Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-18T11:52:06.983Z Has data issue: false hasContentIssue false

8 - Large molecules and small grains in astrophysics

Published online by Cambridge University Press:  10 December 2009

Stephen H. Lepp
Affiliation:
Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA
T. W. Hartquist
Affiliation:
Max-Planck-Institut für Astrophysik, Garching, Germany
Get access

Summary

Introduction

There is an increasing body of evidence for a population of large molecules in the interstellar medium. Large molecules have been suggested as the source of near infrared continuum radiation and the near infrared emission bands observed in reflection nebula, planetary nebula, HII regions and active galaxies (Duley and Williams 1981, Léger and Puget 1984, Allamandola, Tielens and Barker 1985, d'Hendecourt et al. 1986, Barker, Allamandola and Tielens 1987). Large molecules have also been proposed as the carriers of the diffuse interstellar bands (vander Zwet and Allamandola 1985, Léger and d'Hendecourt 1985, Crawford, Tielens and Allamandola 1985). The large molecules proposed have between 30 and 100 atoms with suggested abundances in the range 10−7−10−6 relative to hydrogen.

Mathis, Rumpl and Nordsieck (1977; MRN) determined a size distribution for grains that would fit the extinction measured to many sources. However, existing extinction measurements do not extend far enough into the ultraviolet to infer the population of the smallest grains. An extrapolation of the MRN distribution to very small grains having between 30 and 100 atoms gives an abundance roughly the same as that proposed for the large molecules, suggesting that the large molecules may be an extension of the interstellar grain distribution.

It appears that a population of small grains or large molecules exists in much of the interstellar medium. We will use the terms large molecules and small grains interchangeably to refer to clusters of between 30 and 100 atoms.

Type
Chapter
Information
Molecular Astrophysics
A Volume Honouring Alexander Dalgarno
, pp. 148 - 156
Publisher: Cambridge University Press
Print publication year: 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×