Skip to main content Accessibility help
×
Hostname: page-component-6d856f89d9-xkcpr Total loading time: 0 Render date: 2024-07-16T06:04:59.958Z Has data issue: false hasContentIssue false

3 - Cultivation and Study of Biofilm Communities

Published online by Cambridge University Press:  24 November 2009

Hilary M. Lappin-Scott
Affiliation:
University of Exeter
J. William Costerton
Affiliation:
Montana State University
Get access

Summary

The need for laboratory studies of biofilm communities

If microbial ecology is to move forward, it must go beyond the reduction of the complexities of bacteria into merely isolated cell lines, enzymes, and genetic sequences. A century of pure culture studies has provided extremely detailed information on the biochemistry, physiology and genetics of bacteria. What remains to be determined is how they function as successful members of interacting communities in biofilms and how microbial communities function as components of the environment.

Filling this gap in knowledge involves more than the in situ enumeration of cells, molecules, and genetic sequences. It requires that microbial communities be considered as functional units of ecological activity. Individual microorganisms are often tightly coupled with other community members through a complex network of interactions. The genetic programming of each species may be considered to be a reproductive strategy formulated over 2.5 billion years of natural selection, and intricately intertwined with the survival of other organisms (Margulis 1981). Consequently, the most rigorous measure of understanding must involve not only the cultivation of isolated cell lines, but also the successful cultivation and characterization of dynamic microbial communities, complete with their predators and parasites.

End of the pure culture era

The primary axiom of bacteriology is that organisms must be isolated prior to their identification and study, and prior to the description of new species (Koch 1881, 1884). This axiom is so pervasive that it impacts protozoology, mycology and algology as well as bacteriology.

Type
Chapter
Information
Microbial Biofilms , pp. 64 - 79
Publisher: Cambridge University Press
Print publication year: 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×