Skip to main content Accessibility help
×
Hostname: page-component-594f858ff7-x2rdm Total loading time: 0 Render date: 2023-06-09T19:34:16.160Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "corePageComponentUseShareaholicInsteadOfAddThis": true, "coreDisableSocialShare": false, "useRatesEcommerce": true } hasContentIssue false

15 - Ordinal longitudinal data analysis

Published online by Cambridge University Press:  17 August 2009

Jacques A. Hagenaars
Affiliation:
Tilburg University
Roland C. Hauspie
Affiliation:
Vrije Universiteit, Amsterdam
Noël Cameron
Affiliation:
Loughborough University
Luciano Molinari
Affiliation:
Kinderspital Zürich
Get access

Summary

Introduction

Growth data and longitudinal data in general are often of an ordinal nature. For example, developmental stages may be classified into ordinal categories and behavioural variables repeatedly measured by discrete ordinal scales. Consider the data set presented in Table 15.1. This table contains information on marijuana use taken from five annual waves (1976–80) of the National Youth Survey (Elliot et al., 1989; Lang et al., 1999). The 237 respondents were 13 years old in 1976. The variable of interest is a trichotomous ordinal variable ‘Marijuana use in the past year’ measured during five consecutive years. There is also information on the gender of the respondents.

Ordinal data like this is often analysed as if it were continuous interval level data, that is, by means of methods that imply linear relationships and normally distributed errors. However, the data in Table 15.1 is essentially categorical and measured at ordinal, and not at interval level. Consequently, a much better way to deal with such an ordinal response variable is to treat it as a categorical variable coming from a multinomial distribution; the ordinal nature of the categories is then taken into account by imposing particular constraints on the odds of responding, i.e. of choosing one category rather than another. As will be further explained below, an ordinal analysis can be based on cumulative, adjacent-categories, or continuation-ratio odds (Agresti, 2002). The constraints are in the form of equality or inequality constraints on one of these types of odds.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×