Scholar
Smith, I. W. M. (2002). “Chemistry amongst the stars: reaction kinetics at a new frontier.” Chem. Soc. Rev. 31, 137CrossRefGoogle Scholar
Smith, I. W. M. and Crim, F. F. (2002). “The chemical kinetics and dynamics of the prototypical reaction: OH + H-2 → H2O + H-.” Phys. Chem. Chem. Phys. 4, 3543CrossRefGoogle Scholar
Smith, I. W. M. and Rowe, B. R. (2000). “Reaction kinetics at very low temperatures: laboratory studies and interstellar chemistry.” Acc. Chem. Res. 33, 261CrossRefGoogle ScholarPubMed
Somorjai, G. A. (1981). Chemistry in Two Dimensions: Surfaces. Ithaca, NY, Cornell University Press
Somorjai, G. A. (1994a). “Surface reconstruction and catalysis.” Ann. Rev. Phys. Chem. 45, 721CrossRefGoogle Scholar
Somorjai, G. A. (1994b). Introduction to Surface Chemistry and Catalysis. New York, John Wiley & Sons
Somorjai, G. A. (2000). “The development of molecular surface science and the surface science of catalysis: the Berkeley contribution.” J. Phys. Chem. B 104, 2969CrossRefGoogle Scholar
Somorjai, G. A. and Rupprechter, G. (1998). “The flexible surface.” J. Chem. Educ. 75, 161CrossRefGoogle Scholar
Speiser, S. (1996). “Photophysics and mechanisms of intramolecular electronic energy transfer in bichromophoric molecular systems: solution and supersonic jet studies.” Chem. Rev. 96, 1953CrossRefGoogle ScholarPubMed
Spudich, J. A. (2001). “The myosin swinging cross-bridge model.” Nat. Cell Biol. 2, 387CrossRefGoogle ScholarPubMed
Stapelfeldt, H. and Seideman, T. (2003). “Aligning molecules with strong laser pulses.” Rev. Mod. Phys. 75, 543CrossRefGoogle Scholar
Steinfeld, J. I. (1985). Molecules and Radiation. Cambridge, MA, MIT Press
Steinfeld, J. I., J. S. Francisco, et al. (1999). Chemical Kinetics and Dynamics. Upper Saddle River, Prentice-Hall
Stolow, A. (2003a). “Femtosecond time-resolved photoelectron spectroscopy of polyatomic molecules.” Ann. Rev. Phys. Chem. 54, 89CrossRefGoogle Scholar
Stolow, A. (2003b). “Time-resolved photoelectron spectroscopy: non-adiabatic dynamics in polyatomic molecules.” Int. Rev. Phys. Chem. 22, 377CrossRefGoogle Scholar
Stolte, S. (1982). “Reactive scattering studies on oriented molecules.” Ber. Bunsenges. Phys. Chem. 86, 413CrossRefGoogle Scholar
Stolte, S. (1988). Scattering experiments with state selectors. In Atomic and Molecular Beam Methods, G. Scoles (ed.). New York, Oxford University Press
Stoneham, A. M. and Harding, J. H. (1986). “Interatomic potentials in solid state chemistry.” Ann. Rev. Phys. Chem. 37, 53CrossRefGoogle Scholar
Straatsma, T. P. and McCammon, J. A. (1992). “Computational alchemy.” Ann. Rev. Phys. Chem. 43, 407CrossRefGoogle Scholar
Stratt, R. M. (1995). “The instantaneous normal modes of liquids.” Acc. Chem. Res. 28, 201CrossRefGoogle Scholar
Stratt, R. M. and Maroncelli, M. (1996). “Nonreactive dynamics in solution: the emerging molecular view of solvation dynamics and vibrational relaxation.” J. Phys. Chem. 100, 12 981CrossRefGoogle Scholar
Strazisar, B. R., Lin, C., et al. (2000). “Mode-specific energy disposal in the four-atom reaction OH + D2 → HOD + D.” Science 290, 958CrossRefGoogle ScholarPubMed
Suits, A. G. and R. E. Continetti (eds.) (2001). Imaging in Chemical Dynamics. ACS Symposium Series. Washington, D.C., American Chemical Society
Sullivan, J. H. (1967). “Mechanism of the ‘bimolecular’ hydrogen–iodine reaction.” J. Chem. Phys. 46, 73CrossRefGoogle Scholar
Sumi, H. (1999). “Solvent-fluctuation control of solution reactions and its manifestation in protein functions.” Adv. Chem. Phys. 107, 601Google Scholar
Sun, L., Song, K., et al. (2002). “A SN2 reaction that avoids its deep potential energy minimum.” Science 296, 875CrossRefGoogle ScholarPubMed
Suzuki, T. and Whitaker, B. J. (2001). “Non-adiabatic effects in chemistry revealed through charged particle imaging.” Int. Rev. Phys. Chem. 20, 313CrossRefGoogle Scholar
Szabo, A. and N. S. Ostlund (1996). Modern Quantum Chemistry. New York, Dover
Taatjes, C. A. (1999). “Time-resolved infrared absorption measurements of product formation in Cl atom reactions with alkenes and alkynes.” Int. Rev. Phys. Chem. 18, 419CrossRefGoogle Scholar
Taatjes, C. A. and Hershberger, J. F. (2001). “Recent progress in infrared absorption techniques for elementary gas-phase reaction kinetics.” Ann. Rev. Phys. Chem. 52, 41CrossRefGoogle ScholarPubMed
Taft, C. A., Guimaraes, T. C., et al. (1999). “Adsorption and dissociation of diatomic molecules on transition-metal surfaces.” Int. Rev. Phys. Chem. 18, 163CrossRefGoogle Scholar
Talkner, P. and P. Hanggi (eds.) (1995). New Trends in Kramers' Reaction Rate Theory. Dordrecht, Kluwer
Tannor, D. J. (2003). Introduction to Quantum Mechanics: A Time Dependent Perspective. Mill Valley, CA, University Science Books
Tannor, D. J. and Garashchuk, S. (2000). “Semiclassical calculation of chemical reaction dynamics in wave-packet correlation functions.” Ann. Rev. Phys. Chem. 51, 553CrossRefGoogle Scholar
Tannor, D. J. and Rice, S. A. (1988). “Coherent pulse sequence control of product formation in chemical reactions.” Adv. Chem. Phys. 70, 441Google Scholar
Tardy, D. C. and Rabinovitch, B. S. (1977). “Intermolecular vibrational energy transfer in thermal unimolecular systems.” Chem. Rev. 77, 369CrossRefGoogle Scholar
Taube, H. (1970). Electron Transfer Reactions in Solution. New York, Academic Press
Thomas, J. M. and Thomas, W. J. (1997). Principles and Practice of Heterogeneous Catalysis, Wiley-VCH, Berlin
Thompson, D. L. (ed.) (1998a). Modern Methods for Multidimensional Dynamics Computations in Chemistry. Singapore, World Scientific
Thompson, D. L. (1998b). “Practical methods for calculating rates of unimolecular reactions.” Int. Rev. Phys. Chem. 17, 547CrossRefGoogle Scholar
Toda, M. (2002). “Dynamics of chemical reactions and chaos.” Adv. Chem. Phys. 123, 153Google Scholar
Toennies, J. P. (1976). “The calculation and measurement of cross sections for rotational and vibrational excitation.” Ann. Rev. Phys. Chem. 27, 225CrossRefGoogle Scholar
Toennies, J. P. and Vilesov, A. F. (1998). “Spectroscopy of atoms and molecules in liquid helium.” Ann. Rev. Phys. Chem. 49, 1CrossRefGoogle ScholarPubMed
Tolbert, L. M. and Solntsev, K. M. (2002). “Excited-state proton transfer: from constrained systems to ‘super’ photoacids to superfast proton transfer.” Acc. Chem. Res. 35, 19CrossRefGoogle ScholarPubMed
Tramer, A. and Nitzan, A. (1981). “Collisional effects in electronic relaxation.” Adv. Chem. Phys. 47, 337Google Scholar
Tributsch, H. and Pohlmann, L. (1998). “Electron transfer: classical approaches and new frontiers.” Science 279, 1891CrossRefGoogle ScholarPubMed
Troe, J. (1987). “Elementary reactions in the gas–liquid transition range.” Ann. Rev. Phys. Chem. 38, 163CrossRefGoogle Scholar
Troe, J. (1992). “Statistical aspects of ion molecule reactions.” Adv. Chem. Phys. 82, 485Google Scholar
Troe, J. (1997). “Recent advances in statistical adiabatic channel calculations of state-specific dissociation dynamics.” Adv. Chem. Phys. 101, 819Google Scholar
Truhlar, D. G. (1978). “Interpretation of activation energy.” J. Chem. Educ. 55, 309CrossRefGoogle Scholar
Truhlar, D. G. (ed.) (1981). Potential Energy Surfaces and Dynamics Calculations. New York, Plenum Press
Truhlar, D. G. (1998). “Chemical reaction theory.” Faraday Disc. 110, 521CrossRefGoogle Scholar
Truhlar, D. G. and D. A. Dixon (1979). Direct mode chemical reactions: classical theories. In Atom-Molecular Collision Theory: A Guide for the Experimentalist, R. B. Bernstein (ed.). New York, Plenum PressCrossRef
Truhlar, D. G., Gao, J., et al. (2002). “The incorporation of quantum effects in enzyme kinetics modeling.” Acc. Chem. Res. 35, 341CrossRefGoogle ScholarPubMed
Truhlar, D. G. and Garrett, B. C. (1984). “Variational transition state theory.” Ann. Rev. Phys. Chem. 35, 159CrossRefGoogle Scholar
Truhlar, D. G., Garrett, B. C., et al. (1996). “Current status of transition-state theory.” J. Phys. Chem. 100, 12 771CrossRefGoogle Scholar
Truhlar, D. G., W. J. Howe, et al. (eds.) (1999). Rational Drug Design. New York, Springer-Verlag
Truhlar, D. G. and J. T. Muckerman (1979). Reactive scattering cross sections III: quasiclassical and semiclassical methods. In Atom-Molecular Collision Theory, R. B. Bernstein (ed.). New York, Plenum Press, p. 505CrossRef
Truong, T. N. (1998). “Quantum modelling of reactions in solution: An overview of the dielectric continuum methodology.” Int. Rev. Phys. Chem. 17, 525CrossRefGoogle Scholar
Tse, J. S. (2002). “Ab initio molecular dynamics with density functional theory.” Ann. Rev. Phys. Chem. 53, 249CrossRefGoogle ScholarPubMed
Tuckerman, M. E., Ungar, P. J., et al. (1996). “Ab initio molecular dynamics simulations.” J. Phys. Chem. 100, 12 878CrossRefGoogle Scholar
Tully, J. C. (1980). “Semiempirical diatomics-in-molecules potential energy surfaces.” Adv. Chem. Phys. 42, 63Google Scholar
Tully, J. C. (1981). “Dynamics of chemical processes at surfaces.” Acc. Chem. Res. 14, 188CrossRefGoogle Scholar
Tully, J. C. (1998). Mixed quantum-classical dynamics: mean-field and surface hopping. In Classical and Quantum Dynamics in Condensed Phase Simulations, B. J. Berne, G. Ciccotti and D. F. Coker (eds.). Singapore, World Scientific, p. 489CrossRef
Tully, J. C. (2000). “Chemical dynamics at metal surfaces.” Ann. Rev. Phys. Chem. 51, 153CrossRefGoogle ScholarPubMed
Turro, N. J. (1991). Modern Molecular Photochemistry. Mill Valley, CA, University Science Books
Ulstrup, J. (1979). Charge Transfer Processes in Condensed Media. New York, Springer-Verlag
Urena, A. G. (1987). “Influence of translational energy upon reactive scattering cross section: neutral–neutral collisions.” Adv. Chem. Phys. 66, 337Google Scholar
Urena, A. G. and Vetter, R. (1996). “Dynamics of reactive collisions by optical methods.” Int. Rev. Phys. Chem. 15, 375CrossRefGoogle Scholar
Uzer, T. (1991). “Theories of intramolecular vibrational-energy transfer.” Phys. Rep. 199, 73CrossRefGoogle Scholar
Vaida, V., Kjaergaard, H. G., et al. (2003). “Hydrated complexes: relevance to atmospheric chemistry and climate.” Int. Rev. Phys. Chem. 22, 203CrossRefGoogle Scholar
Vale, R. D. (2003). “Myosin V motor proteins: marching stepwise towards a mechanism.” J. Cell Biol. 163, 445CrossRefGoogle ScholarPubMed
Valentini, J. J. (2001). “State-to-state chemical reaction dynamics in polyatomic systems: case studies.” Ann. Rev. Phys. Chem. 52, 15CrossRefGoogle ScholarPubMed
Valentini, J. J. and D. L. Phillips (1989). Experimental and theoretical studies of the dynamics of the hydrogen exchange reaction: the maturation of a prototype. In Bimolecular Collisions, M. N. R. Ashfold and J. E. Baggott (eds.). London, Royal Society of Chemistry, p. 1
Van Hecke, G. R. and K. K. Karukstis (1998). A Guide to Lasers in Chemistry. Boston, Jones and Bartlett
van Santen, R. A. (1991). Theoretical Heterogeneous Catalysis. Singapore, World Scientific
Varandas, A. J. C. (2000). “Four-atom bimolecular reactions with relevance in environmental chemistry: theoretical work.” Int. Rev. Phys. Chem. 19, 199CrossRefGoogle Scholar
Vardi, A. and Shapiro, M. (2001). “Theory of laser catalysis with pulses.” Comm. Mod. Phys. D 2, 233Google Scholar
Verhoeven, J. W. (1999). “From close contact to long-range intramolecular electron transfer.” Adv. Chem. Phys. 106, 603Google Scholar
Verlet, J. R. R. and Fielding, H. H. (2001). “Manipulating electron wave packets.” Int. Rev. Phys. Chem. 20, 283CrossRefGoogle Scholar
Vetter, R. and J. Vigue (eds.) (1986). Recent Advances in Molecular Reaction Dynamics. Paris, Editions CNRS
Viggiano, A. A. and T. M. Miller (2001). Ion chemistry. In Encyclopedia of Chemical Physics and Physical Chemistry, J. H. Moore and N. D. Spencer (eds.). Bristol, IOP Publishing, Vol. 1, p. 683CrossRef
Villa, J., Strajbl, M., et al. (2000). “How important are entropic contributions to enzyme catalysis?Proc. Natl. Acad. Sci. USA 97, 11 899CrossRefGoogle ScholarPubMed
Vitanov, N. V., Halfmann, T., et al. (2001). “Laser-induced population transfer by adiabatic passage techniques.” Ann. Rev. Phys. Chem. 52, 763CrossRefGoogle ScholarPubMed
Vivie-Riedle, D., H. Rabitz, et al. (eds.) (2001). Laser Control of Quantum Dynamics. Chem Phys. Amsterdam, ElsevierCrossRef
Vivie-Riedle, R. (2002). “Theory of laser control of molecular dynamics.” Ann. Rev. Phys. Chem.53
Voth, G. A. (2001). Molecular reaction dynamics in condensed phases. In Encyclopedia of Chemical Physics and Physical Chemistry, J. H. Moore and N. D. Spencer (eds.). Bristol, IOP Publishing, Vol. 1, p. 759CrossRef
Voth, G. A. and Hochstrasser, R. M. (1996). “Transition state dynamics and relaxation processes in solutions: a frontier of physical chemistry.” J. Phys. Chem. 100, 13 034CrossRefGoogle Scholar
Wagner, A. F., Slagle, I. R., et al. (1990). “Experimental and theoretical studies of the C2H5 + O2 reaction kinetics.” J. Phys. Chem. 94, 1853CrossRefGoogle Scholar
Wales, D. J. (2001). “A microscopic basis for the global appearance of energy landscapes.” Science 293, 2067CrossRefGoogle ScholarPubMed
Wales, D. J., Miller, M. A., et al. (1998). “Archetypal energy landscapes.” Nature 394, 758CrossRefGoogle Scholar
Walker, G. C. and D. N. Beratan (2001). Electron transfer reactions. In Encyclopedia of Chemical Physics and Physical Chemistry, J. H. Moore and N. D. Spencer (eds.). Bristol, IOP Publishing, Vol. 3, p. 2657CrossRef
Wall, M. E., Gallagher, S. C., et al. (2000). “Large-scale shape changes in proteins and macromolecular complexes.” Ann. Rev. Phys. Chem. 51, 355CrossRefGoogle ScholarPubMed
Walsh, A. D. (1953). “The electronic orbitals, shapes, and spectra of polyatomic molecules. Part II. Non-hydride AB2 and BAC molecules.” J. Chem. Soc., 2266
Wang, Q., Schoenlein, R. W., et al. (1994). “Vibrationally coherent photochemistry in the femtosecond primary event of vision.” Science 266, 422CrossRefGoogle Scholar
Wang, Z., Pakoulev, A., et al. (2002). “Watching vibrational energy transfer in liquids with atomic spatial resolution.” Science 296, 2201CrossRefGoogle ScholarPubMed
Wardlaw, D. M. and Marcus, R. A. (1988). “On the statistical theory of unimolecular processes.” Adv. Chem. Phys. 70, 231Google Scholar
Warman, J. M., DeHaas, M. P., et al. (1999). “Photoinduced electron transfer within donor–spacer–acceptor molecular assemblies studied by time-resolved microwave conductivity.” Adv. Chem. Phys. 106, 571Google Scholar
Warneck, P. (1988). Chemistry of the Natural Atmosphere. New York, Academic Press
Warren, W. S., Rabitz, H., et al. (1993). “Coherent control of quantum dynamics: the dream is alive.” Science 259, 1581CrossRefGoogle ScholarPubMed
Warshel, A. (1991). Computer Modeling of Chemical Reactions in Enzymes and Solutions. New York, John Wiley & Sons
Warshel, A. (2002). “Molecular dynamics simulations of biological reactions.” Acc. Chem. Res. 35, 385CrossRefGoogle ScholarPubMed
Warshel, A. and Parson, W. W. (1991). “Computer simulations of electron-transfer reactions in solution and in photosynthetic reaction centers.” Ann. Rev. Phys. Chem. 42, 279CrossRefGoogle ScholarPubMed
Warshel, A. and Parson, W. W.(2001). “Dynamics of biochemical and biophysical reactions: insight from computer simulations.” Q. Rev. Biophys. 34, 563CrossRefGoogle ScholarPubMed
Waschewsky, G. C. G., Kash, P. W., et al. (1994). “What Woodward and Hoffmann didn't tell us – the failure of the Born–Oppenheimer approximation in competing reaction pathways.” J. Chem. Soc. Faraday Trans. 90, 1581CrossRefGoogle Scholar
Wasielewski, M. R. (1992). “Photoinduced electron transfer in supramolecular systems for artificial photosynthesis.” Chem. Rev. 92, 435CrossRefGoogle Scholar
Weaver, M. J. (1992). “Dynamic solvent effects on activated electron-transfer reactions – principles, pitfalls, and progress.” Chem. Rev. 92, 463CrossRefGoogle Scholar
Wegewijs, B. and Verhoeven, J. W. (1999). “Long-range charge separation in solvent-free donor–bridge–acceptor systems.” Adv. Chem. Phys. 106, 221Google Scholar
Weinberg, W. H. (1996). “Eley–Rideal surface chemistry: direct reactivity of gas phase atomic hydrogen with adsorbed species.” Acc. Chem. Res. 29, 479CrossRefGoogle Scholar
Weitz, E. and Flynn, G. W. (1974). “Laser studies of vibrational and rotational relaxation in small molecules.” Ann. Rev. Phys. Chem. 25, 275CrossRefGoogle Scholar
Weitz, E. and Flynn, G. W. (1981). “Vibrational energy flow in the ground electronic states of polyatomic molecules.” Adv. Chem. Phys. 47, 185Google Scholar
Wenthold, P. G. and Lineberger, W. C. (1999). “Negative ion photoelectron spectroscopy studies of organic reactive intermediates.” Acc. Chem. Res. 32, 597CrossRefGoogle Scholar
Werner, H. J. (1987). “Matrix-formulated direct multiconfigurational self-consistent field and multireference configuration interaction methods.” Adv. Chem. Phys. 69, 1Google Scholar
Weston, R. E. Jr and Flynn, G. W. (1992). “Relaxation of molecules with chemically significant amounts of vibration energy: the dawn of the quantum state resolved era.” Ann. Rev. Phys. Chem. 43, 559CrossRefGoogle Scholar
Wheeler, M. D., Anderson, D. T., et al. (2000). “Probing reactive potential energy surfaces by vibrational activation of H2‒OH entrance channel complexes.” Int. Rev. Phys. Chem. 19, 501CrossRefGoogle Scholar
Whetten, R. L., Ezra, G. S., et al. (1985). “Molecular dynamics beyond the adiabatic approximation: new experiments and theory.” Ann. Rev. Phys. Chem. 36, 277CrossRefGoogle Scholar
Whitaker, B. J. (ed.) (1989). “Orientation and Polarization Effects in Reactive Collisions.” Faraday Trans.113
Whitaker, B. J. (ed.) (2003). Imaging in Molecular Dynamics: Technology and Application. Cambridge, Cambridge University Press
Whitehead, J. C. (1988). Selectivity in Chemical Reactions. Dordrecht, Kluwer Academic
Whitten, J. L. and Yang, H. (1996). “Theory of chemisorption and reactions on metal surfaces.” Surf. Sci. Rep. 24, 55CrossRefGoogle Scholar
Williams, D. H. and Beynon, J. H. (1976). “The concept and role of charge localization in mass spectrometry.” Org. Mass Spectrom. 11, 103CrossRefGoogle Scholar
Wittig, C., Sharpe, S., et al. (1988). “Photoinitiated reactions in weakly bonded complexes.” Acc. Chem. Res. 21, 341CrossRefGoogle Scholar
Wolff, J., Papathanasiou, A. G., et al. (2001). “Spatiotemporal addressing of surface activity.” Science 294, 134CrossRefGoogle ScholarPubMed
Wolfrum, J. (2002). “Advanced laser spectroscopy in combustion chemistry: from elementary steps to practical devices.” Faraday Disc. 119, 1CrossRefGoogle Scholar
Wolfrum, J., H.-R. Volpp, et al. (eds.) (1996). Gas Phase Chemical Reaction Systems. Berlin, Springer-Verlag
Wolynes, P. G. (1987). “Linearized microscopic theories of nonequilibrium solvation.” J. Chem. Phys. 86, 5133CrossRefGoogle Scholar
Wolynes, P. G., Onuchic, J. N., et al. (1995). “Navigating the folding routes.” Science 267, 1619CrossRefGoogle ScholarPubMed
Woodward, R. B. and Hoffmann, R. (1968). “Conservation of orbital symmetry.” Acc. Chem. Res. 1, 17Google Scholar
Woodward, R. B. and R. Hoffmann (1970). The Conservation of Orbital Symmetry. Weinheim, Verlag Chemie
Woolley, R. G. (ed.) (1980). Quantum Dynamics of Molecules. New York, Plenum Press
Worth, G. A. and Cederbaum, L. S. (2004). “Beyond Born–Oppenheimer: molecular dynamics through a conical intersection.” Ann. Rev. Phys. Chem. 55, 127CrossRefGoogle ScholarPubMed
Wyatt, R. E., Iung, C., et al. (1995). “Toward ab initio intramolecular dynamics.” Acc. Chem. Res. 28, 423CrossRefGoogle Scholar
Wyatt, R. E. and J. Z. H. Zhang (eds.) (1996). Dynamics of Molecules and Chemical Reactions. New York, Marcel Dekker
Wynne, K. and Hochstrasser, R. M. (1999). “Coherence and adiabaticity in ultrafast electron transfer.” Adv. Chem. Phys. 107, 263Google Scholar
Yang, H., Kotz, K. T., et al. (1999). “Ultrafast infrared studies of bond activation in organometallic complexes.” Acc. Chem. Res. 32, 551CrossRefGoogle Scholar
Yardley, J. T. (1980). Introduction to Molecular Energy Transfer. New York, Academic Press
Yarkony, D. R. (1996a). “Current issues in nonadiabatic chemistry.” J. Phys. Chem. 100, 18 612CrossRefGoogle Scholar
Yarkony, D. R. (1996b). “Diabolical conical intersections.” Rev. Mod. Phys. 68, 985CrossRefGoogle Scholar
Yarkony, D. R. (1998). “Conical intersections: diabolical and often misunderstood.” Acc. Chem. Res. 31, 511CrossRefGoogle Scholar
Yonekura, N., Gebauer, C., et al. (1999). “A crossed molecular beam apparatus using high-resolution ion imaging.” Rev. Sci. Instrum. 70, 3265CrossRefGoogle Scholar
Yoshihara, K. (1999). “Ultrafast intermolecular electron transfer in solution.” Adv. Chem. Phys. 107, 371Google Scholar
Yurovsky, V. A. and Ben-Reuven, A. (1998). “Channel interference in optical collisions of cold atom beams.” J. Phys. Chem. A 102, 9476CrossRefGoogle Scholar
Zaera, F. (2002). “Infrared and molecular beam studies of chemical reactions on solid surfaces.” Int. Rev. Phys. Chem. 21, 433CrossRefGoogle Scholar
Zare, R. N. (1972). “Photoejection dynamics.” Mol. Photochem. 4, 1Google Scholar
Zare, R. N. (1982). “Optical preparation of aligned reagents.” Ber. Bunsenges. Phys. Chem. 86, 422CrossRefGoogle Scholar
Zare, R. N. (1988). Angular Momentum. New York, Wiley-Interscience
Zare, R. N. (1998). “Laser control of chemical reactions.” Science 279, 1875CrossRefGoogle ScholarPubMed
Zare, R. N. and Bernstein, R. B. (1980). “State-to-state reaction dynamics.” Phys. Today 33, 43CrossRefGoogle Scholar
Zare, R. N. and Dagdigian, P. J. (1974). “Tunable laser fluorescence method for product state analysis.” Science 185, 739CrossRefGoogle ScholarPubMed
Zare, R. N. and Herschbach, D. R. (1963). “Doppler line shape of atomic fluorescence excited by molecular photodissociation.” Proc. IEEE 51, 173CrossRefGoogle Scholar
Zewail, A. H. (1980). “Laser-selective chemistry – is it possible?Phys. Today 33, 27CrossRefGoogle Scholar
Zewail, A. H. (1988). “Laser femtochemistry.” Science 242, 1645CrossRefGoogle ScholarPubMed
Zewail, A. H. (1994). Ultrafast Dynamics of the Chemical Bond. Singapore, World Scientific
Zewail, A. H. (1996). “Femtochemistry: recent progress in studies of dynamics and control of reactions and their transition states.” J. Phys. Chem. 100, 12 701CrossRefGoogle Scholar
Zewail, A. H. (2000). “Femtochemistry: atomic-scale dynamics of the chemical bond.” J. Phys. Chem. A 104, 5660CrossRefGoogle Scholar
Zewail, A. H. (2001). “Chemistry at the uncertainty limit.” Angew. Chem.-Int. Ed. Engl. 40, 43713.0.CO;2-I>CrossRefGoogle ScholarPubMed
Zewail, A. H. and Bernstein, R. B. (1988). “Special report – real-time laser femtochemistry – viewing the transition from reagents to products.” Chem. Eng. News 66, 24CrossRefGoogle Scholar
Zhang, D. H., Collins, M. A., et al. (2000). “First-principles theory for the H + H2O, D2O reactions.” Science 290, 961CrossRefGoogle Scholar
Zhang, D. H., Yang, M., et al. (2002). “Probing the transition state via photoelectron and photodetachment spectroscopy of H3O-.” Proc. Natl. Acad. Sci. USA 99, 11 579CrossRefGoogle Scholar
Zhang, J. and R. E. Wyatt (eds.) (1996). Dynamics of Molecules and Chemical Reactions. New York, Marcel Dekker
Zhang, J. Z. H. (1999). Theory and Application of Quantum Molecular Dynamics. Singapore, World Scientific
Zhong, Q. and Castleman, J. A. W. (2000). “An ultrafast glimpse of cluster solvation effects on reaction dynamics.” Chem. Rev. 100, 4039CrossRefGoogle ScholarPubMed
Zhu, C., Teranishi, Y., et al. (2001). “Nonadiabatic transitions due to curve crossings: complete solutions of the Landau–Zener–Stueckelberg problems and their applications.” Adv. Chem. Phys. 117, 127Google Scholar
Zhu, L., Kleiman, V., et al. (1995). “Coherent laser control of the product distribution obtained in the photoexcitation of HI.” Science 270, 77CrossRefGoogle Scholar
Zhu, L., Sage, J. T., et al. (1994). “Observation of coherent reaction dynamics in heme-proteins.” Science 266, 629CrossRefGoogle ScholarPubMed
Zimmerman, H. E. (1971). “Mobius–Huckel concept in organic chemistry – application to organic molecules and reactions.” Acc. Chem. Res. 4, 272CrossRefGoogle Scholar
Zimmt, M. B. and Waldeck, D. H. (2003). “Exposing the solvent's role in electron transfer reactions: tunneling pathways and solvation.” J. Phys. Chem. 107, 3580CrossRefGoogle Scholar
Zwier, T. S. (1996). “The spectroscopy of solvation in hydrogen-bonded aromatic clusters.” Ann. Rev. Phys. Chem. 47, 205CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Raphael D. Levine, Hebrew University of Jerusalem
  • Book: Molecular Reaction Dynamics
  • Online publication: 18 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511614125.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Raphael D. Levine, Hebrew University of Jerusalem
  • Book: Molecular Reaction Dynamics
  • Online publication: 18 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511614125.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Raphael D. Levine, Hebrew University of Jerusalem
  • Book: Molecular Reaction Dynamics
  • Online publication: 18 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511614125.014
Available formats
×