Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-09-11T15:19:14.089Z Has data issue: false hasContentIssue false

Dynamics of H2 Cool Fronts in the Primordial Gas

from 4 - Extragalactic and Cosmology

Published online by Cambridge University Press:  04 August 2010

M. Ibanez
Affiliation:
Centro de Astrofísica Teórica, Facultad de Ciencias, Universidad de Los Andes. Apartado Postal No 26, IPOSTEL, La Hechicera, Mérida, Venezuela
M. Bessega
Affiliation:
Centro de Astrofísica Teórica, Facultad de Ciencias, Universidad de Los Andes. Apartado Postal No 26, IPOSTEL, La Hechicera, Mérida, Venezuela
F. Combes
Affiliation:
Observatoire de Paris, DEMIRM
G. Pineau des Forets
Affiliation:
Observatoire de Paris de Meudon, DAEC
Get access

Summary

Cool fronts originated by H2 formation and supported by non saturated thermal conduction in the pregalactic gas, are analyzed. The pressure (p2), number density(n2), temperature (T2) and flow velocity (v2) behind the front are found as functions of the temperature ahead the cool front T1 and the intake Mach number M1. Compression behind the cool front occur for both, supersonic and subsonic intake flows providing that M1 is larger than a threshold value, the exact value of which depends on T1. But strongly compressed subsonic flows are left for larger values of M1. Quasi-isobaric cool fronts (p2/p1 ≈ 1) occur when the ratio n1/n2 is closed to the maximum value, where the compressional branch just emerges, beyond which the pressure of the flow behind the front increases when n1/n2 decreases, i.e. for denser subsonic flows behind the cool front. Implications of the above results on the formation of cool condensations in the primordial gas are outlined.

Introduction

Previous studies (Field 1965, Yoneyama 1973, Ibáñez & Parravano 1983, Fall & Rees 1985, Corbelli & Ferrara 1995, Puy et al. 1998) have showed that thermal instability can originate cool condensations in hot plasmas. Also it is believed that at large scales such cold structures are the precursors of the gravitational instability, because if a thermal instability is triggered, in cool regions the temperature decreases and the density increases, i.e. the Jeans mass (∼ T3/2ρ−1/2) could decrease below the value of the actual mass and therefore such regions should gravitationally collapse likely forming stars, globular clusters and galaxies.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Dynamics of H2 Cool Fronts in the Primordial Gas
    • By M. Ibanez, Centro de Astrofísica Teórica, Facultad de Ciencias, Universidad de Los Andes. Apartado Postal No 26, IPOSTEL, La Hechicera, Mérida, Venezuela, M. Bessega, Centro de Astrofísica Teórica, Facultad de Ciencias, Universidad de Los Andes. Apartado Postal No 26, IPOSTEL, La Hechicera, Mérida, Venezuela
  • Edited by F. Combes, Observatoire de Paris, DEMIRM, G. Pineau des Forets, Observatoire de Paris de Meudon, DAEC
  • Book: Molecular Hydrogen in Space
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511564635.041
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Dynamics of H2 Cool Fronts in the Primordial Gas
    • By M. Ibanez, Centro de Astrofísica Teórica, Facultad de Ciencias, Universidad de Los Andes. Apartado Postal No 26, IPOSTEL, La Hechicera, Mérida, Venezuela, M. Bessega, Centro de Astrofísica Teórica, Facultad de Ciencias, Universidad de Los Andes. Apartado Postal No 26, IPOSTEL, La Hechicera, Mérida, Venezuela
  • Edited by F. Combes, Observatoire de Paris, DEMIRM, G. Pineau des Forets, Observatoire de Paris de Meudon, DAEC
  • Book: Molecular Hydrogen in Space
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511564635.041
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Dynamics of H2 Cool Fronts in the Primordial Gas
    • By M. Ibanez, Centro de Astrofísica Teórica, Facultad de Ciencias, Universidad de Los Andes. Apartado Postal No 26, IPOSTEL, La Hechicera, Mérida, Venezuela, M. Bessega, Centro de Astrofísica Teórica, Facultad de Ciencias, Universidad de Los Andes. Apartado Postal No 26, IPOSTEL, La Hechicera, Mérida, Venezuela
  • Edited by F. Combes, Observatoire de Paris, DEMIRM, G. Pineau des Forets, Observatoire de Paris de Meudon, DAEC
  • Book: Molecular Hydrogen in Space
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511564635.041
Available formats
×