Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-13T17:20:30.809Z Has data issue: false hasContentIssue false

Section 5 - Medical and Surgical Management of Issues of Male Health

Published online by Cambridge University Press:  06 December 2023

Douglas T. Carrell
Affiliation:
Utah Center for Reproductive Medicine
Alexander W. Pastuszak
Affiliation:
University of Utah
James M. Hotaling
Affiliation:
Utah Center for Reproductive Medicine
Get access
Type
Chapter
Information
Men's Reproductive and Sexual Health Throughout the Lifespan
An Integrated Approach to Fertility, Sexual Function, and Vitality
, pp. 251 - 336
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Krsmanovic, LZ, Hu, L, Leung, PK, Feng, H, Catt, KJ. The hypothalamic GnRH pulse generator: multiple regulatory mechanisms. Trends Endocrinol Metab. 2009;20(8):402408.CrossRefGoogle ScholarPubMed
Dufau, ML, Catt, KJ. Gonadotropin receptors and regulation of steroidogenesis in the testis and ovary. Vitam Horm. 1978;36:461592.Google Scholar
Wahlstrom, T, Huhtaniemi, I, Hovatta, O, Seppala, M. Localization of luteinizing hormone, follicle-stimulating hormone, prolactin, and their receptors in human and rat testis using immunohistochemistry and radioreceptor assay. J Clin Endocrinol Metab. 1983;57(4):825830.CrossRefGoogle ScholarPubMed
Hayes, FJ, Seminara, SB, Decruz, S, Boepple, PA, Crowley, WF, Jr. Aromatase inhibition in the human male reveals a hypothalamic site of estrogen feedback. J Clin Endocrinol Metab. 2000;85(9):30273035.Google Scholar
Morishima, A, Grumbach, MM, Simpson, ER, Fisher, C, Qin, K. Aromatase deficiency in male and female siblings caused by a novel mutation and the physiological role of estrogens. J Clin Endocrinol Metab. 1995;80(12):36893698.Google Scholar
Matsumoto, AM, Bremner, WJ. Modulation of pulsatile gonadotropin secretion by testosterone in man. J Clin Endocrinol Metab. 1984;58(4):609614.Google Scholar
Sheckter, CB, Matsumoto, AM, Bremner, WJ. Testosterone administration inhibits gonadotropin secretion by an effect directly on the human pituitary. J Clin Endocrinol Metab. 1989;68(2):397401.Google Scholar
Anawalt, BD, Bebb, RA, Matsumoto, AM, et al. Serum inhibin B levels reflect Sertoli cell function in normal men and men with testicular dysfunction. J Clin Endocrinol Metab. 1996;81(9):33413345.Google ScholarPubMed
O’Connor, AE, De Kretser, DM. Inhibins in normal male physiology. Semin Reprod Med. 2004;22(3):177185.Google Scholar
Stocco, DM, Clark, BJ. The role of the steroidogenic acute regulatory protein in steroidogenesis. Steroids. 1997;62(1):2936.Google Scholar
Winters, SJ, Troen, P. Testosterone and estradiol are co-secreted episodically by the human testis. J Clin Invest. 1986;78(4):870873.Google Scholar
Axelsson, J, Ingre, M, Akerstedt, T, Holmback, U. Effects of acutely displaced sleep on testosterone. J Clin Endocrinol Metab. 2005;90(8):45304535.CrossRefGoogle ScholarPubMed
Saez, JM. Leydig cells: endocrine, paracrine, and autocrine regulation. Endocr Rev. 1994;15(5):574626.Google Scholar
Jarow, JP, Zirkin, BR. The androgen microenvironment of the human testis and hormonal control of spermatogenesis. Ann N Y Acad Sci. 2005;1061:208220.Google Scholar
Federman, DD. The biology of human sex differences. N Engl J Med. 2006;354(14):15071514.Google Scholar
Russell, DW, Wilson, JD. Steroid 5 alpha-reductase: two genes/two enzymes. Annu Rev Biochem. 1994;63:2561.Google Scholar
Mahendroo, MS, Mendelson, CR, Simpson, ER. Tissue-specific and hormonally controlled alternative promoters regulate aromatase cytochrome P450 gene expression in human adipose tissue. J Biol Chem. 1993;268(26):1946319470.Google Scholar
Dunn, JF, Nisula, BC, Rodbard, D. Transport of steroid hormones: binding of 21 endogenous steroids to both testosterone-binding globulin and corticosteroid-binding globulin in human plasma. J Clin Endocrinol Metab. 1981;53(1):5868.Google Scholar
Mulhall JP, TL, Brannigan, RE, Kurtz, EG, et al. Evaluation and management of testosterone deficiency: AUA guideline. J Urol. 2018;200:423432.CrossRefGoogle ScholarPubMed
Wang, C, Nieschlag, E, Swerdloff, R, et al. Investigation, treatment, and monitoring of late-onset hypogonadism in males: ISA, ISSAM, EAU, EAA, and ASA recommendations. J Androl. 2009;30(1):19.CrossRefGoogle ScholarPubMed
Emmelot-Vonk, MH, Verhaar, HJ, Nakhai-Pour, HR, Grobbee, DE, van der Schouw, YT. Low testosterone concentrations and the symptoms of testosterone deficiency according to the Androgen Deficiency in Ageing Males (ADAM) and Ageing Males’ Symptoms rating scale (AMS) questionnaires. Clin Endocrinol (Oxf). 2011;74(4):488494.CrossRefGoogle Scholar
Zitzmann, M. Pharmacogenetics of testosterone replacement therapy. Pharmacogenomics. 2009;10(8):13411349.CrossRefGoogle ScholarPubMed
Corona, G, Rastrelli, G, Forti, G, Maggi, M. Update in testosterone therapy for men. J Sex Med. 2011;8(3):639654; quiz 655.Google Scholar
Diver, MJ, Imtiaz, KE, Ahmad, AM, Vora, JP, Fraser, WD. Diurnal rhythms of serum total, free and bioavailable testosterone and of SHBG in middle-aged men compared with those in young men. Clin Endocrinol (Oxf). 2003;58(6):710717.CrossRefGoogle ScholarPubMed
Wu, FC, Tajar, A, Beynon, JM, et al. Identification of late-onset hypogonadism in middle-aged and elderly men. N Engl J Med. 2010;363(2):123135.CrossRefGoogle ScholarPubMed
Bhasin, S, Pencina, M, Jasuja, GK, et al. Reference ranges for testosterone in men generated using liquid chromatography tandem mass spectrometry in a community-based sample of healthy nonobese young men in the Framingham Heart Study and applied to three geographically distinct cohorts. J Clin Endocrinol Metab. 2011;96(8):24302439.Google Scholar
Vesper, HW, Bhasin, S, Wang, C, et al. Interlaboratory comparison study of serum total testosterone [corrected] measurements performed by mass spectrometry methods. Steroids. 2009;74(6):498503.CrossRefGoogle ScholarPubMed
Petak, SM, Nankin, HR, Spark, RF, et al. American Association of Clinical Endocrinologists Medical Guidelines for clinical practice for the evaluation and treatment of hypogonadism in adult male patients – 2002 update. Endocr Pract. 2002;8(6):440456.Google Scholar
Mulligan, T, Frick, MF, Zuraw, QC, Stemhagen, A, McWhirter, C. Prevalence of hypogonadism in males aged at least 45 years: the HIM study. Int J Clin Pract. 2006;60(7):762769.CrossRefGoogle ScholarPubMed
Lewis, RW, Mills, TM. Effect of androgens on penile tissue. Endocrine. 2004;23(2–3):101105.CrossRefGoogle ScholarPubMed
Morelli, A, Filippi, S, Mancina, R, et al. Androgens regulate phosphodiesterase type 5 expression and functional activity in corpora cavernosa. Endocrinology. 2004;145(5):22532263.CrossRefGoogle ScholarPubMed
Podlasek, CA, Mulhall, J, Davies, K, et al. Translational perspective on the role of testosterone in sexual function and dysfunction. J Sex Med. 2016;13(8):11831198.Google Scholar
Traish, AM, Park, K, Dhir, V, Kim, NN, Moreland, RB, Goldstein, I. Effects of castration and androgen replacement on erectile function in a rabbit model. Endocrinology. 1999;140(4):18611868.Google Scholar
Davila, HH, Rajfer, J, Gonzalez-Cadavid, NF. Corporal veno-occlusive dysfunction in aging rats: evaluation by cavernosometry and cavernosography. Urology. 2004;64(6):12611266.Google Scholar
Swaab, DF. Sexual differentiation of the brain and behavior. Best Pract Res Clin Endocrinol Metab. 2007;21(3):431444.CrossRefGoogle ScholarPubMed
Azad, N, Pitale, S, Barnes, WE, Friedman, N. Testosterone treatment enhances regional brain perfusion in hypogonadal men. J Clin Endocrinol Metab. 2003;88(7):30643068.CrossRefGoogle ScholarPubMed
Hoffman, RM, Hunt, WC, Gilliland, FD, Stephenson, RA, Potosky, AL. Patient satisfaction with treatment decisions for clinically localized prostate carcinoma: results from the Prostate Cancer Outcomes Study. Cancer. 2003;97(7):16531662.Google Scholar
Potosky, AL, Reeve, BB, Clegg, LX, et al. Quality of life following localized prostate cancer treated initially with androgen deprivation therapy or no therapy. J Natl Cancer Inst. 2002;94(6):430437.Google Scholar
Ng, E, Woo, HH, Turner, S, Leong, E, Jackson, M, Spry, N. The influence of testosterone suppression and recovery on sexual function in men with prostate cancer: observations from a prospective study in men undergoing intermittent androgen suppression. J Urol. 2012;187(6):21622166.Google Scholar
Corona, G, Isidori, AM, Buvat, J, et al. Testosterone supplementation and sexual function: a meta-analysis study. J Sex Med. 2014;11(6):15771592.Google Scholar
Corona, G, Rastrelli, G, Morgentaler, A, Sforza, A, Vannucci, E, Maggi, M. Meta-analysis of results of testosterone therapy on sexual function based on international index of erectile function scores. Eur Urol. 2017;72(6):10001011.Google Scholar
Rastrelli, G, Guaraldi, F, Reismann, Y, et al. Testosterone replacement therapy for sexual symptoms. Sex Med Rev. 2019;7(3):464475.Google Scholar
Maggi, M, Heiselman, D, Knorr, J, Iyengar, S, Paduch, DA, Donatucci, CF. Impact of testosterone solution 2% on ejaculatory dysfunction in hypogonadal men. J Sex Med. 2016;13(8):12201226.CrossRefGoogle ScholarPubMed
Nieschlag, E, Nieschlag, S. ENDOCRINE HISTORY: The history of discovery, synthesis and development of testosterone for clinical use. Eur J Endocrinol. 2019;180(6):R201R212.Google Scholar
Swerdloff, RS, Dudley, RE. A new oral testosterone undecanoate therapy comes of age for the treatment of hypogonadal men. Ther Adv Urol. 2020;12:1756287220937232.Google Scholar
Giagulli, VA, Triggiani, V, Corona, G, et al. Evidence-based medicine update on testosterone replacement therapy (TRT) in male hypogonadism: focus on new formulations. Curr Pharm Des. 2011;17(15):15001511.CrossRefGoogle ScholarPubMed
Banks, WA, Morley, JE, Niehoff, ML, Mattern, C. Delivery of testosterone to the brain by intranasal administration: comparison to intravenous testosterone. J Drug Target. 2009;17(2):9197.Google Scholar
Rogol, AD, Tkachenko, N, Badorrek, P, Hohlfeld, JM, Bryson, N. Phase 1 pharmacokinetics and phase 3 efficacy of testosterone nasal gel in subjects with seasonal allergies. Can Urol Assoc J. 2018;12(7):E349E356.Google Scholar
Zitzmann, M, Nieschlag, E. Hormone substitution in male hypogonadism. Mol Cell Endocrinol. 2000;161(1–2):7388.Google Scholar
Wang, C, Harnett, M, Dobs, AS, Swerdloff, RS. Pharmacokinetics and safety of long-acting testosterone undecanoate injections in hypogonadal men: an 84-week phase III clinical trial. J Androl. 2010;31(5):457465.CrossRefGoogle ScholarPubMed
Kaminetsky, JC, McCullough, A, Hwang, K, Jaffe, JS, Wang, C, Swerdloff, RS. A 52-week study of dose adjusted subcutaneous testosterone enanthate in oil self-administered via disposable auto-injector. J Urol. 2019;201(3):587594.Google Scholar
Snyder, PJ, Peachey, H, Berlin, JA, et al. Effects of testosterone replacement in hypogonadal men. J Clin Endocrinol Metab. 2000;85(8):26702677.Google Scholar
Bhasin, S, Basaria, S. Diagnosis and treatment of hypogonadism in men. Best Pract Res Clin Endocrinol Metab. 2011;25(2):251270.Google Scholar
Wang, C, Swerdloff, RS, Iranmanesh, A, et al. Transdermal testosterone gel improves sexual function, mood, muscle strength, and body composition parameters in hypogonadal men. J Clin Endocrinol Metab. 2000;85(8):28392853.Google Scholar
Carani, C, Scuteri, A, Marrama, P, Bancroft, J. The effects of testosterone administration and visual erotic stimuli on nocturnal penile tumescence in normal men. Horm Behav. 1990;24(3):435441.Google Scholar
Cunningham, GR, Hirshkowitz, M, Korenman, SG, Karacan, I. Testosterone replacement therapy and sleep-related erections in hypogonadal men. J Clin Endocrinol Metab. 1990;70(3):792797.Google Scholar
Isidori, AM, Giannetta, E, Greco, EA, et al. Effects of testosterone on body composition, bone metabolism and serum lipid profile in middle-aged men: a meta-analysis. Clin Endocrinol (Oxf). 2005;63(3):280293.Google Scholar
Srinivas-Shankar, U, Roberts, SA, Connolly, MJ, et al. Effects of testosterone on muscle strength, physical function, body composition, and quality of life in intermediate-frail and frail elderly men: a randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab. 2010;95(2):639650.Google Scholar
Basaria, S, Coviello, AD, Travison, TG, et al. Adverse events associated with testosterone administration. N Engl J Med. 2010;363(2):109122.Google Scholar
Zarrouf, FA, Artz, S, Griffith, J, Sirbu, C, Kommor, M. Testosterone and depression: systematic review and meta-analysis. J Psychiatr Pract. 2009;15(4):289305.CrossRefGoogle ScholarPubMed
Cunningham, GR, Toma, SM. Clinical review: Why is androgen replacement in males controversial? J Clin Endocrinol Metab. 2011;96(1):3852.Google Scholar
Sih, R, Morley, JE, Kaiser, FE, Perry, HM, 3rd, Patrick, P, Ross, C. Testosterone replacement in older hypogonadal men: a 12-month randomized controlled trial. J Clin Endocrinol Metab. 1997;82(6):16611667.Google Scholar
Coviello, AD, Kaplan, B, Lakshman, KM, Chen, T, Singh, AB, Bhasin, S. Effects of graded doses of testosterone on erythropoiesis in healthy young and older men. J Clin Endocrinol Metab. 2008;93(3):914919.Google Scholar
Hanafy, HM. Testosterone therapy and obstructive sleep apnea: is there a real connection? J Sex Med. 2007;4(5):12411246.Google Scholar
Guay, AT, Jacobson, J, Perez, JB, Hodge, MB, Velasquez, E. Clomiphene increases free testosterone levels in men with both secondary hypogonadism and erectile dysfunction: who does and does not benefit? Int J Impot Res. 2003;15(3):156165.Google Scholar
Katz, DJ, Nabulsi, O, Tal, R, Mulhall, JP. Outcomes of clomiphene citrate treatment in young hypogonadal men. BJU Int. 2012;110(4):573578.CrossRefGoogle ScholarPubMed
Krzastek, SC, Sharma, D, Abdullah, N, et al. Long-term safety and efficacy of clomiphene citrate for the treatment of hypogonadism. J Urol. 2019;202(5):10291035.Google Scholar
Wheeler, KM, Sharma, D, Kavoussi, PK, Smith, RP, Costabile, R. Clomiphene citrate for the treatment of hypogonadism. Sex Med Rev. 2019;7(2):272276.Google Scholar
Delemarre, EM, Felius, B, Delemarre-van de Waal, HA. Inducing puberty. Eur J Endocrinol. 2008;159(Suppl. 1):S9S15.Google Scholar
Buchter, D, Behre, HM, Kliesch, S, Nieschlag, E. Pulsatile GnRH or human chorionic gonadotropin/human menopausal gonadotropin as effective treatment for men with hypogonadotropic hypogonadism: a review of 42 cases. Eur J Endocrinol. 1998;139(3):298303.Google Scholar
Raman, JD, Schlegel, PN. Aromatase inhibitors for male infertility. J Urol. 2002;167(2 Pt 1):624629.Google Scholar
Dadhich, P, Ramasamy, R, Scovell, J, Wilken, N, Lipshultz, L. Testosterone versus clomiphene citrate in managing symptoms of hypogonadism in men. Indian J Urol. 2017;33(3):236240.Google Scholar
Ramasamy, R, Masterson, TA, Best, JC, et al. Effect of Natesto on reproductive hormones, semen parameters and hypogonadal symptoms: a single center, open label, single arm trial. J Urol. 2020;204(3):557563.Google Scholar
Kavoussi, PK MG, Gilkey, M, Hunn, C, et al. Converting men from clomiphene citrate to Natesto for hypogonadism improves libido, maintains semen parameters, and reduces estradiol. Urology. 2021;148:141144.Google Scholar
Tanrikut, C, Goldstein, M, Rosoff, JS, Lee, RK, Nelson, CJ, Mulhall, JP. Varicocele as a risk factor for androgen deficiency and effect of repair. BJU Int. 2011;108(9):14801484.Google Scholar
Li, F, Yue, H, Yamaguchi, K, et al. Effect of surgical repair on testosterone production in infertile men with varicocele: a meta-analysis. Int J Urol. 2012;19(2):149154.Google Scholar
Chen, X, Yang, D, Lin, G, Bao, J, Wang, J, Tan, W. Efficacy of varicocelectomy in the treatment of hypogonadism in subfertile males with clinical varicocele: a meta-analysis. Andrologia. 2017;49(10):e12778. https://doi.org/10.1111/and.12778.Google Scholar
Ahmed, AF, Abdel-Aziz, AS, Maarouf, AM, Ali, M, Emara, AA, Gomaa, A. Impact of varicocelectomy on premature ejaculation in varicocele patients. Andrologia. 2015;47(3):276281.Google Scholar
Abdel-Meguid, TA, Farsi, HM, Al-Sayyad, A, Tayib, A, Mosli, HA, Halawani, AH. Effects of varicocele on serum testosterone and changes of testosterone after varicocelectomy: a prospective controlled study. Urology. 2014;84(5):10811087.CrossRefGoogle ScholarPubMed
Zohdy, W, Ghazi, S, Arafa, M. Impact of varicocelectomy on gonadal and erectile functions in men with hypogonadism and infertility. J Sex Med. 2011;8(3):885893.Google Scholar
Najari, BB, Introna, L, Paduch, DA. Improvements in patient-reported sexual function after microsurgical varicocelectomy. Urology. 2017;110:104109.Google Scholar
Huggins, C. Effect of orchiectomy and irradiation on cancer of the prostate. Ann Surg. 1942;115(6):11921200.Google Scholar
Morgentaler, A, Traish, A. The history of testosterone and the evolution of its therapeutic potential. Sex Med Rev. 2020;8(2):286296.Google Scholar
Roddam, AW, Allen, NE, Appleby, P, Key, TJ. Endogenous sex hormones and prostate cancer: a collaborative analysis of 18 prospective studies. J Natl Cancer Inst. 2008;100(3):170183.Google Scholar
Marks, LS, Mazer, NA, Mostaghel, E, et al. Effect of testosterone replacement therapy on prostate tissue in men with late-onset hypogonadism: a randomized controlled trial. JAMA. 2006;296(19):23512361.Google Scholar
Khera, M, Bhattacharya, RK, Blick, G, Kushner, H, Nguyen, D, Miner, MM. Changes in prostate specific antigen in hypogonadal men after 12 months of testosterone replacement therapy: support for the prostate saturation theory. J Urol. 2011;186(3):10051011.Google Scholar
Davidson, E, Morgentaler, A. Testosterone therapy and prostate cancer. Urol Clin North Am. 2016;43(2):209216.Google Scholar
Morgentaler, A, Traish, AM. Shifting the paradigm of testosterone and prostate cancer: the saturation model and the limits of androgen-dependent growth. Eur Urol. 2009;55(2):310320.Google Scholar
Wallis, CJ, Lo, K, Lee, Y, et al. Survival and cardiovascular events in men treated with testosterone replacement therapy: an intention-to-treat observational cohort study. Lancet Diabetes Endocrinol. 2016;4(6):498506.Google Scholar
Thompson, IM, Pauler, DK, Goodman, PJ, et al. Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 ng per milliliter. N Engl J Med. 2004;350(22):22392246.Google Scholar
Salonia, A, Abdollah, F, Capitanio, U, et al. Serum sex steroids depict a nonlinear u-shaped association with high-risk prostate cancer at radical prostatectomy. Clin Cancer Res. 2012;18(13):36483657.CrossRefGoogle ScholarPubMed
San Francisco, IF, Rojas, PA, DeWolf, WC, Morgentaler, A. Low free testosterone levels predict disease reclassification in men with prostate cancer undergoing active surveillance. BJU Int. 2014;114(2):229235.Google Scholar
Leon, P, Seisen, T, Cussenot, O, et al. Low circulating free and bioavailable testosterone levels as predictors of high-grade tumors in patients undergoing radical prostatectomy for localized prostate cancer. Urol Oncol. 2015;33(9):384.e21–27.Google Scholar
Ahlering, TE, My Huynh, L, Towe, M, et al. Testosterone replacement therapy reduces biochemical recurrence after radical prostatectomy. BJU Int. 2020;126(1):9196.Google Scholar
Sarosdy, MF. Testosterone replacement for hypogonadism after treatment of early prostate cancer with brachytherapy. Cancer. 2007;109(3):536541.Google Scholar
Balbontin, FG, Moreno, SA, Bley, E, Chacon, R, Silva, A, Morgentaler, A. Long-acting testosterone injections for treatment of testosterone deficiency after brachytherapy for prostate cancer. BJU Int. 2014;114(1):125130.Google Scholar
Pastuszak, AW, Khanna, A, Badhiwala, N, et al. Testosterone therapy after radiation therapy for low, intermediate and high risk prostate cancer. J Urol. 2015;194(5):12711276.Google Scholar
Kacker, R, Hult, M, San Francisco, IF, et al. Can testosterone therapy be offered to men on active surveillance for prostate cancer? Preliminary results. Asian J Androl. 2016;18(1):1620.CrossRefGoogle ScholarPubMed
Morgentaler, A, Lipshultz, LI, Bennett, R, Sweeney, M, Avila, D, Jr., Khera, M. Testosterone therapy in men with untreated prostate cancer. J Urol. 2011;185(4):12561260.Google Scholar
Debruyne, FM, Behre, HM, Roehrborn, CG, et al. Testosterone treatment is not associated with increased risk of prostate cancer or worsening of lower urinary tract symptoms: prostate health outcomes in the Registry of Hypogonadism in Men. BJU Int. 2017;119(2):216224.Google Scholar
Kohn, TP, Mata, DA, Ramasamy, R, Lipshultz, LI. Effects of testosterone replacement therapy on lower urinary tract symptoms: a systematic review and meta-analysis. Eur Urol. 2016;69(6):10831090.Google Scholar
Yabe, S, Kato, H, Mizukawa, S, et al. Predictive factors for outcomes of patients undergoing endoscopic therapy for bile leak after hepatobiliary surgery. Dig Endosc. 2017;29(3):353361.Google Scholar
LeBrasseur, NK, Lajevardi, N, Miciek, R, Mazer, N, Storer, TW, Bhasin, S. Effects of testosterone therapy on muscle performance and physical function in older men with mobility limitations (the TOM trial): design and methods. Contemp Clin Trials. 2009;30(2):133140.Google Scholar
Vigen, R, O’Donnell, CI, Baron, AE, et al. Association of testosterone therapy with mortality, myocardial infarction, and stroke in men with low testosterone levels. JAMA. 2013;310(17):18291836.Google Scholar
Traish, AM, Guay, AT, Morgentaler, A. Death by testosterone? We think not! J Sex Med. 2014;11(3):624629.Google Scholar
Ho, PM, Baron, AE, Wierman, ME. Deaths and cardiovascular events in men receiving testosterone: reply. JAMA. 2014;311(9):964965.Google Scholar
Finkle, WD, Greenland, S, Ridgeway, GK, et al. Increased risk of non-fatal myocardial infarction following testosterone therapy prescription in men. PLoS ONE. 2014;9(1):e85805.CrossRefGoogle ScholarPubMed
Morgentaler, A, Miner, MM, Caliber, M, Guay, AT, Khera, M, Traish, AM. Testosterone therapy and cardiovascular risk: advances and controversies. Mayo Clin Proc. 2015;90(2):224251.Google Scholar
Ohlsson, C, Barrett-Connor, E, Bhasin, S, et al. High serum testosterone is associated with reduced risk of cardiovascular events in elderly men. The MrOS (Osteoporotic Fractures in Men) study in Sweden. J Am Coll Cardiol. 2011;58(16):16741681.CrossRefGoogle ScholarPubMed
Araujo, AB, Dixon, JM, Suarez, EA, Murad, MH, Guey, LT, Wittert, GA. Clinical review: endogenous testosterone and mortality in men: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2011;96(10):30073019.Google Scholar
Bojesen, A, Juul, S, Gravholt, CH. Prenatal and postnatal prevalence of Klinefelter syndrome: a national registry study. J Clin Endocrinol Metab. 2003;88(2):622626.Google Scholar
Fruhmesser, A, Kotzot, D. Chromosomal variants in Klinefelter syndrome. Sex Dev. 2011;5(3):109123.Google Scholar
Hotaling, JM. Genetics of male infertility. Urol Clin North Am. 2014;41(1):117.Google Scholar
Ross, A, Bhasin, S. Hypogonadism: its prevalence and diagnosis. Urol Clin North Am. 2016;43(2):163176.Google Scholar
Loebenstein, M, Thorup, J, Cortes, D, Clasen-Linde, E, Hutson, JM, Li, R. Cryptorchidism, gonocyte development, and the risks of germ cell malignancy and infertility: a systematic review. J Pediatr Surg. 2020;55(7):12011210.Google Scholar
Rochira, V, Diazzi, C, Santi, D, et al. Low testosterone is associated with poor health status in men with human immunodeficiency virus infection: a retrospective study. Andrology. 2015;3(2):298308.CrossRefGoogle ScholarPubMed
Zaid, MIA, Menendez, AG, Charif, OE, et al. Adverse health outcomes in relationship to hypogonadism (HG) after platinum-based chemotherapy: a multicenter study of North American testicular cancer survivors (TCS). J Clin Oncol. 2017;35(18_suppl):LBA10012LBA10012.Google Scholar
Dode, C, Hardelin, JP. Kallmann syndrome. Eur J Hum Genet. 2009;17(2):139146.Google Scholar
Fechner, A, Fong, S, McGovern, P. A review of Kallmann syndrome: genetics, pathophysiology, and clinical management. Obstet Gynecol Surv. 2008;63(3):189194.Google Scholar
Hardelin, JP, Dode, C. The complex genetics of Kallmann syndrome: KAL1, FGFR1, FGF8, PROKR2, PROK2, et al. Sex Dev. 2008;2(4–5):181193.Google Scholar
Smeets, DF, Hamel, BC, Nelen, MR, et al. Prader-Willi syndrome and Angelman syndrome in cousins from a family with a translocation between chromosomes 6 and 15. N Engl J Med. 1992;326(12):807811.CrossRefGoogle ScholarPubMed
de Vries, F, Bruin, M, Lobatto, DJ, et al. Opioids and their endocrine effects: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2020;105(4):10201029.CrossRefGoogle ScholarPubMed
Rasmussen, JJ, Selmer, C, Ostergren, PB, et al. Former abusers of anabolic androgenic steroids exhibit decreased testosterone levels and hypogonadal symptoms years after cessation: a case-control study. PLoS ONE. 2016;11(8):e0161208.Google Scholar
Buvat, J. Hyperprolactinemia and sexual function in men: a short review. Int J Impot Res. 2003;15(5):373377.Google Scholar
Carter, JN, Tyson, JE, Tolis, G, Van Vliet, S, Faiman, C, Friesen, HG. Prolactin-screening tumors and hypogonadism in 22 men. N Engl J Med. 1978;299(16):847852.Google Scholar
Patel, SS, Bamigboye, V. Hyperprolactinaemia. J Obstet Gynaecol. 2007;27(5):455459.Google Scholar
Corona, G, Monami, M, Rastrelli, G, et al. Testosterone and metabolic syndrome: a meta-analysis study. J Sex Med. 2011;8(1):272283.Google Scholar
Wu, FC, Tajar, A, Pye, SR, et al. Hypothalamic-pituitary-testicular axis disruptions in older men are differentially linked to age and modifiable risk factors: the European Male Aging Study. J Clin Endocrinol Metab. 2008;93(7):27372745.Google Scholar
Feldman, HA, Longcope, C, Derby, CA, et al. Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study. J Clin Endocrinol Metab. 2002;87(2):589598.CrossRefGoogle ScholarPubMed
Fink, HA, Ewing, SK, Ensrud, KE, et al. Association of testosterone and estradiol deficiency with osteoporosis and rapid bone loss in older men. J Clin Endocrinol Metab. 2006;91(10):39083915.Google Scholar
Diem, SJ, Greer, NL, MacDonald, R, et al. Efficacy and safety of testosterone treatment in men: an evidence report for a clinical practice guideline by the American College of Physicians. Ann Intern Med. 2020;172(2):105118.Google Scholar

References

Lu, NZ, Wardell, SE, Burnstein, KL, et al. International Union of Pharmacology. LXV. The pharmacology and classification of the nuclear receptor superfamily: glucocorticoid, mineralocorticoid, progesterone, and androgen receptors. Pharmacol Rev. 2006;58(4):782797.Google Scholar
Mooradian, AD, Morley, JE, Korenman, SG. Biological actions of androgens. Endocr Rev. 1987;8(1):128.Google Scholar
Narayanan, R, Coss, CC, Dalton, JT. Development of selective androgen receptor modulators (SARMs). Mol Cell Endocrinol. 2018;465:134142.Google Scholar
Bhasin, S, Cunningham, GR, Hayes, FJ, et al. Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2010;95(6):25362559.Google Scholar
Solomon, ZJ, Mirabal, JR, Mazur, DJ, et al. Selective androgen receptor modulators: current knowledge and clinical applications. Sex Med Rev. 2019;7(1):8494.CrossRefGoogle ScholarPubMed
Mulhall, JP, Trost, LW, Brannigan, RE, et al. Evaluation and management of testosterone deficiency: AUA guideline. J Urol. 2018;200(2):423432.Google Scholar
Burns, KA, Korach, KS. Estrogen receptors and human disease: an update. Arch Toxicol. 2012;86(10):14911504.Google Scholar
Dhandapani, KM, Brann, DW. Protective effects of estrogen and selective estrogen receptor modulators in the brain. Biol Reprod. 2002;67(5):13791385.Google Scholar
Rodan, GA, Martin, TJ. Therapeutic approaches to bone diseases. Science. 2000;289(5484):15081514.Google Scholar
Charles, D, Barr, W, Bell, ET, Brown, JB, Fotherby, K, Loraine, JA. Clomiphene in the treatment of oligomenorrhea and amenorrhea. Am J Obstet Gynecol. 1963;86:913922.Google Scholar
Zhang, X, Lanter, JC Sui, Z. Recent advances in the development of selective androgen receptor modulators. Expert Opin Ther Pat. 2009;19(9):12391258.Google Scholar
Dalton, JT, Mukherjee, A, Zhu, Z, Kirkovsky, L, Miller, DD. Discovery of nonsteroidal androgens. Biochem Biophys Res Commun. 1998;244(1):14.Google Scholar
Link, JT, Sorensen, B, Patel, J, et al. Antidiabetic activity of passive nonsteroidal glucocorticoid receptor modulators. J Med Chem. 2005:48(16):52955304.Google Scholar
Tabata, Y, Iizuka, Y, Shinei, R, et al. CP8668, a novel orally active nonsteroidal progesterone receptor modulator with tetrahydrobenzindolone skeleton. Eur J Pharmacol. 2003;461(1):7378.Google Scholar
Gao, W, Reiser, PJ, Coss, CC, et al. Selective androgen receptor modulator treatment improves muscle strength and body composition and prevents bone loss in orchidectomized rats. Endocrinology. 2005;146(11):48874897.Google Scholar
Yin, D, He, Y, Perera, MA, et al. Key structural features of nonsteroidal ligands for binding and activation of the androgen receptor. Mol Pharmacol. 2003;63(1):211223.Google Scholar
Srinath, R, Dobs, A. Enobosarm (GTx-024, S-22): a potential treatment for cachexia. Future Oncol. 2014;10(2):187194.Google Scholar
Crawford, J, Prado, CMM, Johnston, MA, et al. Study design and rationale for the phase 3 clinical development program of enobosarm, a selective androgen receptor modulator, for the prevention and treatment of muscle wasting in cancer patients (POWER Trials). Curr Oncol Rep. 2016;18(6):37.Google Scholar
Dalton, JT, Barnette, KG, Bohl, CE, et al. The selective androgen receptor modulator GTx-024 (enobosarm) improves lean body mass and physical function in healthy elderly men and postmenopausal women: results of a double-blind, placebo-controlled phase II trial. J Cachexia Sarcopenia Muscle. 2011;2(3):153161.Google Scholar
Dobs, AS, Boccia, RV, Croot, CC, et al. Effects of enobosarm on muscle wasting and physical function in patients with cancer: a double-blind, randomised controlled phase 2 trial. Lancet Oncol. 2013;14(4):335345.Google Scholar
Kearbey, JD, Gao, W, Narayanan, R, et al. Selective androgen receptor modulator (SARM) treatment prevents bone loss and reduces body fat in ovariectomized rats. Pharm Res. 2007;24(2):328335.Google Scholar
Jones, A, Hwang, DJ, Duke, CD 3rd, et al. Nonsteroidal selective androgen receptor modulators enhance female sexual motivation. J Pharmacol Exp Ther. 2010;334(2):439448.CrossRefGoogle ScholarPubMed
Miner, JN, Chang, W, Chapman, MS, et al. An orally active selective androgen receptor modulator is efficacious on bone, muscle, and sex function with reduced impact on prostate. Endocrinology. 2007;148(1):363373.Google Scholar
Chisamore, MJ, Gentile, MA, Dillon, GM, et al. A novel selective androgen receptor modulator (SARM) MK-4541 exerts anti-androgenic activity in the prostate cancer xenograft R-3327G and anabolic activity on skeletal muscle mass & function in castrated mice. J Steroid Biochem Mol Biol. 2016;163:8897.Google Scholar
Dubois, V, Simitsidellis, I, Laurent, MR, et al. Enobosarm (GTx-024) modulates adult skeletal muscle mass independently of the androgen receptor in the satellite cell lineage. Endocrinology. 2015;156(12):45224533.Google Scholar
Morimoto, M, Yamaoka, M, Hara, T. A selective androgen receptor modulator SARM-2f activates androgen receptor, increases lean body mass, and suppresses blood lipid levels in cynomolgus monkeys. Pharmacol Res Perspect. 2020;8(1):e00563.Google Scholar
Neil, D, Clark, RV, Magee, M, et al. GSK2881078, a SARM, produces dose-dependent increases in lean mass in healthy older men and women. J Clin Endocrinol Metab. 2018;103(9):32153224.Google Scholar
GTx reports results for enobosarm POWER trials for the prevention and treatment of muscle wasting in patients with non-small cell lung cancer. Businesswire. April 16, 2020. Available from: www.businesswire.com/news/home/20130819005378/en/GTx-Reports-Results-Enobosarm-POWER-Trials-Prevention. Accessed November 10, 2022.Google Scholar
Papanicolaou, DA, Ather, SN, Zhu, H, et al. A phase IIA randomized, placebo-controlled clinical trial to study the efficacy and safety of the selective androgen receptor modulator (SARM), MK-0773 in female participants with sarcopenia. J Nutr Health Aging. 2013;17(6):533543.Google Scholar
Bhasin, S. Selective androgen receptor modulators as function promoting therapies. J Frailty Aging. 2015;4(3):121122.Google Scholar
Nejishima, H, Yamamoto, N, Suzuki, M, Furuya, K, Nagata, N, Yamada, S. Anti-androgenic effects of S-40542, a novel non-steroidal selective androgen receptor modulator (SARM) for the treatment of benign prostatic hyperplasia. Prostate. 2012;72(14):15801587.Google Scholar
Gao, W, Kearby, JD, Nair, VA, et al. Comparison of the pharmacological effects of a novel selective androgen receptor modulator, the 5alpha-reductase inhibitor finasteride, and the antiandrogen hydroxyflutamide in intact rats: new approach for benign prostate hyperplasia. Endocrinology. 2004;145(12):54205428.Google Scholar
OPKO provides update on the development of OPK-88004, a selective androgen receptor modulator. OPKO. April 16, 2020. Available from: www.opko.com/news-media/press-releases/detail/351/opko-provides-update-on-the-development-of-opk-88004-a. Accessed November 10, 2022.Google Scholar
Chen, J, Hwang, DJ, Bohl, CE, Miller, DD, Dalton, JT. A selective androgen receptor modulator for hormonal male contraception. J Pharmacol Exp Ther. 2005;312(2):546553.Google Scholar
Jones, A, Chen, J, Hwang, DJ, Miller, DD, Dalton, JT. Preclinical characterization of a (S)-N-(4-cyano-3-trifluoromethyl-phenyl)-3-(3-fluoro, 4-chlorophenoxy)-2-hydroxy-2-methyl-propanamide: a selective androgen receptor modulator for hormonal male contraception. Endocrinology. 2009;150(1):385395.Google Scholar
Thirumalai, A, Berkseth, KE, Amory, JK. Treatment of hypogonadism: current and future therapies. F1000Res. 2017;6:68.Google Scholar
Vignozzi, L, Morelli, A, Sarchielli, E, et al. Testosterone protects from metabolic syndrome-associated prostate inflammation: an experimental study in rabbit. J Endocrinol. 2012;212(1):7184.Google Scholar
Choi, SM, Lee, BM. Comparative safety evaluation of selective androgen receptor modulators and anabolic androgenic steroids. Expert Opin Drug Saf. 2015;14(11):17731785.Google Scholar
Bhattacharya, I, Tarabar, S, Liang, Y, Pradhan, V, Owens, J, Oemar, B. Safety, pharmacokinetic, and pharmacodynamic evaluation after single and multiple ascending doses of a novel selective androgen receptor modulator in healthy subjects. Clin Ther. 2016;38(6):14011416.Google Scholar
Clark, RV, Walker, AC, Andrews, S, et al. Safety, pharmacokinetics and pharmacological effects of the selective androgen receptor modulator, GSK2881078, in healthy men and postmenopausal women. Br J Clin Pharmacol. 2017;83(10):21792194.Google Scholar
Thevis, M, Geyer, H, Kamber, M, Schänzer, W. Detection of the arylpropionamide-derived selective androgen receptor modulator (SARM) S-4 (Andarine) in a black-market product. Drug Test Anal. 2009;1(8):387392.Google Scholar
Westerman, ME, Charchenko, CM, Ziegelmann, MJ, Bailey, GC, Nippoldt, TB, Trost, L. Heavy testosterone use among bodybuilders: an uncommon cohort of illicit substance users. Mayo Clin Proc. 2016;91(2):175182.CrossRefGoogle ScholarPubMed
Van Wagoner, RM, Eichner, A, Bhasin, S, et al. Chemical composition and labeling of substances marketed as selective androgen receptor modulators and sold via the internet. JAMA. 2017;318(20):20042010.Google Scholar

References

Mulhall, JP, Trost, LW, Brannigan, RE, et al. Evaluation and management of testosterone deficiency: AUA guideline. J Urol. 2018;200(2):423432. doi:10.1016/j.juro.2018.03.115Google Scholar
Harman, SM, Metter, EJ, Tobin, JD, Pearson, J, Blackman, MR. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. J Clin Endocrinol Metab. 2001;86(2):724731. doi:10.1210/jcem.86.2.7219Google Scholar
Howden, LM, Meyer, JA. 2010 Census Brief: Age and Sex Composition. 2011. www.census.gov/population. Accessed March 16, 2020.Google Scholar
US Census. Population QuickFacts. 2019. www.census.gov/quickfacts/fact/table/US/LFE046218. Published 2020. Accessed July 19, 2020.Google Scholar
Cohen, J, Nassau, DE, Patel, P, Ramasamy, R. Low testosterone in adolescents & young adults. Front Endocrinol (Lausanne). 2020;10. doi:10.3389/fendo.2019.00916Google Scholar
Martin, JA, Brady, MPH, Hamilton, E, Osterman, MJK, Driscoll, AK, Mathews, TJ. Births final data for 2015. Natl Vital Stat Rep. 2017;66(1):1. www.cdc.gov/nchs/data_access/Vitalstatsonline.htm. Accessed March 16, 2020.Google Scholar
Basaria, S. Male hypogonadism. Lancet. 2014;383(9924):12501263. doi:10.1016/S0140-6736(13)61126-5Google Scholar
Roth, MY, Page, ST, Lin, K, et al. Dose-dependent increase in intratesticular testosterone by very low-dose human chorionic gonadotropin in normal men with experimental gonadotropin deficiency. J Clin Endocrinol Metab. 2010;95(8):38063813. doi:10.1210/jc.2010-0360Google Scholar
Walker, WH. Non-classical actions of testosterone and spermatogenesis. Philos Trans R Soc Lond B Biol Sci. 2010;365(1546):15571569. doi:10.1098/rstb.2009.0258Google Scholar
Patel, AS, Leong, JY, Ramos, L, Ramasamy, R. Testosterone is a contraceptive and should not be used in men who desire fertility. World J Mens Health. 2019;37(1):4554. doi:10.5534/wjmh.180036Google Scholar
World Health Organisation Task Force on Methods for the Regulation of Male Fertility. Contraceptive efficacy of testosterone-induced azoospermia in normal men. Lancet. 1990;336(8721):955959. doi:10.1016/0140-6736(90)92416-FGoogle Scholar
Baillargeon, J, Kuo, Y-F, Westra, JR, Urban, RJ, Goodwin, JS. Testosterone prescribing in the United States, 2002–2016. JAMA. 2018;320(2):200202. doi:10.1001/jama.2018.7999Google Scholar
Baillargeon, J, Urban, RJ, Ottenbacher, KJ, Pierson, KS, Goodwin, JS. Trends in androgen prescribing in the United States, 2001 to 2011. JAMA Intern Med. 2013;173(15):14651466. doi:10.1001/jamainternmed.2013.6895Google Scholar
Kansal, JK, Dietrich, PN, Doolittle, J, et al. MP45–17: online marketing practices and characteristics of stand-alone men’s health clinics. J Urol. 2020;203(4):e671. doi:10.1097/JU.0000000000000900.017Google Scholar
Dotson, JL, Brown, RT. The history of the development of anabolic-androgenic steroids. Pediatr Clin North Am. 2007;54(4):761769. doi:10.1016/j.pcl.2007.04.003Google Scholar
Tatem, AJ, Beilan, J, Kovac, JR, Lipshultz, LI. Management of anabolic steroid-induced infertility: novel strategies for fertility maintenance and recovery. World J Mens Health. 2020;38(2):141150. doi:10.5534/wjmh.190002Google Scholar
Silver, MD. Use of ergogenic aids by athletes. J Am Acad Orthop Surg. 2001;9(1):6170. doi:10.5435/00124635-200101000-00007Google Scholar
Kanayama, G, Pope, HG. History and epidemiology of anabolic androgens in athletes and non-athletes. Mol Cell Endocrinol. 2018;464:413. doi:10.1016/j.mce.2017.02.039Google Scholar
Coward, RM, Rajanahally, S, Kovac, JR, Smith, RP, Pastuszak, AW, Lipshultz, LI. Anabolic steroid induced hypogonadism in young men. J Urol. 2013;190(6):22002205. doi:10.1016/j.juro.2013.06.010Google Scholar
Ly, LP, Liu, PY, Handelsman, DJ. Rates of suppression and recovery of human sperm output in testosterone-based hormonal contraceptive regimens. Hum Reprod. 2005;20(6):17331740. doi:10.1093/humrep/deh834Google Scholar
Kohn, TP, Louis, MR, Pickett, SM, et al. Age and duration of testosterone therapy predict time to return of sperm count after human chorionic gonadotropin therapy. Fertil Steril. 2017;107(2):351357.e1. doi:10.1016/j.fertnstert.2016.10.004Google Scholar
Rahnema, CD, Lipshultz, LI, Crosnoe, LE, Kovac, JR, Kim, ED. Anabolic steroid-induced hypogonadism: diagnosis and treatment. Fertil Steril. 2014;101:12711279. doi:10.1016/j.fertnstert.2014.02.002Google Scholar
Wenker, EP, Dupree, JM, Langille, GM, et al. The use of HCG-based combination therapy for recovery of spermatogenesis after testosterone use. J Sex Med. 2015;12(6):13341337. doi:10.1111/jsm.12890Google Scholar
Chambers, T, Anderson, R. The impact of obesity on male fertility. Hormones. 2015;14(4):563568. doi:10.14310/horm.2002.1621Google Scholar
Grossmann, M. Hypogonadism and male obesity: focus on unresolved questions. Clin Endocrinol (Oxf). 2018;89(1):1121. doi:10.1111/cen.13723Google Scholar
Ng Tang Fui, M, Prendergast, LA, Dupuis, P, et al. Effects of testosterone treatment on body fat and lean mass in obese men on a hypocaloric diet: a randomised controlled trial. BMC Med. 2016;14(1):153. doi:10.1186/s12916-016-0700-9Google Scholar
Rigon, FA, Ronsoni, MF, Hohl, A, van de Sande-Lee, S. Effects of bariatric surgery in male obesity-associated hypogonadism. Obes Surg. 2019;29(7):21152125. doi:10.1007/s11695-019-03829-0Google Scholar
Krzastek, SC, Smith, RP. Non-testosterone management of male hypogonadism: an examination of the existing literature. Transl Androl Urol. 2020;9(S2):S160S170. doi:10.21037/tau.2019.11.16Google Scholar
Wheeler, KM, Sharma, D, Kavoussi, PK, Smith, RP, Costabile, R. Clomiphene citrate for the treatment of hypogonadism. Sex Med Rev. 2019;7(2):272276. doi:10.1016/j.sxmr.2018.10.001Google Scholar
Whitten, SJ, Nangia, AK, Kolettis, PN. Select patients with hypogonadotropic hypogonadism may respond to treatment with clomiphene citrate. Fertil Steril. 2006;86(6):16641668. doi:10.1016/j.fertnstert.2006.05.042Google Scholar
Pasqualotto, FF, Fonseca, GP, Pasqualotto, EB. Azoospermia after treatment with clomiphene citrate in patients with oligospermia. Fertil Steril. 2008;90(5):2014.e11–2014.e12. doi:10.1016/j.fertnstert.2008.03.036Google Scholar
Pavlovich, CP, King, P, Goldstein, M, Schlegel, PN. Evidence of a treatable endocrinopathy in infertile men. J Urol. 2001;165(3):837841. www.ncbi.nlm.nih.gov/pubmed/11176482.Google Scholar
Raman, JD, Schlegel, PN. Aromatase inhibitors for male infertility. J Urol. 2002;98(6):624629. doi:10.1097/00005392-200202000-00038Google Scholar
Coviello, AD, Matsumoto, AM, Bremner, WJ, et al. Low-dose human chorionic gonadotropin maintains intratesticular testosterone in normal men with testosterone-induced gonadotropin suppression. J Clin Endocrinol Metab. 2005;90(5):25952602. doi:10.1210/jc.2004-0802Google Scholar
Turek, PJ, Williams, RH, Gilbaugh, JHI, Lipshultz, LI. The reversibility of anabolic steroid-induced azoospermia. J Urol. 1995;153(5):16281630. doi:10.1016/S0022-5347(01)67482-2Google Scholar
McBride, JA, Coward, R. Recovery of spermatogenesis following testosterone replacement therapy or anabolic-androgenic steroid use. Asian J Androl. 2016;18(3):373380. doi:10.4103/1008-682X.173938Google Scholar
Buchter, D, Behre, H, Kliesch, S, Nieschlag, E. Pulsatile GnRH or human chorionic gonadotropin/human menopausal gonadotropin as effective treatment for men with hypogonadotropic hypogonadism: a review of 42 cases. Eur J Endocrinol. 1998;139(3):298303. doi:10.1530/eje.0.1390298Google Scholar
Burgues, S, Calderon, MD. Subcutaneous self-administration of highly purified follicle stimulating hormone and human chorionic gonadotrophin for the treatment of male hypogonadotrophic hypogonadism. Spanish Collaborative Group on Male Hypogonadotropic Hypogonadism. Hum Reprod. 1997;12(5):980986. doi:10.1093/humrep/12.5.980Google Scholar
Bhasin, S, Brito, JP, Cunningham, GR, et al. Testosterone therapy in men with hypogonadism: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2018;103(5):17151744. doi:10.1210/jc.2018-00229Google Scholar
Hsieh, T-C, Pastuszak, AW, Hwang, K, Lipshultz, LI. Concomitant intramuscular human chorionic gonadotropin preserves spermatogenesis in men undergoing testosterone replacement therapy. J Urol. 2013;189:647650. doi:10.1016/j.juro.2012.09.043Google Scholar
Lee, JA, Ramasamy, R. Indications for the use of human chorionic gonadotropic hormone for the management of infertility in hypogonadal men. Transl Androl Urol. 2018;7(Suppl. 3):S348S352. doi:10.21037/tau.2018.04.11Google Scholar
Ramasamy, R, Armstrong, J, Lipshultz, L. Preserving fertility in the hypogonadal patient: an update. Asian J Androl. 2015;17(2):197200. doi:10.4103/1008-682X.142772Google Scholar
Liu, PY, Turner, L, Rushford, D, et al. Efficacy and safety of recombinant human follicle stimulating hormone (Gonal-F) with urinary human chorionic gonadotrophin for induction of spermatogenesis and fertility in gonadotrophin-deficient men. Hum Reprod. 1999;14(6):15401545. doi:10.1093/humrep/14.6.1540.Google Scholar
Ishikawa, T, Ooba, T, Kondo, Y, Yamaguchi, K, Fujisawa, M. Assessment of gonadotropin therapy in male hypogonadotropic hypogonadism. Fertil Steril. 2007;88(6):16971699. doi:10.1016/j.fertnstert.2006.11.022Google Scholar
Patel, A, Patel, P, Bitran, J, Ramasamy, R. Can serum 17-hydroxyprogesterone and insulin-like factor 3 be used as a marker for evaluation of intratesticular testosterone? Transl Androl Urol. 2019;8(S1):S58S63. doi:10.21037/tau.2019.01.16Google Scholar
Amory, JK, Coviello, AD, Page, ST, Anawalt, BD, Matsumoto, AM, Bremner, WJ. Serum 17-hydroxyprogesterone strongly correlates with intratesticular testosterone in gonadotropin-suppressed normal men receiving various dosages of human chorionic gonadotropin. Fertil Steril. 2008;89(2):380386. doi:10.1016/j.fertnstert.2007.02.059Google Scholar
Ramasamy, R, Masterson, TA, Best, JC, et al. Effect of Natesto on reproductive hormones, semen parameters and hypogonadal symptoms: a single center, open label, single arm trial. J Urol. 2020;204(3):557563. doi:10.1097/JU.0000000000001078Google Scholar
Arora, H, Zuttion, MSSR, Nahar, B, Lamb, D, Hare, JM, Ramasamy, R. Subcutaneous Leydig stem cell autograft: a promising strategy to increase serum testosterone. Stem Cells Transl Med. 2019;8(1):5865. doi:10.1002/sctm.18-0069Google Scholar
Fayomi, AP, Peters, K, Sukhwani, M, et al. Autologous grafting of cryopreserved prepubertal rhesus testis produces sperm and offspring. Science. 2019;363(6433):13141319. doi:10.1126/science.aav2914Google Scholar

References

Krueger, JM, Frank, MG, Wisor, JP, Roy, S. Sleep function: toward elucidating an enigma. Sleep Med Rev. 2016;28:4654. doi:10.1016/j.smrv.2015.08.005.Google Scholar
Centers for Disease Control and Prevention. Short sleep duration among US adults. www.cdc.gov/sleep/data_statistics.html. Updated 2017. Accessed June 26, 2020.Google Scholar
Watson, NF, Badr, MS, Belenky, G, et al. Joint consensus statement of the American Academy of Sleep Medicine and Sleep Research Society on the recommended amount of sleep for a healthy adult: methodology and discussion. J Clin Sleep Med. 2015;11(8):931952. doi:10.5664/jcsm.4950.Google Scholar
Luyster, FS, Strollo, PJ, Zee, PC, Walsh, JK. Sleep: a health imperative. Sleep. 2012;35(6):727734. doi:10.5665/sleep.1846.Google Scholar
McMenamin, TM. A time to work: recent trends in shift work and flexible schedules. Mon Labor Rev. 2007;130(12):315. www.scopus.com/inward/record.uri?eid=2-s2.0-39749201717&partnerID=40&md5=394413e24b44176f8bcdb03b6e58a218. Accessed June 27, 2020.Google Scholar
Åkerstedt, T, Wright, KP. Sleep loss and fatigue in shift work and shift work disorder. Sleep Med Clin. 2009;4(2):257271. doi: 10.1016/j.jsmc.2009.03.001.Google Scholar
Sateia, MJ. International classification of sleep disorders – third edition. Chest. 2014;146(5):13871394. doi:10.1378/chest.14-0970.Google Scholar
Drake, CL, Roehrs, T, Richardson, G, Walsh, JK, Roth, T. Shift work sleep disorder: prevalence and consequences beyond that of symptomatic day workers. Sleep. 2004;27(8):14531462. doi:10.1093/sleep/27.8.1453.Google Scholar
Vanttola, P, Puttonen, S, Karhula, K, Oksanen, T, Härmä, M. Prevalence of shift work disorder among hospital personnel: a cross-sectional study using objective working hour data. J Sleep Res. 2019;29(3):e12906. doi:10.1111/jsr.12906.Google Scholar
Fekedulegn, D, Burchfiel, CM, Hartley, TA, et al. Shiftwork and sickness absence among police officers: the BCOPS study. Chronobiol Int. 2013;30(7):930941. doi:10.3109/07420528.2013.790043.Google Scholar
Nätti, J, Oinas, T, Härmä, M, Anttila, T, Kandolin, I. Combined effects of shiftwork and individual working time control on long-term sickness absence: a prospective study of Finnish employees. J Occup Environ Med. 2014;56(7):732738. doi:10.1097/JOM.0000000000000176.Google Scholar
Lockley, SW, Barger, LK, Ayas, NT, Rothschild, JM, Czeisler, CA, Landrigan, CP. Effects of health care provider work hours and sleep deprivation on safety and performance. Jt Comm J Qual Patient Saf. 2007;33(Suppl. 11):718. doi:10.1016/S1553-7250(07)33109-7.Google ScholarPubMed
Keller, SM. Effects of extended work shifts and shift work on patient safety, productivity, and employee health. AAOHN J. 2009;57(12):497504. doi:10.3928/08910162-20091116-01.Google Scholar
Garbarino, S, De Carli, F, Nobili, L, et al. Sleepiness and sleep disorders in shift workers: a study on a group of Italian police officers. Sleep. 2002;25(6):648653. www.scopus.com/inward/record.uri?eid=2-s2.0-0037105031&partnerID=40&md5=ab041b7db1a8e5f30a104d7b96fe1b49. Accessed June 27, 2020.Google Scholar
Gan, Y, Yang, C, Tong, X, et al. Shift work and diabetes mellitus: a meta-analysis of observational studies. Occup Environ Med. 2015;72(1):7278. doi:10.1136/oemed-2014-102150.Google Scholar
Ika, K, Suzuki, E, Mitsuhashi, T, Takao, S, Doi, H. Shift work and diabetes mellitus among male workers in Japan: does the intensity of shift work matter? Acta Med Okayama. 2013;67(1):2533. doi:10.18926/AMO/49254.Google Scholar
Hansen, AB, Stayner, L, Hansen, J, Andersen, ZJ. Night shift work and incidence of diabetes in the Danish nurse cohort. Occup Environ Med. 2016;73(4):262268. doi:10.1136/oemed-2015-103342.Google Scholar
Alefishat, E, Abu Farha, R. Is shift work associated with lipid disturbances and increased insulin resistance? Metab Syndr Relat Disord. 2015;13(9):400405. doi:10.1089/met.2015.0052.Google Scholar
Kawachi, I, Colditz, GA, Stampfer, MJ, et al. Prospective study of shift work and risk of coronary heart disease in women. Circulation. 1995;92(11):31783182. doi:10.1161/01.CIR.92.11.3178.Google Scholar
Vetter, C, Devore, EE, Wegrzyn, LR, et al. Association between rotating night shift work and risk of coronary heart disease among women. JAMA. 2016;315(16):17261734. doi:10.1001/jama.2016.4454.Google Scholar
Ceïde, ME, Pandey, A, Ravenell, J, Donat, M, Ogedegbe, G, Girardin, JL. Associations of short sleep and shift work status with hypertension among black and white Americans. Int J Hypertens. 2015;2015:697275. doi:10.1155/2015/697275.Google Scholar
Ohlander, J, Keskin, M, Stork, J, Radon, K. Shift work and hypertension: prevalence and analysis of disease pathways in a German car manufacturing company. Am J Ind Med. 2015;58(5):549560. doi:10.1002/ajim.22437.Google Scholar
Guo, Y, Liu, Y, Huang, X, et al. The effects of shift work on sleeping quality, hypertension and diabetes in retired workers. PLoS ONE. 2013;8(8):e71107. doi:10.1371/journal.pone.0071107.Google Scholar
Lee, HY, Kim, MS, Kim, O, Lee, I, Kim, H. Association between shift work and severity of depressive symptoms among female nurses: the Korea nurses’ health study. J Nurs Manag. 2016;24(2):192200. doi:10.1111/jonm.12298.Google Scholar
Park, JN, Han, MA, Park, J, Ryu, SY. Prevalence of depressive symptoms and related factors in Korean employees: The third Korean working conditions survey (2011). Int J Environ Res Public Health. 2016;13(4):424. doi:10.3390/ijerph13040424.Google Scholar
Deng, N, Kohn, TP, Lipshultz, LI, Pastuszak, AW. The relationship between shift work and men’s health. Sex Med Rev. 2018;6(3):446456. doi:S2050-0521(17)30150-6.Google Scholar
Kohn, TP, Kohn, JR, Haney, NM, Pastuszak, AW, Lipshultz, LI. The effect of sleep on men’s health. Transl Androl Urol. 2020;9:S178S185. doi:10.21037/tau.2019.11.07.Google Scholar
Feldman, HA, Irwin, G, Hatzichristou, DG, Krane, RJ, McKinlay, JB. Impotence and its medical and psychosocial correlates: results of the Massachusetts male aging study. J Urol. 1994;151(1):5461. doi:10.1016/S0022-5347(17)34871-1.Google Scholar
Saigal, CS, Wessells, H, Pace, J, Schonlau, M, Wilt, TJ. Predictors and prevalence of erectile dysfunction in a racially diverse population. Arch Intern Med. 2006;166(2):207212. doi:10.1001/archinte.166.2.207.Google Scholar
American Academy of Sleep Medicine Taskforce. Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. Sleep. 1999;22(5):667689. doi:10.1093/sleep/22.5.667.Google Scholar
Margel, D, Cohen, M, Livne, PM, Pillar, G. Severe, but not mild, obstructive sleep apnea syndrome is associated with erectile dysfunction. Urology. 2004;63(3):545549. doi:10.1016/j.urology.2003.10.016.Google Scholar
Heruti, R, Shochat, T, Tekes-Manova, D, Ashkenazi, I, Justo, D. Association between erectile dysfunction and sleep disorders measured by self-assessment questionnaires in adult men. J Sex Med. 2005;2(4):543550. doi:10.1111/j.1743-6109.2005.00072.x.Google Scholar
Budweiser, S, Enderlein, S, Jörres, RA, et al. Sleep apnea is an independent correlate of erectile and sexual dysfunction. J Sex Med. 2009;6(11):31473157. doi:10.1111/j.1743-6109.2009.01372.x.Google Scholar
Teloken, PE, Smith, EB, Lodowsky, C, Freedom, T, Mulhall, JP. Defining association between sleep apnea syndrome and erectile dysfunction. Urology. 2006;67(5):10331037. doi:10.1016/j.urology.2005.11.040.Google Scholar
Zheng, W, Chen, X, Huang, J, et al. Blood oxygen accumulation distribution area index is associated with erectile dysfunction in patients with sleep apnea: results from a cross-sectional study. Sex Med. 2020;8(1):3644. doi:10.1016/j.esxm.2019.11.001.Google Scholar
İrer, B, Çelikhisar, A, Çelikhisar, H, Bozkurt, O, Demir, Ö. Evaluation of sexual dysfunction, lower urinary tract symptoms and quality of life in men with obstructive sleep apnea syndrome and the efficacy of continuous positive airway pressure therapy. Urology. 2018;121:8692. doi:10.1016/j.urology.2018.08.001.Google Scholar
Andersen, ML, Santos-Silva, R, Bittencourt, LRA, Tufik, S. Prevalence of erectile dysfunction complaints associated with sleep disturbances in Sao Paulo, Brazil: a population-based survey. Sleep Med. 2010;11(10):10191024. doi:10.1016/j.sleep.2009.08.016.Google Scholar
Kellesarian, SV, Malignaggi, VR, Feng, C, Javed, F. Association between obstructive sleep apnea and erectile dysfunction: a systematic review and meta-analysis. Int J Impot Res. 2018;30(3):129140. doi:10.1038/s41443-018-0017-7.Google Scholar
Bozorgmehri, S, Fink, HA, Parimi, N, et al. Association of sleep disordered breathing with erectile dysfunction in community dwelling older men. J Urol. 2017;197(3):776782. doi:10.1016/j.juro.2016.09.089.CrossRefGoogle ScholarPubMed
Seehuus, M, Pigeon, W. The sleep and sex survey: relationships between sexual function and sleep. J Psychosom Res. 2018;112:5965. doi:10.1016/j.jpsychores.2018.07.005.Google Scholar
Le, HH, Salas, RME, Gamaldo, A, et al. The utility and feasibility of assessing sleep disruption in a men’s health clinic using a mobile health platform device: a pilot study. Int J Clin Pract. 2018;72(1):e12999. doi:10.1111/ijcp.12999.Google Scholar
Soterio-Pires, JH, Hirotsu, C, Kim, LJ, Bittencourt, L, Tufik, S, Andersen, ML. The interaction between erectile dysfunction complaints and depression in men: a cross-sectional study about sleep, hormones and quality of life. Int J Impot Res. 2017;29(2):7075. doi:10.1038/ijir.2016.49.Google Scholar
Gao, X, Schwarzschild, MA, O’Reilly, EJ, Wang, H, Ascherio, A. Restless legs syndrome and erectile dysfunction. Sleep. 2010;33(1):7579. doi:10.1093/sleep/33.1.75.Google Scholar
Li, Y, Batool-Anwar, S, Kim, S, Rimm, EB, Ascherio, A, Gao, X. Prospective study of restless legs syndrome and risk of erectile dysfunction. Am J Epidemiol. 2013;177(10):10971105. doi:10.1093/aje/kws364.Google Scholar
Pascual, M, Batlle, Jd, Barbé, F, et al. Erectile dysfunction in obstructive sleep apnea patients: a randomized trial on the effects of continuous positive airway pressure (CPAP). PLoS ONE. 2018;13(8):e0201930. doi:10.1371/journal.pone.0201930.Google Scholar
Jara, SM, Hopp, ML, Weaver, EM. Association of continuous positive airway pressure treatment with sexual quality of life in patients with sleep apnea: follow-up study of a randomized clinical trial. JAMA Otolaryngol Head Neck Surg. 2018;144(7):587593. doi:10.1001/jamaoto.2018.0485.Google Scholar
Melehan, KL, Hoyos, CM, Hamilton, GS, et al. Randomized trial of CPAP and vardenafil on erectile and arterial function in men with obstructive sleep apnea and erectile dysfunction. J Clin Endocrinol Metab. 2018;103(4):16011611. doi:10.1210/jc.2017-02389.Google Scholar
Pastore, AL, Palleschi, G, Ripoli, A, et al. Severe obstructive sleep apnoea syndrome and erectile dysfunction: a prospective randomised study to compare sildenafil vs. nasal continuous positive airway pressure. Int J Clin Pract. 2014;68(8):9951000. doi:10.1111/ijcp.12463.Google Scholar
Li, Z, Fang, Z, Xing, N, Zhu, S, Fan, Y. The effect of CPAP and PDE5i on erectile function in men with obstructive sleep apnea and erectile dysfunction: a systematic review and meta-analysis. Sleep Med Rev. 2019;48:101217. doi:S1087-0792(19)30185-6.Google Scholar
Pastuszak, AW, Moon, YM, Scovell, J, et al. Poor sleep quality predicts hypogonadal symptoms and sexual dysfunction in male nonstandard shift workers. Urology. 2017;102:121125. doi:10.1016/j.urology.2016.11.033.Google Scholar
Rodriguez, KM, Kohn, TP, Kohn, JR, et al. Pd27–06 shift work sleep disorder and night shift work significantly impair erectile function. J Urol. 2018;199(4):e559. doi:10.1016/j.juro.2018.02.1357.Google Scholar
Taylor, BC, Wilt, TJ, Fink, HA, et al. Prevalence, severity, and health correlates of lower urinary tract symptoms among older men: the MrOS study. Urology. 2006;68(4):804809. doi.10.1016/j.urology.2006.04.019.Google Scholar
Lepor, H. Pathophysiology of lower urinary tract symptoms in the aging male population. Rev Urol. 2005;7(Suppl. 7):S3S11. www.ncbi.nlm.nih.gov/pubmed/16986059.Google Scholar
Bates, J, Kohn, T, Rodriguez, K, et al. Pd65–08: poor sleep quality is associated with clinically significant lower urinary tract symptoms. J Urol. 2019;201:e1189e1190. doi:10.1097/01.JU.0000557582.48673.b0.Google Scholar
Martin, SA, Appleton, SL, Adams, RJ, et al. Nocturia, other lower urinary tract symptoms and sleep dysfunction in a community-dwelling cohort of men. Urology. 2016;97:219226. doi.org/10.1016/j.urology.2016.06.022.Google Scholar
Arslan, B, Gezmis, CT, Çetin, B, et al. Is obstructive sleep apnea syndrome related to nocturia? Low Urin Tract Symptoms. 2019;11(3):139142. doi:10.1111/luts.12250.Google Scholar
Miyauchi, Y, Okazoe, H, Tamaki, M, et al. Obstructive sleep apnea syndrome as a potential cause of nocturia in younger adults. Urology. 2020;143:4247. doi:10.1016/j.urology.2020.04.116.Google Scholar
Everaert, K, Anderson, P, Wood, R, Andersson, FL, Holm-Larsen, T. Nocturia is more bothersome than daytime LUTS: results from an observational, real-life practice database including 8659 European and American LUTS patients. Int J Clin Pract. 2018;72(6):e13091. doi:10.1111/ijcp.13091.Google Scholar
Doo, SW, Lee, HJ, Ahn, J, et al. Strong impact of nocturia on sleep quality in patients with lower urinary tract symptoms. World J Mens Health. 2012;30(2):123130. doi:10.5534/wjmh.2012.30.2.123.Google Scholar
Obayashi, K, Saeki, K, Kurumatani, N. Quantitative association between nocturnal voiding frequency and objective sleep quality in the general elderly population: the HEIJO-KYO cohort. Sleep Medicine. 2015;16(5):577582. doi:10.1016/j.sleep.2015.01.021.Google Scholar
Fantus, RJ, Packiam, VT, Wang, CH, Erickson, BA, Helfand, BT. The relationship between sleep disorders and lower urinary tract symptoms: results from the NHANES. J Urol. 2018;200(1):161166. doi:10.1016/j.juro.2018.01.083.Google Scholar
Miyauchi, Y, Okazoe, H, Okujyo, M, et al. Effect of the continuous positive airway pressure on the nocturnal urine volume or night-time frequency in patients with obstructive sleep apnea syndrome. Urology. 2015;85(2):333336. doi:10.1016/j.urology.2014.11.002.Google Scholar
Fernández-Pello, S, Gil, R, Escaf, S, et al. Síntomas de tramo urinario inferior y síndrome de apnea obstructiva del sueño: evolución urodinámica antes y después de un año de tratamiento con presión continua positiva de la vía aérea. Actas Urológicas Españolas. 2019;43(7):371377. doi:10.1016/j.acuro.2019.03.004.Google Scholar
Park, HK, Paick, SH, Kim, HG, et al. Nocturia improvement with surgical correction of sleep apnea. Int Neurourol J. 2016;20(4):329334. doi:10.5213/inj.1632624.312.Google Scholar
Shimizu, N, Nozawa, M, Sugimoto, K, et al. Therapeutic efficacy and anti-inflammatory effect of ramelteon in patients with insomnia associated with lower urinary tract symptoms. Res Rep Urol. 2013;5:113119. doi:10.2147/RRU.S44502.Google Scholar
Takao, T, Tsujimura, A, Kiuchi, H, Takezawa, K, Nonomura, N, Miyagawa, Y. Improvement of nocturia and sleep disturbance by silodosin in male patients with lower urinary tract symptoms. Int J Urol. 2015;22(2):236238. doi:10.1111/iju.12638.Google Scholar
Sakuma, T, Sato, K, Nagane, Y, et al. Effects of α1-blockers for lower urinary tract symptoms and sleep disorders in patients with benign prostatic hyperplasia. Lower Urin Tract Symptoms. 2010;2(2):119122. doi:10.1111/j.1757-5672.2010.00073.x.Google Scholar
Kim, JW. Effect of shift work on nocturia. Urology. 2016;87:153160. doi:10.1016/j.urology.2015.07.047.Google Scholar
Sigalos, JT, Kohn, TP, Cartagenova, L, et al. Shift workers with shift work disorder have worse lower urinary tract symptoms. Urology. 2019;128:6670. doi:10.1016/j.urology.2019.02.025.Google Scholar
Scovell, JM, Pastuszak, AW, Slawin, J, Badal, J, Link, RE, Lipshultz, LI. Impaired sleep quality is associated with more significant lower urinary tract symptoms in male shift workers. Urology. 2017;99:197202. doi:10.1016/j.urology.2016.05.076.Google Scholar
Branche, BL, Howard, LE, Moreira, DM, et al. Sleep problems are associated with development and progression of lower urinary tract symptoms: results from REDUCE. J Urol. 2018;199(2):536542. doi:10.1016/j.juro.2017.08.108.Google Scholar
Araujo, AB, Yaggi, HK, Yang, M, McVary, KT, Fang, SC, Bliwise, DL. Sleep related problems and urological symptoms: testing the hypothesis of bidirectionality in a longitudinal, population based study. J Urol. 2014;191(1):100106. doi:S0022-5347(13)04886-6.Google Scholar
Fukunaga, A, Kawaguchi, T, Funada, S, et al. Sleep disturbance worsens lower urinary tract symptoms: the Nagahama study. J Urol. 2019;202(2):354. doi:10.1097/JU.0000000000000212.Google Scholar
Mulhall, JP, Trost, LW, Brannigan, RE, et al. Evaluation and management of testosterone deficiency: AUA guideline. J Urol. 2018;200(2):423432. doi:S0022-5347(18)42817-0.Google Scholar
Evans, JI, MacLean, AW, Ismail, AA, Love, D. Concentrations of plasma testosterone in normal men during sleep. Nature. 1971;229(5282):261262. doi:10.1038/229261a0.Google Scholar
Åkerstedt, T, Palmblad, J, de la Torre, B, Marana, R, Gillberg, M. Adrenocortical and gonadal steroids during sleep deprivation. Sleep. 1980;3(1):2330. doi:10.1093/sleep/3.1.23.Google Scholar
Cortés-Gallegos, V, Castañeda, G, Alonso, R, et al. Sleep deprivation reduces circulating androgens in healthy men. Arch Androl. 1983;10(1):3337. doi:10.3109/01485018308990167.Google Scholar
González-Santos, MR, Gajá-Rodríguez, OV, Alonso-Uriarte, R, Sojo-Aranda, I, Cortés-Gallegos, V. Sleep deprivation and adaptive hormonal responses of healthy men. Arch Androl. 1989;22(3):203207. doi:10.3109/01485018908986773.Google Scholar
Leproult, R, Van Cauter, E. Effect of 1 week of sleep restriction on testosterone levels in young healthy men. JAMA. 2011;305(21):21732174. doi:10.1001/jama.2011.710.Google Scholar
Smith, I, Salazar, I, RoyChoudhury, A, St-Onge, MP. Sleep restriction and testosterone concentrations in young healthy males: randomized controlled studies of acute and chronic short sleep. Sleep Health. 2019;5(6):580586. doi:S2352-7218(19)30139-1.Google Scholar
Jauch-Chara, K, Schmid, SM, Hallschmid, M, Oltmanns, KM, Schultes, B. Pituitary-gonadal and pituitary-thyroid axis hormone concentrations before and during a hypoglycemic clamp after sleep deprivation in healthy men. PLoS ONE. 2013;8(1):e54209. doi:10.1371/journal.pone.0054209.Google Scholar
Arnal, PJ, Drogou, C, Sauvet, F, et al. Effect of sleep extension on the subsequent testosterone, cortisol and prolactin responses to total sleep deprivation and recovery. J Neuroendocrinol. 2016;28(2). doi:10.1111/jne.12346.Google Scholar
Luboshitzky, R, Zabari, Z, Shen-Orr, Z, Herer, P, Lavie, P. Disruption of the nocturnal testosterone rhythm by sleep fragmentation in normal men. J Clin Endocrinol Metab. 2001;86(3):11341139. doi:10.1210/jcem.86.3.7296.Google Scholar
Reynolds, AC, Dorrian, J, Liu, PY, et al. Impact of five nights of sleep restriction on glucose metabolism, leptin and testosterone in young adult men. PLoS ONE. 2012;7(7):e41218. doi:10.1371/journal.pone.0041218.Google Scholar
Schmid, SM, Hallschmid, M, Jauch-Chara, K, Lehnert, H, Schultes, B. Sleep timing may modulate the effect of sleep loss on testosterone. Clin Endocrinol (Oxf). 2012;77(5):749754. doi:10.1111/j.1365-2265.2012.04419.x.Google Scholar
Patel, P, Shiff, B, Kohn, TP, Ramasamy, R. Impaired sleep is associated with low testosterone in US adult males: results from the National Health and Nutrition Examination Survey. World J Urol. 2019;37(7):14491453. doi:10.1007/s00345-018-2485-2.Google Scholar
Penev, PD. Association between sleep and morning testosterone levels in older men. Sleep. 2007;30(4):427432. doi:10.1093/sleep/30.4.427.Google Scholar
Du, C, Yang, Y, Chen, J, Feng, L, Lin, W. Association between sleep quality and semen parameters and reproductive hormones: a cross-sectional study in Zhejiang, China. Nat Sci Sleep. 2020;12:1118. doi:10.2147/NSS.S235136.Google Scholar
Mohammadi, H, Rezaei, M, Sharafkhaneh, A, Khazaie, H, Ghadami, MR. Serum testosterone/cortisol ratio in people with obstructive sleep apnea. J Clin Lab Anal. 2020;34(1):e23011. doi:10.1002/jcla.23011.Google Scholar
Mohammadi, H, Rezaei, M, Faghihi, F, Khazaie, H. Hypothalamic–pituitary–gonadal activity in paradoxical and psychophysiological insomnia. J Med Signals Sens. 2019;9(1):5967. doi:10.4103/jmss.JMSS_31_18.Google Scholar
Auyeung, TW, Kwok, T, Leung, J, et al. Sleep duration and disturbances were associated with testosterone level, muscle mass, and muscle strength: a cross-sectional study in 1274 older men. J Am Med Dir Assoc. 2015;16(7):630.e1–630.e6. doi:S1525-8610(15)00294-7.Google Scholar
Brigette, MC, Andrew, DV, Martin, S, et al. Obstructive sleep apnea is not an independent determinant of testosterone in men. Eur J Endocrinol. 2020;183(1):3139. doi:10.1530/EJE-19-0978.Google Scholar
Wittert, G. The relationship between sleep disorders and testosterone in men. Asian J Androl. 2014;16(2):262265. doi:10.4103/1008-682X.122586.CrossRefGoogle ScholarPubMed
Touitou, Y, Motohashi, Y, Reinberg, A, et al. Effect of shift work on the night-time secretory patterns of melatonin, prolactin, cortisol and testosterone. Eur J Appl Physiol Occup Physiol. 1990;60(4):288292. doi:10.1007/BF00379398.Google Scholar
Axelsson, J, Åkerstedt, T, Kecklund, G, Lindqvist, A, Attefors, R. Hormonal changes in satisfied and dissatisfied shift workers across a shift cycle. J Appl Physiol. 2003;95(5):20992105. doi:10.1152/japplphysiol.00231.2003.Google Scholar
Smith, AM, Morris, P, Rowell, KO, Clarke, S, Jones, TH, Channer, KS. Junior doctors and the full shift rota – psychological and hormonal changes: a comparative cross-sectional study. Clin Med. 2006;6(2):174177. doi:10.7861/clinmedicine.6-2-174.Google Scholar
Jensen, MA, Hansen, ÅM, Kristiansen, J, Nabe-Nielsen, K, Garde, AH. Changes in the diurnal rhythms of cortisol, melatonin, and testosterone after 2, 4, and 7 consecutive night shifts in male police officers. Chronobiol Int. 2016;33(9):12801292. doi:10.1080/07420528.2016.1212869.Google Scholar
Charlier, CM, Barr, ML, Colby, SE, Greene, GW, Olfert, MD. Correlations of self-reported androgen deficiency in ageing males (ADAM) with stress and sleep among young adult males. Healthcare (Basel, Switzerland). 2018;6(4):121. doi:10.3390/healthcare6040121.Google Scholar
Balasubramanian, A, Kohn, TP, Santiago, JE, et al. Increased risk of hypogonadal symptoms in shift workers with shift work sleep disorder. Urology. 2020;138:5259. doi:10.1016/j.urology.2019.10.040.Google Scholar
Morley, JE, Charlton, E, Patrick, P, et al. Validation of a screening questionnaire for androgen deficiency in aging males. Metabolism. 2000;49(9):12391242. doi:S0026-0495(00)25964-7.Google Scholar
Jarow, JP, Sharlip, ID, Belker, AM, et al. Best practice policies for male infertility. J Urol. 2002;167(5):21382144. doi:S0022-5347(05)65109-9.Google Scholar
Wise, LA, Rothman, KJ, Wesselink, AK, et al. Male sleep duration and fecundability in a North American preconception cohort study. Fertil Steril. 2018;109(3):453459. doi:10.1016/j.fertnstert.2017.11.037.Google Scholar
Kohn, TP, Pastuszak, A. Shift work is associated with altered semen parameters in infertile men. Fertil Steril. 2017;108(3):E323E324. doi:10.1016/j.fertnstert.2017.07.956.Google Scholar
Jensen, TK, Andersson, A, Skakkebæk, NE, et al. Association of sleep disturbances with reduced semen quality: a cross-sectional study among 953 healthy young Danish men. Am J Epidemiol. 2013;177(10):10271037. doi:10.1093/aje/kws420.Google Scholar
Chen, Q, Yang, H, Zhou, N, et al. Inverse U-shaped association between sleep duration and semen quality: longitudinal observational study (MARHCS) in Chongqing, China. Sleep. 2016;39(1):7986. doi:10.5665/sleep.5322.Google Scholar
Wang, X, Chen, Q, Zou, P, et al. Sleep duration is associated with sperm chromatin integrity among young men in Chongqing, China. J Sleep Res. 2018;27(4):e12615. doi:10.1111/jsr.12615.Google Scholar
Hvidt, JEM, Knudsen, UB, Zachariae, R, Ingerslev, HJ, Philipsen, MT, Frederiksen, Y. Associations of bedtime, sleep duration, and sleep quality with semen quality in males seeking fertility treatment: a preliminary study. Basic Clin Androl. 2020;30:57. doi:10.1186/s12610-020-00103-7.Google Scholar
Liu, MM, Liu, L, Chen, L, et al. Sleep deprivation and late bedtime impair sperm health through increasing antisperm antibody production: a prospective study of 981 healthy men. Med Sci Monit. 2017;23:18421848. doi:10.12659/msm.900101.Google Scholar
Green, A, Barak, S, Shine, L, Kahane, A, Dagan, Y. Exposure by males to light emitted from media devices at night is linked with decline of sperm quality and correlated with sleep quality measures. Chronobiol Int. 2020;37(3):414424. doi:10.1080/07420528.2020.1727918.Google Scholar
Chen, H, Sun, B, Chen, Y, et al. Sleep duration and quality in relation to semen quality in healthy men screened as potential sperm donors. Environ Int. 2020;135:105368. doi:10.1016/j.envint.2019.105368.Google Scholar
Bisanti, L, Olsen, J, Basso, O, Thonneau, P, Karmaus, W. The European Study Group on Infertility, and Subfecundity. Shift work and subfecundity: a European multicenter study. J Occup Environ Med. 1996;38(4):352358. doi:10.1097/00043764-199604000-00012.Google Scholar
Tuntiseranee, P, Olsen, J, Geater, A, Kor-anantakul, O. Are long working hours and shiftwork risk factors for subfecundity? A study among couples from Southern Thailand. Occup Environ Med. 1998;55(2):99105. doi:10.1136/oem.55.2.99.Google Scholar
El-Helaly, M, Awadalla, N, Mansour, M, El-Biomy, Y. Workplace exposures and male infertility: a case-control study. Int J Occup Med Environ Health. 2010;23(4):331338. doi:10.2478/v10001-010-0039-y.Google Scholar
Eisenberg, ML, Chen, Z, Ye, A, Buck Louis, GM. Relationship between physical occupational exposures and health on semen quality: data from the Longitudinal Investigation of Fertility and the Environment (LIFE) study. Fertil Steril. 2015;103(5):12711277. doi:10.1016/j.fertnstert.2015.02.010.Google Scholar
Palnitkar, G, Phillips, CL, Hoyos, CM, Marren, AJ, Bowman, MC, Yee, BJ. Linking sleep disturbance to idiopathic male infertility. Sleep Med Rev. 2018;42:149159. doi:10.1016/j.smrv.2018.07.006.Google Scholar
Rossi, SP, Windschuettl, S, Matzkin, ME, et al. Melatonin in testes of infertile men: evidence for anti‐proliferative and anti‐oxidant effects on local macrophage and mast cell populations. Andrology. 2014;2(3):436449. doi:10.1111/j.2047-2927.2014.00207.x.Google Scholar
Bejarano, I, Monllor, F, Marchena, AM, et al. Exogenous melatonin supplementation prevents oxidative stress-evoked DNA damage in human spermatozoa. J Pineal Res. 2014;57(3):333339. doi:10.1111/jpi.12172.Google Scholar
Colten, HR, Altevogt, BM, Institute of Medicine (US) Committee on Sleep Medicine and Research. Extent and health consequences of chronic sleep loss and sleep disorders. In: Sleep Disorders and Sleep Deprivation: An Unmet Public Health Problem. National Academies Press; 2006. www.ncbi.nlm.nih.gov/books/NBK19961/. Accessed July 2, 2020.Google Scholar
Walia, AS, Lomeli, LJM, Jiang, P, Benca, R, Yafi, FA. Patients presenting to a men’s health clinic are at higher risk for depression, insomnia, and sleep apnea. Int J Impotence Res. 2019;31(1):3945. doi:10.1038/s41443-018-0057-z.Google Scholar
Kalejaiye, O, Raheem, AA, Moubasher, A, et al. Sleep disorders in patients with erectile dysfunction. BJU Int. 2017;120(6):855860. doi:10.1111/bju.13961.Google Scholar
Pataka, A, Daskalopoulou, E, Kalamaras, G, Fekete Passa, K, Argyropoulou, P. Evaluation of five different questionnaires for assessing sleep apnea syndrome in a sleep clinic. Sleep Med. 2014;15(7):776781. doi:S1389-9457(14)00147-6.Google Scholar
Chung, F, Abdullah, HR, Liao, P. STOP-Bang questionnaire: a practical approach to screen for obstructive sleep apnea. Chest. 2016;149(3):631638. doi:10.1378/chest.15-0903.Google Scholar
Kim, SD, Cho, KS. Obstructive sleep apnea and testosterone deficiency. W J Mens Health. 2019;37(1):1218. doi:10.5534/wjmh.180017.Google Scholar
Buysse, DJ, Reynolds, CF, Monk, TH, Berman, SR, Kupfer, DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28(2):193213. doi:10.1016/0165-1781(89)90047-4.Google Scholar
Irish, LA, Kline, CE, Gunn, HE, Buysse, DJ, Hall, MH. The role of sleep hygiene in promoting public health: a review of empirical evidence. Sleep Med Rev. 2015;22:2336. doi:10.1016/j.smrv.2014.10.001.Google Scholar
Bates, J, Kohn, T, Rodriguez, K, et al. PD65–08 poor sleep quality is associated with clinically significant lower urinary tract symptoms. J Urol. 2019;201:11891190. doi:10.21037/tau.2019.11.07.Google Scholar
Kohn, TP, Rodriguez, KM, Sigalos, JT, et al. PD27–08 poor sleep quality is associated with clinically significant erectile dysfunction. J Urol. 2018;199:e560. doi:10.1016/j.juro.2018.02.1359.Google Scholar

References

Johannes, CB, Araju, AB, Feldman, HA, Derby, CA, Kleinman, KP, McKinlay, JB. Incidence of erectile dysfunction in men 40–69 years old: longitudinal results from the Massachusetts Male Aging Study. J Urol. 2000;163(2):460463.Google Scholar
Aytac, IA, McKinlay, JB, Krane, RJ. The likely worldwide increase in erectile dysfunction between 1995 and 2025 and some possible policy consequences. BJU Int. 1999;84(1):5056.Google Scholar
Yafi, FA, Jenkins, L, Albertsen, M, et al. Erectile dysfunction. Nat Rev Dis Primers. 2016;2:16003.Google Scholar
Hawksworth, DJ, Burnett, AL. Pharmacotherapeutic management of erectile dysfunction. Clin Pharmacol Ther. 2015;98(6):602610.Google Scholar
Tanagho, EA, Lue, TF. Anatomy of the genitourinary tract. In: McAnich, JW, Lue, TF, eds. Smith and Tanagho’s General Urology. 18th ed. The McGraw Hill Companies; 2013:Chapter 1.Google Scholar
Gratzke, C, Angulo, J, Chitaley, K, et al. Anatomy, physiology, and pathophysiology of erectile dysfunction. J Sex Med. 2010;7(1 Pt 2):445475.Google Scholar
Dean, RC, Lue, TF. Physiology of penile erection and pathophysiology of erectile dysfunction. Urol Clin North Am. 2005;32(4):379395.Google Scholar
Andersson, KE, Hedlund, P, Alm, P. Sympathetic pathways and adrenergic innervation of the penis. Int J Impotent Res. 2000;12(Suppl. 1):S5S12.Google Scholar
Saenz de Tejada, I, Kim, N, Lagana, I, et al. Regulation of adrenergic activity in penile corpus cavernosum. J Urol. 1989;142(4):11171121.Google Scholar
Saenz d Tejada, I, Carson, MP, de las Morenas, A, et al. Endothelin: localization, synthesis, activity, and receptor types in human penile corpus cavernosum. Am J Physiol. 1991;261:H1078H1085.Google Scholar
Sachs, B, Meisel, R. The physiology of male sexual behavior. In: Knobil, E, Neill, J, eds. Physiology of Reproduction. Raven Press; 1998:13931423.Google Scholar
Stoleru, S, Redoute, J, Costes, N, et al. Brain processing of visual sexual stimuli in men with hypoactive sexual desire disorder. Psychiatry Res. 2003;124(2):6786.Google Scholar
Ferrettti, A, Caulo, M, Del Gratta, C, et al. Dynamics of male sexual arousal: distinct components of brain activation reveal by fMRI. Neuroimage. 2005;26(4):10861096.Google Scholar
Root, W, Bard, P. The mediation of feline erection through sympathetic pathway with some reference on sexual behavior after deafferentation of the genitalia. Am J Physiol. 1947;151:8090.Google Scholar
Montorsi, F, Oettel, M. Testosterone and sleep-relate erections: an overview. J Sex Med. 2005;2(6):771784.Google Scholar
Wang, H, Eto, M, Steers, WD, et al. RhoA-mediated Ca2+ sensitization in erectile function. J Biol Chem. 2002;277:3061430621.Google Scholar
Cellk, S, Rees, RW, Kalsi, J. A Rho-kinase inhibitor, soluble guanylate cyclase activator and nitric oxide-releasing PDE5 inhibitors: novel approaches to erectile dysfunction. Expert Opin Investig Drugs. 2002;11:15631573.Google Scholar
Hurt, KJ, Musicki, B, Palese, MA, et al. Akt-dependent phosphorylation of endothelial nitric-oxide synthase meditate penile erection. Proc Natl Acad Sci USA. 2002;99(6):40614066.Google Scholar
Lizza, EF, Rosen, RC. Definition and classification of erectile dysfunction: report of the nomenclature committee of the International Society of Impotence Research. Int J Impot Res. 1999;11(3):141143.Google Scholar
Levine, FJ, Greenfield, AJ, Goldstein, I. Arteriographically determined occlusive disease within the hypogastric-cavernous bed in impotent patients following blunt perineal and pelvic trauma. J Urol. 1990;144(5):11471153.Google Scholar
Goldstein, I, Feldman, MI, Deckers, PJ, et al. Radiation-associated impotence. a clinical study of its mechanism. JAMA. 1984;251(7):903910.Google Scholar
Andersen, KV, Bovim, G. Impotence and nerve entrapment in long distance amateur cyclists. Acta Neurol Scand. 1997;95(4):233240.Google Scholar
Gan, ZS, Ehlers, ME, Lin, FC, Wright, ST, Figler, BD, Coward, RM. Systematic review and meta-analysis of cycling and erectile dysfunction. Sex Med Rev. 2020;9(2):304311.Google Scholar
Balasubramanian, A, Yu, J, Breyer, BN, Minkow, R, Eisenberg, ML. The association between pelvic discomfort and erectile dysfunction in adult male bicyclists. J Sex Med. 2020;7(5):919929.Google Scholar
Gupta, N, Herati, A, Gilbert, BR. Penile Doppler ultrasound predicting cardiovascular disease in men with erectile dysfunction. Curr Urol Rep. 2015;16(3):16.Google Scholar
Heidler, S, Temml, C, Broessner, C, et al. Is the metabolic syndrome an independent risk factor for erectile dysfunction? J Urol. 2007;177(2):651654.Google Scholar
Moreland, RB, Traish, A, McMilin, MA, Smith, B, Goldstein, I, Saenz de Tejada, I. PGE1 suppressed the induction of collagen synthesis by transforming growth factor-beta 1 in human corpus cavernosum smooth muscle. J Urol. 1995;153(3):826834.Google Scholar
Nehra, A, Azadozi, KM, Moreland, RB, et al. Cavernosal expandability is an erectile tissue mechanical property which predicts trabecular histology in an animal model of vasculogenic erectile dysfunction. J Urol. 1998;159(6):22292236.Google Scholar
Steers, WD. Neural control of penile erection. Semin Urol. 1990;8(2):6679.Google Scholar
El-Sakka, AI. Reversion of penile fibrosis: current information and a new horizon. Arab J Urol. 2011;9(1):4955.Google Scholar
Zeiss, AM, Davies, HD, Wood, M, Tinklenberg, JR. The incidence and correlates of erectile problems in patients with Alzheimer’s disease. Arch Sex Behav. 1990;19(4):325331.Google Scholar
Nehra, A, Moreland, RB. Neurologic erectile dysfunction. Urol Clin. 2001;28(20):289308.Google Scholar
Brock, GB, Lue, TF. Drug-induced male sexual dysfunction. An update. Drug Saf. 1993;8(6):414426.Google Scholar
Eardley, I, Kirby, R. Neurogenic impotence. In: Kirby, R, Carson, C, Webster, G, eds. Impotence: Diagnosis and Management of Male Erectile Dysfunction. Butterworth-Heinemann; 1991:227231.Google Scholar
Nandipati, KC, Raina, R, Agarwal, A, et al. Erectile dysfunction following radical retropubic prostatectomy: epidemiology, pathophysiology and pharmacological management. Drugs Aging. 2006;23(2):101117.Google Scholar
Danzi, M, Ferulano, GP, Abate, S, et al. Male sexual function after abdominoperineal resection for rectal cancer. Dis Colon Rectum. 1983;26(10):665668.Google Scholar
Quinlan, DM, Epstein, JI, Carter, BS, et al. Sexual function following radical prostatectomy: influence of preservation of neurovascular bundles. J Urol. 1991;145(5):9981002.Google Scholar
Dean, RC, Lue, TF. Neuroregenerative strategies after radical prostatectomy. Rev Urol. 2005;7(2):2632.Google Scholar
Bratu, O, Oprea, I, Marcu, D, et al. Erectile dysfunction post-radical prostatectomy: a challenge for both patient and physician. J Med Life. 2017;10(1):1318.Google Scholar
Metze, M, Tiemann, AH, Josten, C. Male sexual dysfunction after pelvic trauma. J Trauma. 2007;62(2):394401.Google Scholar
Mulligan, T, Schmitt, B. Testosterone for erectile failure. J Gen Intern Med. 1993;8(9):517521.Google Scholar
Booth, A, Johnson, DR, Granger, DA. Testosterone and men’s health. J Behav Med. 1999;22(1):119.Google Scholar
Corona, G, Rastrelli, G, Morgentaler, A, et al. Meta-analysis of results of testosterone therapy on sexual function based on international index of erectile function scores. Eur Urol. 2017;72(6):10001011.Google Scholar
Alhathal, N, Elshal, AM, Carrier, S. Synergetic effect of testosterone and phosphodiesterare-5 inhibitors in hypogonadal men with erectile dysfunction: a systematic review. Can Urol Assoc J. 2012;6(4):269274.Google Scholar
Buena, F, Swerdloff, RS, Steiner, BS, et al. Sexual function does not change when serum testosterone levels are pharmacologically varied within the normal male range. Fertil Steril. 1993;59(5):11181123.Google Scholar
Hotta, Y, Kataoka, T, Kimura, K. Testosterone deficiency and endothelial dysfunction: nitric oxide asymmetric dimethylarginine, and endothelial progenitor cells. Sex Med Rev. 2019;7(4):661668.Google Scholar
Ludwig, W, Phillips, M. Organic causes of erectile dysfunction in men under 40. Urol Int. 2014;92(1):16.Google Scholar
Kim, SC, Oh, MM. Norepinephrine involvement in response to intracorporeal injection of papaverine in psychogenic impotence. J Urol. 1992;147(6):15301532.Google Scholar
Rosen, RC. Psychogenic erectile dysfunction: classification and management. Urol Clin North Am. 2001;28(2):269278.Google Scholar
Keene, LC, Davies, PH. Drug-related erectile dysfunction. Adverse Drug React Toxiol Rev. 1999;18(1):524.Google Scholar

References

McCabe, MP, et al. Incidence and prevalence of sexual dysfunction in women and men: a consensus statement from the Fourth International Consultation on Sexual Medicine 2015. J Sex Med. 2016;13(2):144152.Google Scholar
Lewis, RW, et al. Definitions/epidemiology/risk factors for sexual dysfunction. J Sex Med. 2010;7(4 Pt 2):15981607.Google Scholar
Ayta, IA, McKinlay, JB, Krane, RJ. The likely worldwide increase in erectile dysfunction between 1995 and 2025 and some possible policy consequences. BJU Int. 1999;84(1):5056.Google Scholar
Guay, AT. ED2: erectile dysfunction = endothelial dysfunction. Endocrinol Metab Clin North Am. 2007;36(2):453463.Google Scholar
Kirby, M. The circle of lifestyle and erectile dysfunction. Sex Med Rev. 2015;3(3):169182.Google Scholar
DeLay, KJ, Haney, N, Hellstrom, WJ. Modifying risk factors in the management of erectile dysfunction: a review. World J Mens Health. 2016;34(2):89100.Google Scholar
Kostis, JB, Dobrzynski, JM. The effect of statins on erectile dysfunction: a meta-analysis of randomized trials. J Sex Med. 2014;11(7):16261635.Google Scholar
Grundy, SM, et al. Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation. 2004;109(3):433438.Google Scholar
Feldman, DI, et al. Subclinical vascular disease and subsequent erectile dysfunction: the multiethnic study of atherosclerosis (MESA). Clin Cardiol. 2016;39(5):291298.Google Scholar
Lloyd-Jones, DM, et al. Use of risk assessment tools to guide decision-making in the primary prevention of atherosclerotic cardiovascular disease: a special report from the American Heart Association and American College of Cardiology. J Am Coll Cardiol. 2019;73(24):31533167.Google Scholar
Burnett, AL, et al. Erectile dysfunction: AUA Guideline. J Urol. 2018;200(3):633641.Google Scholar
Selvin, E, Burnett, AL Platz, EA. Prevalence and risk factors for erectile dysfunction in the US. Am J Med. 2007;120(2):151157.Google Scholar
Hatzichristou, D, et al. Recommendations for the clinical evaluation of men and women with sexual dysfunction. J Sex Med. 2010;7(1 Pt 2):337348.Google Scholar
O’Leary, MP, et al. A brief male sexual function inventory for urology. Urology. 1995;46(5):697706.Google Scholar
Romeo, JH, et al. Sexual function in men with diabetes type 2: association with glycemic control. J Urol. 2000;163(3):788791.Google Scholar
Nehra, A, et al. The Princeton III Consensus recommendations for the management of erectile dysfunction and cardiovascular disease. Mayo Clin Proc. 2012;87(8):766778.Google Scholar
Ghanem, HM, Salonia, A, Martin-Morales, A. SOP: physical examination and laboratory testing for men with erectile dysfunction. J Sex Med. 2013;10(1):108110.Google Scholar
Saenz de Tejada, I, et al. Pathophysiology of erectile dysfunction. J Sex Med. 2005;2(1):2639.Google Scholar
Chung, F, et al. High STOP-Bang score indicates a high probability of obstructive sleep apnoea. Br J Anaesth. 2012;108(5):768775.Google Scholar
Liu, PY. A clinical perspective of sleep and andrological health: assessment, treatment considerations, and future research. J Clin Endocrinol Metab. 2019;104(10):43984417.Google Scholar
Gerbild, H, et al. Physical activity to improve erectile function: a systematic review of intervention studies. Sex Med. 2018;6(2):7589.Google Scholar
Wang, F, et al. Erectile dysfunction and fruit/vegetable consumption among diabetic Canadian men. Urology. 2013;82(6):13301335.Google Scholar
Esposito, K, et al. Effect of lifestyle changes on erectile dysfunction in obese men: a randomized controlled trial. JAMA. 2004;291(24):29782984.Google Scholar
Jarecki, P, et al. Can low SHBG serum concentration be a good early marker of male hypogonadism in metabolic syndrome? Diabetes Metab Syndr Obes. 2019;12:21812191.Google Scholar
Diver, MJ, et al. Diurnal rhythms of serum total, free and bioavailable testosterone and of SHBG in middle-aged men compared with those in young men. Clin Endocrinol (Oxf). 2003;58(6):710717.Google Scholar
Mulhall, JP, et al. Evaluation and management of testosterone deficiency: AUA Guideline. J Urol. 2018;200(2):423432.Google Scholar
Carson, CC, et al. Textbook of erectile dysfunction. 2nd ed. Informa Healthcare; 2009.Google Scholar
Montorsi, P, et al. Association between erectile dysfunction and coronary artery disease. Role of coronary clinical presentation and extent of coronary vessels involvement: the COBRA trial. Eur Heart J. 2006;27(22):26322639.Google Scholar
Miner, MM. Erectile dysfunction and the “window of curability”: a harbinger of cardiovascular events. Mayo Clin Proc. 2009;84(2):102104.Google Scholar
Greenland, P, et al. ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain: a report of the American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to Update the 2000 Expert Consensus Document on Electron Beam Computed Tomography). Circulation. 2007;115(3):402426.Google Scholar
Greenland, P, et al. Coronary calcium score and cardiovascular risk. J Am Coll Cardiol. 2018;72(4):434447.Google Scholar
Agatston, AS, et al. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15(4):827832.Google Scholar
Liu, Q, et al. Erectile dysfunction and depression: a systematic review and meta-analysis. J Sex Med. 2018;15(8):10731082.Google Scholar
Kroenke, K, Spitzer, RL, Williams, JB. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med. 2001;16(9):606613.Google Scholar
Linschoten, M, Weiner, L, Avery-Clark, C. Sensate focus: a critical literature review. Sex Relatsh Ther. 2016;21(2):230247.Google Scholar
Wein, AJ, Kavoussi, LR, Campbell, MF. Campbell–Walsh urology [Wein, AJ, ed.-in-chief; Kavoussi, LR et al., eds.]. 10th ed. Elsevier Saunders; 2012.Google Scholar

References

Selvin, E, Burnett, AL, Platz, EA. Prevalence and risk factors for erectile dysfunction in the US. Am J Med. 2007;120(2):151157.Google Scholar
Laumann, EO, Paik, A, Rosen, RC. Sexual dysfunction in the United States. JAMA. 1999;281(6):537544.Google Scholar
Derby, CA, et al. Modifiable risk factors and erectile dysfunction: can lifestyle changes modify risk? Urology. 2000;56(2):302306.Google Scholar
Wentzell, E, Salmerón, J. You’ll “get Viagraed”: Mexican men’s preference for alternative erectile dysfunction treatment. Soc Sci Med. 2009;68(10):17591765.Google Scholar
Arnold, DG, Oakley, JL. Self-regulation in the pharmaceutical industry: the exposure of children and adolescents to erectile dysfunction commercials. J Health Polit Policy Law. 2019;44(5):765787.Google Scholar
Rajfer, J, et al. Nitric oxide as a mediator of relaxation of the corpus cavernosum in response to nonadrenergic, noncholinergic neurotransmission. N Engl J Med. 1992;326(2):9094.Google Scholar
Meldrum, DR, et al. The link between erectile and cardiovascular health: the canary in the coal mine. Am J Cardiol. 2011;108(4):599606.Google Scholar
Flammer, AJ, et al. Effect of losartan, compared with atenolol, on endothelial function and oxidative stress in patients with type 2 diabetes and hypertension. J Hypertens. 2007;25(4):785791.Google Scholar
Zuo, Z, et al. Effect of periodontitis on erectile function and its possible mechanism. J Sex Med. 2011;8(9):25982605.Google Scholar
Giugliano, F, et al. Erectile dysfunction associates with endothelial dysfunction and raised proinflammatory cytokine levels in obese men. J Endocrin Invest. 2004;27(7):665669.Google Scholar
Yudkin, JS, et al. C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction. Arterioscler Thromb Vasc Biol. 1999;19(4):972978.Google Scholar
Koskimäki, J, et al. Regular intercourse protects against erectile dysfunction: Tampere Aging Male Urologic Study. Am J Med. 2008;121(7):592596.Google Scholar
Gerbild, H, et al. Physical activity to improve erectile function: a systematic review of intervention studies. Sex Med. 2018;6(2):7589.Google Scholar
Rosen, RC, et al. The International Index of Erectile Function (IIEF): a multidimensional scale for assessment of erectile dysfunction. Urology. 1997;49(6):822830.Google Scholar
He, F, et al. Redox mechanism of reactive oxygen species in exercise. Front Physiol. 2016;7:486.Google Scholar
Dorey, G, et al. Pelvic floor exercises for erectile dysfunction. BJU Int. 2005;96(4):595597.Google Scholar
Dorey, G, et al. Pelvic floor exercises for treating post-micturition dribble in men with erectile dysfunction: a randomized controlled trial. Urol Nurs. 2004;24(6):490497, 512.Google Scholar
Marseglia, L, et al. Oxidative stress in obesity: a critical component in human diseases. Int J Mol Sci. 2014;16(1):378400.Google Scholar
Russo, GI, et al. Insulin resistance is an independent predictor of severe lower urinary tract symptoms and of erectile dysfunction: results from a cross‐sectional study. J Sex Med. 2014;11(8):20742082.Google Scholar
Esposito, K, et al. Effect of lifestyle changes on erectile dysfunction in obese men. JAMA. 2004;291(24):29782984.Google Scholar
Esposito, K, et al. Effect of a single high-fat meal on endothelial function in patients with the metabolic syndrome: role of tumor necrosis factor-α. Nutr Metab Cardiovasc Dis. 2007;17(4):274279.Google Scholar
Malavige, LS, Levy, JC. Erectile dysfunction in diabetes mellitus. J Sex Med. 2009;6(5):12321247.Google Scholar
Tostes, RC, et al. Cigarette smoking and erectile dysfunction: focus on NO bioavailability and ROS generation. J Sex Med. 2008;5(6):12841295.Google Scholar
Kovac, JR, et al. Effects of cigarette smoking on erectile dysfunction. Andrologia. 2015;47(10):10871092.Google Scholar
Abou-Agag, LH, et al. Evidence of cardiovascular protection by moderate alcohol: role of nitric oxide. Free Radic Biol Med. 2005;39(4):540548.Google Scholar
Ignarro, LJ, et al. Pomegranate juice protects nitric oxide against oxidative destruction and enhances the biological actions of nitric oxide. Nitric Oxide. 2006;15(2):93102.Google Scholar
Peluffo, G, et al. Superoxide-mediated inactivation of nitric oxide and peroxynitrite formation by tobacco smoke in vascular endothelium: studies in cultured cells and smokers. Am J Physiol Heart Circ Physiol. 2009;296(6):H1781H1792.Google Scholar
Atkeson, A, et al. Endothelial function in obstructive sleep apnea. Prog Cardiovasc Dis. 2009;51(5):351362.Google Scholar
Pascual, M, et al. Erectile dysfunction in obstructive sleep apnea patients: a randomized trial on the effects of continuous positive airway pressure (CPAP). PLoS ONE. 2018;13(8):e0201930.Google Scholar
İrer, B, et al. Evaluation of sexual dysfunction, lower urinary tract symptoms and quality of life in men with obstructive sleep apnea syndrome and the efficacy of continuous positive airway pressure therapy. Urology. 2018;121:8692.Google Scholar
Hoekema, A, et al. Sexual function and obstructive sleep apnea–hypopnea: a randomized clinical trial evaluating the effects of oral-appliance and continuous positive airway pressure therapy. J Sex Med. 2007;4(4):11531162.Google Scholar
Litwin, MS, Nied, RJ, Dhanani, N. Health-related quality of life in men with erectile dysfunction. J Gen Intern Med. 1998;13(3):159166.Google Scholar
Aghighi, A, Grigoryan, VH, Delavar, A. Psychological determinants of erectile dysfunction among middle-aged men. Int J Impot Res. 2015;27(2):6368.Google Scholar
Lee, JC, et al. The prevalence and influence of significant psychiatric abnormalities in men undergoing comprehensive management of organic erectile dysfunction. Int J Impot Res. 2000;12(1):4751.Google Scholar

References

Banner, LL, Anderson, RU. Integrated sildenafil and cognitive-behavior sex therapy for psychogenic erectile dysfunction: a pilot study. J Sex Med. 2007;4:11171125.Google Scholar
Hsu, C, Sandford, B. The Delphi technique: making sense of consensus. Pract Assess Res Eval. 2007;12:18.Google Scholar
Burnett, AL, Nehra, A, Breau, RH, et al. Erectile dysfunction: AUA GuidelineJ Urol2018;200:635638.Google Scholar
Kovac, JR, Labbate, C, Ramasamy, R, et al. Effects of cigarette smoking on erectile dysfunction. Andrologia. 2015;47:10871092.Google Scholar
Bolona, ER, Uraga, MV, Haddad, RM, et al. Testosterone use in men with sexual dysfunction: a systematic review and meta-analysis of randomized placebo-controlled trials. Mayo Clin Proc. 2007;82:2028.Google Scholar
Spitzer, M, Basaria, S, Travison, TG, et al. Effect of testosterone replacement on response to sildenafil citrate in men with erectile dysfunction: a parallel, randomized trial. Ann Intern Med. 2012;157:681691.Google Scholar
Kim, JW, Oh, MM, Park, MG, et al. Combination therapy of testosterone enanthate and tadalafil on PDE5 inhibitor non-responders with severe and intermediate testosterone deficiency. Int J Impot Res. 2013;25:2933.Google Scholar
Alhathal, N, Elshal, AM, Carrier, S. Synergetic effect of testosterone and phophodiesterase-5 inhibitors in hypogonadal men with erectile dysfunction: a systematic review. Can Urol Assoc J. 2012;6:269274.Google Scholar
Gruenwald, I, Shenfeld, O, Chen, J, et al. Positive effect of counseling and dose adjustment in patients with erectile dysfunction who failed treatment with sildenafil. Eur Urol. 2006;50:134140.Google Scholar
Kim, ED, Seftel, AD, Goldfischer, ER, et al. A return to normal erectile function with tadalafil once daily after an incomplete response to asneeded PDE5 inhibitor therapy. J Sex Med. 2013;11:820830.Google Scholar
Carson, CC, Hatzichristou, DG, Carrier, S, et al. Erectile response with vardenafil in sildenafil nonresponders: a multicentre, double-blind, 12-week, flexible-dose, placebo-controlled erectile dysfunction clinical trial. BJU Int. 2004;94:13011309.Google Scholar
Salonia, A, Adaikan, G, Buvat, J, et al. Sexual rehabilitation after treatment for prostate cancer – part 1: recommendations from the Fourth International Consultation for Sexual Medicine (ICSM 2015). J Sex Med. 2017;14:285296.Google Scholar
Mahmood, J, Shamah, AA, Creed, TM, et al. Radiation-induced erectile dysfunction: recent advances and future directions. Adv Radiat Oncol. 2016;1:161169.Google Scholar
Weyne, E, Castiglione, F, Van der Aa, F, et al. Landmarks in erectile function recovery after radical prostatectomy. Nat Rev Urol. 2015;12:289297.Google Scholar
Salonia, A, Adaikan, G, Buvat, J, et al. Sexual rehabilitation after treatment for prostate cancer – part 2: recommendations from the Fourth International Consultation for Sexual Medicine (ICSM 2015). J Sex Med. 2017;14:297315.Google Scholar
Nehra, A, Jackson, G, Miner, M, et al. The Princeton III consensus recommendations for the management of erectile dysfunction and cardiovascular disease. Mayo Clin Proc. 2012;87:766778.Google Scholar
Pomeranz, HD. The relationship between phosphodiesterase-5 inhibitors and nonarteritic anterior ischemic optic neuropathy. J Neuroophthalmol. 2016;36:193196.Google Scholar
Pottegard, A, Schmidt, SA, Olesen, AB, et al. Use of sildenafil or other phosphodiesterase inhibitors and risk of melanoma. Br J Cancer. 2016;115:895900.Google Scholar
Michl, U, Molfenter, F, Graefen, M, et al. Use of phosphodiesterase type 5 inhibitors may adversely impact biochemical recurrence after radical prostatectomy. J Urol. 2015;193:479483.Google Scholar
Loeb, S, Folkvaljon, Y, Robinson, D, et al. Phosphodiesterase type 5 inhibitor use and disease recurrence after prostate cancer treatment. Eur Urol. 2016;70:824828.Google Scholar
Shabsigh, R, Padma-Nathan, H, Gittleman, M, et al. Intracavernous alprostadil alfadex is more efficacious, better tolerated, and preferred over intraurethral alprostadil plus optional actis: a comparative, randomized, crossover, multicenter study. Urology. 2000;55:109113.Google Scholar
Padma-Nathan, H, Hellstrom, WJ, Kaiser, FE, et al. Treatment of men with erectile dysfunction with transurethral alprostadil. Medicated Urethral System for Erection (MUSE) Study Group. N Engl J Med. 1997;336:17.Google Scholar
Williams, G, Abbou, CC, Amar, ET, et al. Efficacy and safety of transurethral alprostadil therapy in men with erectile dysfunction. MUSE Study Group. Br J Urol. 1998;81:889894.Google Scholar
Padma-Nathan, H, Yeager, JL. An integrated analysis of alprostadil topical cream for the treatment of erectile dysfunction in 1732 patientsUrology2006;68(2):386391.Google Scholar
Mehrotra, N, Gupta, M, Kovar, A, Meibohm, B. The role of pharmacokinetics and pharmacodynamics in phosphodiesterase-5 inhibitor therapyInt J Impot Res2007;19(3):253264.Google Scholar
Anaissie, J, Hellstrom, WJ. Clinical use of alprostadil topical cream in patients with erectile dysfunction: a review. Res Rep Urol. 2016;8:123331.Google Scholar
Khayyamfar, F, Forootan, SK, Ghasemi, H, et al. Evaluating the efficacy of vacuum constrictive device and causes of its failure in impotent patients. Urol J. 2013;10:10721078.Google Scholar
Chen, J, Mabjeesh, NJ, Greenstein, A. Sildenafil versus the vacuum erection device: patient preference. J Urol. 2001;166:17791781.Google Scholar
Kramer, AC, Schweber, A. Patient expectations prior to Coloplast Titan penile prosthesis implant predicts postoperative satisfaction. J Sex Med. 2010;7:22612266.Google Scholar
Mulcahy, JJ, Carson, CC 3rd. Long-term infection rates in diabetic patients implanted with antibiotic-impregnated versus nonimpregnated inflatable penile prostheses: 7-year outcomes. Eur Urol. 2011;60:167172.Google Scholar
Serefoglu, EC, Mandava, SH, Gokce, A, et al. Long-term revision rate due to infection in hydrophilic-coated inflatable penile prostheses: 11-year follow-up. J Sex Med. 2012;9:21822186.Google Scholar
Nehra, A, Carson, CC 3rd, Chapin, AK, et al. Longterm infection outcomes of 3-piece antibiotic impregnated penile prostheses used in replacement implant surgery. J Urol. 2012;188:899903.Google Scholar
Mirheydar, H, Zhou, T, Chang, DC, et al. Reoperation rates for penile prosthetic surgery. J Sex Med. 2016;13:129133.Google Scholar
Enemchukwu, EA, Kaufman, MR, Whittam, BM, et al. Comparative revision rates of inflatable penile prostheses using woven Dacron® fabric cylinders. J Urol. 2013;190:21892193.Google Scholar
Levine, LA, Rybak, J. Traction therapy for men with shortened penis prior to penile prosthesis implantation: a pilot study. J Sex Med. 2011;8:21122117.Google Scholar
Canguven, O, Talib, RA, Campbell, J, et al. Is the daily use of vacuum erection device for a month before penile prosthesis implantation beneficial? A randomized controlled trial. Andrology. 2017;5:103106.Google Scholar
Pahlajani, G, Raina, R, Jones, S, et al. Vacuum erection devices revisited: its emerging role in the treatment of erectile dysfunction and early penile rehabilitation following prostate cancer therapy. J Sex Med. 2012;9:11821189.Google Scholar
Tsambarlis, PN, Chaus, F, Levine, LA. Successful placement of penile prostheses in men with severe corporal fibrosis following vacuum therapy protocol. J Sex Med. 2017;14:4446.Google Scholar
Hakky, TS, Suber, J, Henry, G, et al. Penile enhancement procedures with simultaneous penile prosthesis placement. Adv Urol. 2012;2012:314612.Google Scholar
Chew, KK, Stuckey, BG. Use of transurethral alprostadil (MUSE) (prostaglandin E1) for glans tumescence in a patient with penile prosthesis. Int J Impot Res. 2000;12:195196.Google Scholar
Mulhall, JP, Jahoda, A, Aviv, N, et al. The impact of sildenafil citrate on sexual satisfaction profiles in men with a penile prosthesis in situ. BJU Int. 2004;93:9799.Google Scholar
Pryor, MB, Carrion, R, Wang, R, et al. Patient satisfaction and penile morphology changes with postoperative penile rehabilitation 2 years after Coloplast Titan prosthesis. Asian J Androl. 2016;18:754758.Google Scholar
Munarriz, R, Uberoi, J, Fantini, G, et al. Microvascular arterial bypass surgery: longterm outcomes using validated instruments. J Urol. 2009;182:643648.Google Scholar
Dabaja, AA, Teloken, P, Mulhall, JP. A critical analysis of candidacy for penile revascularization. J Sex Med. 2014;11:23272332.Google Scholar
Gruenwald, I, Appel, B, Kitrey, ND. Shockwave treatment of erectile dysfunction. Ther Adv Urol. 2013;5(2):9599.Google Scholar
Sokolakis, I, Hatzichristodoulou, G. Clinical studies on low intensity extracorporeal shockwave therapy for erectile dysfunction: a systematic review and meta-analysis of randomised controlled trials. Int J Impot Res. 2019;31:177194.Google Scholar
Yiou, R, Hamidou, L, Birebent, B, et al. Safety of intracavernous bone marrow-mononuclear cells for postradical prostatectomy erectile dysfunction: an open dose-escalation pilot study. Eur Urol. 2016;69:988991.Google Scholar
Al Demour, S, Jafar, H, Adwan, S. Safety and potential therapeutic effect of two intracavernous autologous bone marrow derived mesenchymal stem cells injections in diabetic patients with erectile dysfunction: an open label phase I clinical trialJ Urol Int. 2018;101:358365.Google Scholar
Chung, E. A review of current and emerging therapeutic options for erectile dysfunction. Med Sci (Basel). 2019;7(9):91.Google Scholar
Patel, D, Pastuszak, A, Hotaling, J. Emerging treatments for erectile dysfunction: a review of novel, non-surgical options. Curr Urol Rep. 2019;20:44.Google Scholar

References

Levine, LA, Burnett, AL. Standard operating procedures for Peyronie’s disease. J Sex Med. 2013;10(1):230244.Google Scholar
Hatzichristodoulou, G, Lahme, S. Peyronie’s disease. In: Merseburger, A, Kuczyk, M, Moul, J, eds. Urology at a Glance. Springer-Verlag; 2014:225236.Google Scholar
Segal, RL, Burnett, AL. Surgical management for Peyronie’s disease. World J Mens Health. 2013;31(1):111.Google Scholar
Chung, E, De Young, L, Brock, GB. Penile duplex ultrasonography in men with Peyronie’s disease: is it veno-occlusive dysfunction or poor cavernosal arterial inflow that contributes to erectile dysfunction?. J Sex Med. 2011;8(12):34463451.Google Scholar
Ralph, D, Gonzalez-Cadavid, N, Mirone, V, et al. The management of Peyronie’s disease: evidence-based 2010 guidelines. J Sex Med. 2010;7(7):23592374.Google Scholar
Yafi, FA, Hatzichristodoulou, G. Surgical reconstruction for Peyronie’s disease. AUA Update Ser. 2018;37(11–15):11.Google Scholar
Chen, R, McCraw, C, Lewis, R. Plication procedures – excisional and incisional corporoplasty and imbrication for Peyronie’s disease. Transl Androl Urol. 2016;5(3):318333.Google Scholar
Mulhall, J, Anderson, M, Parker, M. A surgical algorithm for men with combined Peyronie’s disease and erectile dysfunction: functional and satisfaction outcomes. J Sex Med. 2005;2(1):132138.Google Scholar
Chung, E, Wang, R, Ralph, D, Levine, L, Brock, G. A worldwide survey on Peyronie’s disease surgical practice patterns among surgeons. J Sex Med. 2018;15(4):568575.Google Scholar
Adibi, M, Hudak, SJ, Morey, AF. Penile plication without degloving enables effective correction of complex Peyronie’s deformities. Urology. 2012;79(4):831835.Google Scholar
Chung, PH, Tausch, TJ, Simhan, J, Scott, JF, Morey, AF. Dorsal plication without degloving is safe and effective for correcting ventral penile deformities. Urology. 2014;84(5):12281233.Google Scholar
Nesbit, RM. The surgical treatment of congenital chordee without hypospadias. J Urol. 1954;72(6):11781180.Google Scholar
Syed, AH, Abbasi, Z, Hargreave, TB. Nesbit procedure for disabling Peyronie’s curvature: a median follow-up of 84 months. Urology. 2003;61(5):9991003.Google Scholar
Yachia, D. Modified corporoplasty for the treatment of penile curvature. J Urol. 1990;143(1):8082.Google Scholar
Schwarzer, JU, Steinfatt, H. Tunica albuginea underlap – a new modification of the Nesbit procedure: description of the technique and preliminary results. J Sex Med. 2012;9(11):29702974.Google Scholar
Baskin, LS, Duckett, JW. Dorsal tunica albuginea plication for hypospadias curvature. J Urol. 1994;151(6):16681671.Google Scholar
Levine, LA. Penile straightening with tunica albuginea plication procedure: TAP procedure. In: Levine, LA, ed. Peyronie’s Disease: A Guide to Clinical Management. Humana; 2006:151159.Google Scholar
Essed, E, Schroeder, FH. New surgical treatment for Peyronie disease. Urology. 1985;25(6):582587.Google Scholar
Ebbehøj, J, Metz, P. New operation for “krummerik” (penile curvature). Urology. 1985;26(1):7678.Google Scholar
Klevmark, B, Andersen, M, Schultz, A, Talseth, T. Congenital and acquired curvature of the penis treated surgically by plication of the tunica albuginea. Br J Urol. 1994;74(4):501506.Google Scholar
Gholami, SS, Lue, TF. Correction of penile curvature using the 16-dot plication technique: a review of 132 patients. J Urol. 2002;167(5):20662069.Google Scholar
Mufti, GR, Aitchison, M, Bramwell, SP, Paterson, PJ, Scott, R. Corporeal plication for surgical correction of Peyronie’s disease. J Urol. 1990;144(2 Pt 1):281282.Google Scholar
Schultheiss, D, Meschi, MR, Hagemann, J, Truss, MC, Stief, CG, Jonas, U. Congenital and acquired penile deviation treated with the Essed plication method. Eur Urol. 2000;38(2):167171.Google Scholar
Licht, MR, Lewis, RW. Modified Nesbit procedure for the treatment of Peyronie’s disease: a comparative outcome analysis. J Urol. 1997;158(2):460463.Google Scholar
Rybak, J, Papagiannopoulos, D, Levine, L. A retrospective comparative study of traction therapy vs. no traction following tunica albuginea plication or partial excision and grafting for Peyronie’s disease: measured lengths and patient perceptions. J Sex Med. 2012;9(9):23962403.Google Scholar
Papagiannopoulos, D, Phelps, J, Yura, E, Levine, LA. Surgical outcomes from limiting the use of nonabsorbable suture in tunica albuginea plication for Peyronie’s disease. Int J Impot Res. 2017;29(6):258261.Google Scholar
Devine, CJ, Horton, CE. Surgical treatment of Peyronie’s disease with a dermal graft. J Urol. 1974;111(1):4449.Google Scholar
Austoni, E, Colombo, F, Mantovani, F, Patelli, E, Fenice, O. Radical surgery and conservation of erection in Peyronie’s disease. Arch Ital Urol Androl. 1995;67(5):359364.Google Scholar
El-Sakka, AI, Rashwan, HM, Lue, TF. Venous patch graft for Peyronie’s disease. Part II: outcome analysis. J Urol. 1998;160(6 Pt 1):20502053.Google Scholar
Kadioglu, A, Sanli, O, Akman, T, Ersay, A, Guven, S, Mammadov, F. Graft materials in Peyronie’s disease surgery: a comprehensive review. J Sex Med. 2007;4(3):581595.Google Scholar
Knoll, LD. Use of small intestinal submucosa graft for the surgical management of Peyronie’s disease. J Urol. 2007;178(6):24742478.Google Scholar
Breyer, BN, Brant, WO, Garcia, MM, Bella, AJ, Lue, TF. Complications of porcine small intestine submucosa graft for Peyronie’s disease. J Urol. 2007;177(2):589591.Google Scholar
Hatzichristodoulou, G, Yang, DY, Ring, JD, Hebert, KJ, Ziegelman, MJ, Köhler, TS. Multicenter experience using collagen fleece for plaque incision with grafting to correct residual curvature at the time of inflatable penile prosthesis placement in patients with Peyronie’s disease. J Sex Med. 2020;17(6):11681174.Google Scholar
Rosenhammer, B, Sayedahmed, K, Fritsche, HM, Burger, M, Kübler, H, Hatzichristodoulou, G. Long-term outcome after grafting with small intestinal submucosa and collagen fleece in patients with Peyronie’s disease: a matched pair analysis. Int J Impot Res. 2019;31(4):256262.Google Scholar
Hatzichristodoulou, G, Fiechtner, S, Gschwend, J, Lahme, S. Long-term results after partial plaque excision and grafting with collagen fleece in Peyronie’s disease. J Sex Med. 2016;13(5):S103.Google Scholar
Nehra, A, Alterowitz, R, Culkin, DJ, et al. Peyronie’s disease: AUA guideline. J Urol. 2015;194(3):745753.Google Scholar
Montague, DK, Lakin, MM. Early experience with the controlled girth and length expanding cylinder of the American Medical Systems Ultrex penile prosthesis. J Urol. 1992;148(5):14441446.Google Scholar
Chung, PH, Francis Scott, J, Morey, AF. High patient satisfaction of inflatable penile prosthesis insertion with synchronous penile plication for erectile dysfunction and Peyronie’s disease. J Sex Med. 2014;11(6):15931598.Google Scholar
Mulhall, J, Ahmed, A, Anderson, M. Penile prosthetic surgery for Peyronie’s disease: defining the need for intraoperative adjuvant maneuvers. J Sex Med. 2004;1(3):318321.Google Scholar
El-Khatib, FM, Huynh, LM, Yafi, FA. Intraoperative methods for residual curvature correction during penile prosthesis implantation in patients with Peyronie’s disease and refractory erectile dysfunction. Int J Impot Res. 2020;32(1):4351.Google Scholar
Levine, LA, Becher, EF, Bella, AJ, et al. Penile prosthesis surgery: current recommendations from the International Consultation on Sexual Medicine. J Sex Med. 2016;13(4):489518.Google Scholar
Perito, P, Wilson, SK. The Peyronie’s plaque “scratch”: an adjunct to modeling. J Sex Med. 2013;10(5):11941197.Google Scholar
Shaeer, O. Trans‐corporal incision of Peyronie’s plaques. J Sex Med. 2011;8(2):589593.Google Scholar
Shaeer, O, Shaeer, K, AbdelRahman, IFS, Raheem, A. Dorsal phalloplasty accompanying penile prosthesis implantation minimizes penile shortening and improves patient satisfaction. Int J Impot Res. 2019;31(4):276281.Google Scholar
Sansalone, S, Garaffa, G, Djinovic, R, et al. Simultaneous total corporal reconstruction and implantation of a penile prosthesis in patients with erectile dysfunction and severe fibrosis of the corpora cavernosa. J Sex Med. 2012;9(7):19371944.Google Scholar
Rolle, L, Ceruti, C, Timpano, M, et al. A new, innovative, lengthening surgical procedure for Peyronie’s disease by penile prosthesis implantation with double dorsal‐ventral patch graft: the “sliding technique”. J Sex Med. 2012;9(9):23892395.Google Scholar
Egydio, PH, Kuehhas, FE. Penile lengthening and widening without grafting according to a modified “sliding” technique. BJU Int. 2015;116(6):965972.Google Scholar
Wilson, SK, Mora-Estaves, C, Egydio, P, et al. Glans necrosis following penile prosthesis implantation: prevention and treatment suggestions. Urology. 2017;107:144148.Google Scholar
Clavell-Hernández, J, Wang, R. Penile size restoration with nondegloving approach for Peyronie’s disease: initial experience. J Sex Med. 2018;15(10):15061513.Google Scholar

References

Wei, JT, Calhoun, E, Jacobsen, SJ. Urologic diseases in America project: benign prostatic hyperplasia. J Urol. 2005;173(4):12561261.Google Scholar
Lim, KB. Epidemiology of clinical benign prostatic hyperplasia. Asian J Urol. 2017;4(3):148151.Google Scholar
McVary, KT, et al. Update on AUA guideline on the management of benign prostatic hyperplasia. J Urol. 2011;185(5):17931803.Google Scholar
Patel, ND, Parsons, JK. Epidemiology and etiology of benign prostatic hyperplasia and bladder outlet obstruction. Indian J Urol. 2014;30(2):170176.Google Scholar
Villers, A, Steg, A, Boccon-Gibod, L. Anatomy of the prostate: review of the different models. Eur Urol. 1991;20(4):261268.Google Scholar
McNeal, JE. Normal histology of the prostate. Am J Surg Pathol. 1988;12(8):619633.Google Scholar
Carson, C, 3rd, Rittmaster, R. The role of dihydrotestosterone in benign prostatic hyperplasia. Urology. 2003;61(4 Suppl. 1):27.Google Scholar
Loeb, S, et al. Prostate volume changes over time: results from the Baltimore Longitudinal Study of Aging. J Urol. 2009;182(4):14581462.Google Scholar
Bellucci, CHS, et al. Increased detrusor collagen is associated with detrusor overactivity and decreased bladder compliance in men with benign prostatic obstruction. Prostate Int. 2017;5(2):7074.Google Scholar
Aslan, G, et al. Association between lower urinary tract symptoms and erectile dysfunction. Arch Androl. 2006;52(3):155162.Google Scholar
McVary, KT. BPH: epidemiology and comorbidities. Am J Manag Care. 2006;12(Suppl. 5):S122S128.Google Scholar
Weiss, JP, Everaert, K. Management of nocturia and nocturnal polyuria. Urology. 2019;133s:2433.Google Scholar
Reynard, JM, et al. The ICS-‘BPH’ Study: uroflowmetry, lower urinary tract symptoms and bladder outlet obstruction. Br J Urol. 1998;82(5):619623.Google Scholar
Stone, BV, et al. Prostate size, nocturia and the digital rectal examination: a cohort study of 30 500 men. BJU Int. 2017;119(2):298304.Google Scholar
Parsons, JK. Modifiable risk factors for benign prostatic hyperplasia and lower urinary tract symptoms: new approaches to old problems. J Urol. 2007;178(2):395401.Google Scholar
Kristal, AR, et al. Dietary patterns, supplement use, and the risk of symptomatic benign prostatic hyperplasia: results from the prostate cancer prevention trial. Am J Epidemiol. 2008;167(8):925934.Google Scholar
Parsons, JK, Im, R. Alcohol consumption is associated with a decreased risk of benign prostatic hyperplasia. J Urol. 2009;182(4):14631468.Google Scholar
Abrams, P, et al. Evaluation and treatment of lower urinary tract symptoms in older men. J Urol. 2009;181(4):17791787.Google Scholar
Fowke, JH, et al. Association between physical activity, lower urinary tract symptoms (LUTS) and prostate volume. BJU Int. 2013;111(1):122128.Google Scholar
Parsons, JK, et al. Obesity increases and physical activity decreases lower urinary tract symptom risk in older men: the Osteoporotic Fractures in Men study. Eur Urol. 2011;60(6):11731180.Google Scholar
Parsons, JK, et al. Obesity and benign prostatic hyperplasia: clinical connections, emerging etiological paradigms and future directions. J Urol. 2013;189(Suppl. 1):S102S106.Google Scholar
Wein, AJ. Diagnosis and treatment of the overactive bladder. Urology. 2003;62(5 Suppl. 2):2027.Google Scholar
Wuerstle, MC, et al. Contribution of common medications to lower urinary tract symptoms in men. Arch Intern Med. 2011;171(18):16801682.Google Scholar
Bent, S, et al. Saw palmetto for benign prostatic hyperplasia. N Eng J Med. 2006;354(6):557566.Google Scholar
Lepor, H. Medical treatment of benign prostatic hyperplasia. Rev Urol. 2011;13(1):2033.Google Scholar
Bragg, R, et al. Mirabegron: a beta-3 agonist for overactive bladder. Consult Pharm. 2014;29(12):823837.Google Scholar
Lepor, H. The evolution of alpha-blockers for the treatment of benign prostatic hyperplasia. Rev Urol. 2006;8(Suppl. 4):S3S9.Google Scholar
Laydner, HK, et al. Phosphodiesterase 5 inhibitors for lower urinary tract symptoms secondary to benign prostatic hyperplasia: a systematic review. BJU Int. 2011;107(7):11041109.Google Scholar
McConnell, JD, et al. The long-term effect of doxazosin, finasteride, and combination therapy on the clinical progression of benign prostatic hyperplasia. N Engl J Med. 2003;349(25):23872398.Google Scholar
Christou, CD, et al. Intraoperative floppy iris syndrome: updated perspectives. Clin Ophthalmol. 2020;14:463471.Google Scholar
Kirby, RS, et al. Efficacy and tolerability of doxazosin and finasteride, alone or in combination, in treatment of symptomatic benign prostatic hyperplasia: the Prospective European Doxazosin and Combination Therapy (PREDICT) trial. Urology. 2003;61(1):119126.Google Scholar
Roehrborn, CG, et al. The effects of combination therapy with dutasteride and tamsulosin on clinical outcomes in men with symptomatic benign prostatic hyperplasia: 4-year results from the CombAT study. Eur Urol. 2010;57(1):123131.Google Scholar
Nickel, JC. Comparison of clinical trials with finasteride and dutasteride. Rev Urol. 2004;6(Suppl. 9):S31S39.Google Scholar
Boyle, P, Gould, AL, Roehrborn, CG. Prostate volume predicts outcome of treatment of benign prostatic hyperplasia with finasteride: meta-analysis of randomized clinical trials. Urology. 1996;48(3):398405.Google Scholar
Liu, L, et al. Effect of 5α-reductase inhibitors on sexual function: a meta-analysis and systematic review of randomized controlled trials. J Sex Med. 2016;13(9):12971310.Google Scholar
Gonzalez, AN, et al. The prevalence of bladder cancer during cystoscopy for asymptomatic microscopic hematuria. Urology. 2019;126:3438.Google Scholar
Davis, R, et al. Diagnosis, evaluation and follow-up of asymptomatic microhematuria (AMH) in adults: AUA guideline. J Urol. 2012;188(6 Suppl.):24732481.Google Scholar
Puchner, PJ, Miller, MI. The effects of finasteride on hematuria associated with benign prostatic hyperplasia: a preliminary report. J Urol. 1995;154(5):17791782.Google Scholar
Andriole, GL, et al. Effect of dutasteride on the risk of prostate cancer. N Engl J Med. 2010;362(13):11921202.Google Scholar
Thompson, IM, et al. Long-term survival of participants in the prostate cancer prevention trial. N Engl J Med. 2013;369(7):603610.Google Scholar
Herbison, P, et al. Effectiveness of anticholinergic drugs compared with placebo in the treatment of overactive bladder: systematic review. BMJ. 2003;326(7394):841844.Google Scholar
Feinberg, M. The problems of anticholinergic adverse effects in older patients. Drugs Aging. 1993;3(4):335348.Google Scholar
Gray, SL, et al. Cumulative use of strong anticholinergics and incident dementia: a prospective cohort study. JAMA Intern Med. 2015;175(3):401407.Google Scholar
Wennberg, AMV, et al. Sleep disturbance, cognitive decline, and dementia: a review. Semin Neurol. 2017;37(4):395406.Google Scholar
Foster, HE, et al. Surgical management of lower urinary tract symptoms attributed to benign prostatic hyperplasia: AUA Guideline Amendment 2019. J Urol. 2019;202(3):592598.Google Scholar

References

Sigalos, JT, Pastuszak, AW. Chronic orchialgia: epidemiology, diagnosis and evaluation. Transl Androl Urol. 2017;6:S37S43.Google Scholar
Wagenlehner, FM, van Till, JW, Magri, V, et al. National Institutes of Health Chronic Prostatitis Symptom Index (NIH-CPSI) symptom evaluation in multinational cohorts of patients with chronic prostatitis/chronic pelvic pain syndrome. Eur Urol. 2013;63:953959.Google Scholar
Schover, LR. Psychological factors in men with genital pain. Cleve Clin J Med. 1990;57:697700.Google Scholar
Costabile, RA, Hahn, M, McLeod, DG. Chronic orchialgia in the pain prone patient: the clinical perspective. J Urol. 1991;146:15711574.Google Scholar
Ciftci, H, Savas, M, Gulum, M, Yeni, E, Verit, A, Topal, U. Evaluation of sexual function in men with orchialgia. Arch Sex Behav. 2011;40:631634.Google Scholar
Patel, AP. Anatomy and physiology of chronic scrotal pain. Transl Androl Urol. 2017;6:S51S56.Google Scholar
Hunter, CW, Stovall, B, Chen, G, Carlson, J, Levy, R. Anatomy, pathophysiology and interventional therapies for chronic pelvic pain: a review. Pain Physician. 2018;21:147167.Google Scholar
Chaudhari, R, Sharma, S, Khant, S,