Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-17T13:41:34.448Z Has data issue: false hasContentIssue false

2 - Sensory ecology and perceptual allocation: new prospects for neural networks

from Part I - General themes

Published online by Cambridge University Press:  05 July 2011

Steven M. Phelps
Affiliation:
University of Florida
Colin R. Tosh
Affiliation:
University of Leeds
Graeme D. Ruxton
Affiliation:
University of Glasgow
Get access

Summary

Introduction

All of animal behaviour can be considered a series of choices – at any given moment an animal must decide whether to mate, eat, sleep, fight or simply rest. Such decisions require estimates of the immediate environment, and despite the diversity of those estimates, they are all carried out by sensory systems and the neural functions contingent on them. This functional diversity is central to the concept of sensory drive (Endler, 1992; Figure 2.1), which notes that animal mating, foraging and other activities are evolutionarily coupled through their shared dependence on sensory systems and local environments. In light of the many demands made of a sensory system, what does it mean to design one well?

It is often useful to consider how an ideal receiver would perform on a given task. Aside from the potentially conflicting demands posed by different aspects of one's environment, there are additional reasons to think that such an approach may not be complete. The climb to a global optimum can be a tortuous one, complicated by genetic drift, allelic diversity and phylogenetic history. Analytic models often focus on defining the best possible performance and neglect the existence of alternative local optima, or the ability to arrive at such optima through evolutionary processes. In sexual selection, researchers have suggested pleiotropy in sensory systems may be one key feature that shapes the direction of evolution (Kirkpatrick & Ryan, 1991).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ames, A. 2000. CNS energy metabolism as related to function. Brain Res Rev 34, 42–68.CrossRefGoogle Scholar
Bao, S. W., Chan, W. T. & Merzenich, M. M. 2001. Cortical remodelling induced by activity of ventral tegmental dopamine neurons. Nature 412, 79–83.CrossRefGoogle ScholarPubMed
Basolo, A. 1990. Female preference predates the evolution of the sword in swordtails. Science 250, 808–810.CrossRefGoogle Scholar
Bear, M. F., Cooper, L. N. & Ebner, F. F. 1987. A physiological basis for a theory of synapse modification. Science 237, 42–48.CrossRefGoogle ScholarPubMed
Bernard, G. D. & Remington, C. L. 1991. Colour-vision in Lycaena butterflies – spectral tuning of receptor arrays in relation to behavioural ecology. Proc Natl Acad Sci 88, 2783–2787.CrossRefGoogle Scholar
Bradbury, J. W. & Vehrencamp, S. L. 1998. Principles of Animal Communication. Sinauer Associates.Google Scholar
Bradbury, J. W. & Vehrencamp, S. L. 2000. Economic models of animal communications. Animal Behaviour 59, 259–268.CrossRefGoogle Scholar
Bruns, V. & Schmieszek, E. 1980. Cochlear innervation in the greater horseshoe bat – demonstration of an acoustic fovea. Hearing Res 3, 27–43.CrossRefGoogle ScholarPubMed
Capranica, R. R., Frishkopf, L. S. & Nevo, E. 1973. Encoding of geographic dialects in the auditory system of the cricket frog. Science 182, 1272–1275.CrossRefGoogle ScholarPubMed
Capranica, R. R. & Moffat, A. J. M. 1983. Neurobehavioral correlates of sound communication in anurans. In Advances in Vertebrate Neuroethology (eds Ewert, J. P., Capranica, R. R. & Ingle, D. J.), pp. 701–730. Plenum Press.Google Scholar
Carleton, K. L. & Kocher, T. D. 2001. Cone opsin genes of African cichlid fishes: Tuning spectral sensitivity by differential gene expression. Mol Biol Evol 18, 1540–1550.CrossRefGoogle ScholarPubMed
Catania, K. C. 2005. Evolution of sensory specializations in insectivores. Anat Rec 287A, 1038–1050.CrossRefGoogle Scholar
Catania, K. C. & Kaas, J. H. 1997. Somatosensory fovea in the star-nosed mole: behavioural use of the star in relation to innervation patterns and cortical representation. J Comp Neurol 387, 215–233.3.0.CO;2-3>CrossRefGoogle Scholar
Catania, K. C. & Remple, F. E. 2005. Asymptotic prey profitability drives star-nosed moles to the foraging speed limit. Nature 433, 519–522.CrossRefGoogle ScholarPubMed
Cheroske, A. G. & Cronin, T. W. 2005. Variation in stomatopod (Gonodactylus smithii) colour signal design associated with organismal condition and depth. Brain Behav Evol 66, 99–113.CrossRefGoogle ScholarPubMed
Clarke, D. D. & Sokoloff, L. 1999. Circulation and energy metabolism of the brain. In Basic Neurochemistry: Molecular, Cellular and Medical Aspects (eds Siegel, G. J., Agranoff, B. W., Albers, R. W., Fisher, S. K. & Uhler, M. D.), pp. 637–669. Lippincott-Raven.Google Scholar
Covey, E. 2005. Neurobiological specializations in echolocating bats. Anat Rec 287A, 1103–1116.CrossRefGoogle Scholar
Cummings, M. E. 2004. Modelling divergence in luminance and chromatic detection performance across measured divergence in surfperch (Embiotocidae) habitats. Vision Res 44, 1127–1145.CrossRefGoogle ScholarPubMed
Darwin, C. 1872. The Expression of Emotions in Man and Animals. (3rd Edn, 1998, ed. Ekman, P..) Oxford University Press.CrossRefGoogle Scholar
Dooling, R. J., Mulligan, J. A. & Miller, J. D. 1971. Auditory sensitivity and song spectrum in the common canary (Serinus canaries). J Acoustic Soc Am 50, 700–709.CrossRefGoogle Scholar
Dominy, N. J. & Lucas, P. W. 2004. Significance of colour, calories, and climate to the visual ecology of catarrhines. Am J Primatol 62, 189–207.CrossRefGoogle ScholarPubMed
Dusenberry, D. B. 1992. Sensory Ecology: How Organisms Acquire and Respond to Information. W. H. Freeman and Company.Google Scholar
Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B. & Taub, E. 1995. Increased cortical representation of the fingers of the left hand in string playersScience 270, 305–307.CrossRefGoogle ScholarPubMed
Elman, J. L. 1990. Finding structure in time. Cogn Sci 14, 179–211.CrossRefGoogle Scholar
Endler, J. A. 1992. Signals, signal conditions, and the direction of evolution. Am Naturalist 139, S125–S153.CrossRefGoogle Scholar
Endler, J. A. 1993. The colour of light in forests and its implications. Ecol Monogr 63, 1–27.CrossRefGoogle Scholar
Enquist, M. & Arak, A. 1992. Symmetry, beauty and evolution. Nature 372, 169–172.CrossRefGoogle Scholar
Enquist, M. & Arak, A, 1993. Selection of exaggerated male traits by female aesthetic senses. Nature 361, 446–448.CrossRefGoogle ScholarPubMed
Feldman, D. E. & Brecht, M. 2005. Map plasticity in somatosensory cortex. Science 310, 810–815.CrossRefGoogle ScholarPubMed
Frishkopf, L. S., Capranica, R. R. & Goldstein, M. H. 1968. Neural coding in bullfrogs auditory system – a teleological approach. Proc Inst Electric Electron Eng 56, 969–983.CrossRefGoogle Scholar
Fuller, R. C., Carleton, K. L., Fadool, J. M., Spady, T. C. & Travis, J. 2004. Population variation in opsin expression in the bluefin killifish, Lucania goodei: a real-time PCR study. J Comp Physiol A 190, 147–154.CrossRefGoogle ScholarPubMed
Fuller, R. C., Carleton, K. L., Fadool, J. M., Spady, T. C. & Travis, J. 2005. Genetic and environmental variation in the visual properties of bluefin killifish, Lucania goodie. J Evol Biol 18, 516–523.CrossRefGoogle ScholarPubMed
Fuller, R. C., Fleishman, L. J., Leal, M., Travis, J. & Loew, E. 2003. Intraspecific variation in retinal cone distribution in the bluefin killifish, Lucania goodie. J Comp Physiol A 189, 609–616.CrossRefGoogle ScholarPubMed
Gao, E. Q. & Suga, N. 2000. Experience-dependent plasticity in the auditory cortex and the inferior colliculus of bats: role of the corticofugal system. Proc Natl Acad Sci 97, 8081–8086.CrossRefGoogle ScholarPubMed
Gardener, E. P. & Martin, J. H. 2000. Coding of sensory information. In Principles of Neural Science, 4th Edn (eds. Kandel, E. R., Schwartz, J. H. & Jessel, T. M.). McGraw-Hill.Google Scholar
Gerhardt, H. C. & Huber, F. 2002. Acoustic Communication in Insects and Anurans: Common Problems and Diverse Solutions. University of Chicago Press.Google Scholar
Gerhardt, H. C. & Schwartz, J. J. 2001. Auditory tuning and frequency preferences in anurans. In Advances in Anuran Communication (ed. Ryan, M. J.), pp. 73–85. Smithsonian Press.Google Scholar
Green, D. M. & Swets, J. A. 1966. Signal Detection Theory and Psychophysics. Wiley.Google Scholar
Halstenberg, S., Lindgren, K. M., Samagh, S. P. S.et al. 2005. Diurnal rhythm of cone opsin expression in the teleost fish Haplochromis burtoni. Vis Neurosci 22, 135–141.CrossRefGoogle ScholarPubMed
Haykin, S. 1994. Neural Networks: A Comprehensive Foundation. Macmillan Press.Google Scholar
Hebb, D. O. 1949. The Organization of Behaviour: A Neuropsychological Theory. Wiley.Google Scholar
Hurd, P. L., Wachtmeister, C.-A. & Enquist, M. 1995. Darwin's principle of thesis and antithesis revisited: a role for perceptual biases in the evolution of intraspecific signals. Proc R Soc B 259, 201–205.CrossRefGoogle Scholar
Jacobs, G. H. & Deegan, J. F. 2005. Polymorphic New World monkeys with more than three M/L cone types. J Optical Soc Am A 22, 2072–2080.CrossRefGoogle ScholarPubMed
Jenkins, W. M., Merzenich, M. M., Ochs, M. T., Allard, T. & Guicrobles, E. 1990. Functional reorganization of primary somatosensory cortex in adult owl monkeys after behaviorally controlled tactile stimulation. J. Neurophysiol 63, 82–104.CrossRefGoogle ScholarPubMed
Johnstone, R. A. 1994. Female preferences for symmetric males as a by-product of selection for mate recognition. Nature 372, 172–175.CrossRefGoogle Scholar
Kaas, J. H., Nelson, R. J., Sur, M., Lin, C. S. & Merzenich, M. M. 1979. Multiple representations of the body within the primary somatosensory cortex of primates. Science 204, 521–523.CrossRefGoogle ScholarPubMed
Kilgard, M. P. & Merzenich, M. M. 1998. Cortical map reorganization enabled by nucleus basalis activity. Science 279, 1714–1718.CrossRefGoogle ScholarPubMed
Kirkpatrick, M. & Ryan, M. J. 1991. The evolution of mating preferences and the paradox of the lek. Nature 350, 33–38.CrossRefGoogle Scholar
Kohonen, T. 1982. Analysis of a simple self-organizing process. Biol Cybernet 44, 135–140.CrossRefGoogle Scholar
Kohonen, T. 2003. Self-organized maps of sensory events. Phil Trans R Soc A 361, 1177–1186.CrossRefGoogle Scholar
Kohonen, T. & Hari, R. 1999. Where the abstract feature maps of the brain might come from. Trends Neurosci 22, 135–139.CrossRefGoogle Scholar
Konishi, M. 1969. Hearing, single-unit analysis, and vocalizations in songbirds. Science 166, 1178–1181.CrossRefGoogle ScholarPubMed
Koppl, C., Gleich, O. & Manley, G. A. 1993. An auditory fovea in the barn owl cochlea. J Comp Physiol A 171, 695–704.CrossRefGoogle Scholar
Laughlin, S. B., Steveninck, R. R. D. & Anderson, J. C. 1998. The metabolic cost of neural information. Nat Neurosci 1, 36–41.CrossRefGoogle ScholarPubMed
Lucas, P. W., Dominy, N. J., Riba-Hernandez, P.et al. 2003. Evolution and function of routine trichromatic vision in primates. Evolution 57, 2636–2643.CrossRefGoogle ScholarPubMed
Lunau, K., Wacht, S. & Chittka, L. 1996. Colour choices of naive bumble bees and their implications for colour perception. J Comp Physiol A 178, 477–489.CrossRefGoogle Scholar
Lythgoe, J. N. & Partridge, J. C. 1991. The modelling of optimal visual pigments of dichromatic teleosts in green coastal waters. Vision Res 31, 361–371.CrossRefGoogle ScholarPubMed
Machens, C. K., Stemmler, M. B., Prinz, P.et al. 2001. Representation of acoustic communication signals by insect auditory receptor neurons. J Neurosci 21, 3215–3227.CrossRefGoogle ScholarPubMed
Marshall, J. C., Woolsey, C.N. & Bard, P. 1941. Observations on the cortical somatic sensory mechanisms of cat and monkey. J Neurophysiol 4, 1–24.CrossRefGoogle Scholar
Meyer, J. & Elsner, N. 1996. How well are frequency sensitivities of grasshopper ears tuned to species-specific song spectra?J Exp Biol 199, 1631–1642.Google ScholarPubMed
Mitchell, M. 1996. An Introduction to Genetic Algorithms. MIT Press.Google Scholar
Mogilner, A., Grossman, J. A. L., Ribary, U.et al. 1993. Somatosensory cortical plasticity in adult humans revealed by magnetoencephalography. Proc Natl Acad Sci 90, 3593–3597.CrossRefGoogle ScholarPubMed
Morton, E. 1975. Ecological sources of selection on avian sounds. Am Naturalist 109, 17–34.CrossRefGoogle Scholar
Nilsson, G. E. 1996. Brain and body oxygen requirements of Gnathonemus petersii, a fish with an exceptionally large brain. J Exp Biol 199, 603–607.Google ScholarPubMed
Osorio, D., Smith, A. C., Vorobyev, M. & Buchanan-Smith, H. M. 2004. Detection of fruit and the selection of primate visual pigments for colour vision. Am Naturalist 164, 696–708.CrossRefGoogle Scholar
Osorio, D. & Vorobyev, M. 2005. Photoreceptor spectral sensitivities in terrestrial animals: adaptations for luminance and colour vision. Proc R Soc B 272, 1745–1752.CrossRefGoogle ScholarPubMed
Phelps, S. M. 2001. History's lessons: a neural network approach to the evolution of animal communication. In Advances in Anuran Communication (ed. Ryan, M. J.), pp. 167–180. Smithsonian Press.Google Scholar
Phelps, S. M. & Ryan, M. J. 1998. Neural networks predict the response biases of female túngara frogs. Proc R Soc B 265, 279–285.CrossRefGoogle ScholarPubMed
Phelps, S. M. & Ryan, M. J. 2000. History influences signal recognition: neural network models of túngara frogs. Proc R Soc B 267, 1633–1639.CrossRefGoogle ScholarPubMed
Phelps, S. M., Ryan, M. J. & Rand, A. S. 2001. Vestigial preference functions in neural networks and túngara frogs. Proc Natl Acad Sci 98, 13161–13166.CrossRefGoogle ScholarPubMed
Rasmussen, T. & Penfield, W. 1947. The human sensorimotor cortex as studied by electrical stimulation. Federation Proc 6, 184–185.Google ScholarPubMed
Rodd, F. H., Hughes, K. A., Grether, G. F. & Baril, C. T. 2002. A possible non-sexual origin of mate preference: are male guppies mimicking fruit?Proc R Soc B 269, 475–481.CrossRefGoogle ScholarPubMed
Ryan, M. J. 1990. Sexual selection, sensory systems and sensory exploitation. Oxford Surv Evol Biol 7, 157–195.Google Scholar
Ryan, M. J. & Brenowitz, E. A. 1985. The role of body size, phylogeny and ambient noise in the evolution of bird song. Am Naturalist 126, 87–100.CrossRefGoogle Scholar
Ryan, M. J., Cocroft, R. B. & Wilczynski, W. 1990a. The role of environmental selection in intraspecific divergence of mate recognition signals in the cricket frog, Acris crepitans. Evolution 44, 1869–1872.CrossRefGoogle ScholarPubMed
Ryan, M. J., Fox, J. H., Wilczynski, W. & Rand, A. S. 1990b. Sexual selection for sensory exploitation in the frogPhysalaemus pustulosus. Nature 343, 66–67.CrossRefGoogle ScholarPubMed
Ryan, M. J., Perrill, S. A. & Wilczynski, W. 1992. Auditory tuning and call frequency predict population-based mating preferences in the cricket frog, Acris crepitansAm Naturalist 139, 1370–1383.CrossRefGoogle Scholar
Ryan, M. J. & Rand, A. S. 1995. Female responses to ancestral advertisement calls in túngara frogs. Science 269, 390–392.CrossRefGoogle ScholarPubMed
Schul, J. & Patterson, A. C. 2003. What determines the tuning of hearing organs and the frequency of calls? A comparative study in the katydid genus Neoconocephalus (Orthoptera, Tettigoniidae). J Exp Biol 206, 141–152.CrossRefGoogle Scholar
Seehausen, O., Alphen, J. J. M. & Witte, F. 1997. Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277, 1808–1811.CrossRefGoogle Scholar
Sisneros, J. A., Forlano, P. M., Deitcher, D. L. & Bass, A. H. 2004. Steroid-dependent auditory plasticity leads to adaptive coupling of sender and receiver. Science 305, 404–407.CrossRefGoogle ScholarPubMed
Spady, T. C., Seehausen, O., Loew, E. R.et al. 2005. Adaptive molecular evolution in the opsin genes of rapidly speciating cichlid species. Mol Biol Evol 22, 1412–1422.CrossRefGoogle ScholarPubMed
Spaethe, J., Tautz, J. & Chittka, L. 2001. Visual constraints in foraging bumblebees: flower size and colour affect search time and flight behaviour. Proc Natl Acad Sci 98, 3898–3903.CrossRefGoogle Scholar
Sumner, P. & Mollon, J. D. 2000. Catarrhine photopigments are optimized for detecting targets against a foliage background. J Exp Biol 203, 1963–1986.Google ScholarPubMed
Sun, L. X., Wilczynski, W., Rand, A. S. & Ryan, M. J. 2000. Trade-off in short- and long-distance communication in tungara (Physalaemus pustulosus) and cricket (Acris crepitans) frogs. Behav Ecol 11, 102–109.CrossRefGoogle Scholar
Surridge, A. K., Osorio, D. & Mundy, N. I. 2003. Evolution and selection of trichromatic vision in primates. Trends Ecol Evol 18, 198–205.CrossRefGoogle Scholar
Terai, Y., Mayer, W. E., Klein, J., Tichy, H. & Okada, N. 2002. The effect of selection on a long wavelength-sensitive (LWS) opsin gene of Lake Victoria cichlid fishes. Proc Natl Acad Sci 99, 15501–15506.CrossRefGoogle ScholarPubMed
Tinbergen, N. 1951. The Study of Instinct. Oxford University Press.Google Scholar
Vater, M. 1982. Single unit responses in cochlear nucleus of horseshoe bats to sinusoidal frequency and amplitude modulated signals. J Comp Physiol 149, 369–388.CrossRefGoogle Scholar
Waser, P. M. & Brown, C. H. 1984. Is there a sound window for primate communication?Behav Ecol Sociobiol 15, 73–76.CrossRefGoogle Scholar
Waser, P. M. & Waser, M. S. 1977. Experimental studies of primate vocalization – specializations for long-distance propagation. Z Tierpsychol 43, 239–263.CrossRefGoogle Scholar
Welker, W.I. & Campos, G. B. 1963. Physiological significance of sulci in somatic sensory cerebral cortex in mammals of family Procyonidae. J Comp Neurol 120, 19–31.CrossRefGoogle ScholarPubMed
Welker, W. I. & Seidenstein, S. 1959. Somatic sensory representation in the cerebral cortex of the racoon (Procyon lotor). J Comp Neurol 111, 469–501.CrossRefGoogle Scholar
Wilczynski, W., Rand, A. S. & Ryan, M. J. 2001. Evolution of calls and auditory tuning in the Physalaemus pustulosus species group. Brain, Behav Evol 58, 137–151.CrossRefGoogle ScholarPubMed
Wilczynski, W., Keddy-Hector, A. C. & Ryan, M. J. 1992. Call patterns and basilar papilla tuning in cricket frogs.1. Differences among populations and between sexes. Brain Behav Evol 39, 229–237.CrossRefGoogle Scholar
Wiley, R. H. & Richards, D. G. 1978. Physical constraints on acoustic communication in the atmosphere: implications for the evolution of animal vocalization. Behav Ecol Sociobiol 3, 69–94.CrossRefGoogle Scholar
Wiley, R. H. & Richards, D. G. 1982. Adaptations for acoustic communication in birds: sound transmission and signal detection. In Acoustic Communication in Birds, Vol. I (eds. Kroodsma, D., Miller, E. H. & Ouellet, H.), pp. 131–181. Academic Press.Google Scholar
Witte, K., Farris, H. E., Ryan, M. J. & Wilczynski, W. 2005. How cricket frog females deal with a noisy world: habitat-related differences in auditory tuning. Behav Ecol 16, 571–579.CrossRefGoogle Scholar
Wyszecki, G. & Stiles, W. S. 1982. Colour Science: Concepts and Methods, Quantitative Data and Formulae. Wiley.Google Scholar
Zahavi, A. 1975. Mate selection: a selection for a handicap. J Theor Biol 53, 205–214.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×