Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-18T01:25:01.377Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  23 May 2010

Nestor Schmajuk
Affiliation:
Duke University, North Carolina
Get access
Type
Chapter
Information
Mechanisms in Classical Conditioning
A Computational Approach
, pp. 425 - 459
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amabile, T. M. (1983). The social psychology of creativity: a componential conceptualization. Journal of Personality and Social Psychology, 45, 357–376.CrossRefGoogle Scholar
Amsel, A. (1958). The role of frustrative nonreward in noncontinuous reward situations. Psychological Bulletin, 55, 102–119.CrossRefGoogle ScholarPubMed
Andreasen, N. J. & Powers, P. S. (1974). Overinclusive thinking in mania and schizophrenia. British Journal of Psychiatry, 125, 452–456.CrossRefGoogle Scholar
Andreasen, N. J. & Powers, P. S. (1975). Creativity and psychosis. An examination of conceptual style. Archives of General Psychiatry, 32, 70–73.CrossRefGoogle ScholarPubMed
Ashby, F. G., Isen, A. M. & Turken, A. U. (1999). A neuropsychological theory of positive affect and its influence on cognition. Psychological Review, 106, 529–550.CrossRefGoogle ScholarPubMed
Atre-Vaidya, N., Taylor, M. A., Seidenberg, M., Reed, R., Perrine, A. & Glick-Oberwise, F. (1998). Cognitive deficits, psychopathology, and psychosocial functioning in bipolar mood disorder. Neuropsychiatry, Neuropsychology, & Behavioral Neurology, 11, 120–126.Google ScholarPubMed
Aylward, E., Walker, E. & Bettes, B. (1984). Intelligence in schizophrenia: meta-analysis of the research. Schizophrenia Bulletin, 10, 430–459.CrossRefGoogle Scholar
Ayres, J. J. B., Albert, M. & Bombace, J. C. (1987). Extending conditioned stimuli before versus after unconditioned stimuli: implication for real-time models of conditioning. Journal of Experimental Psychology: Animal Behavior Processes, 13, 168–181.Google Scholar
Ayres, J. J. B., Philbin, D., Cassidy, S. & Belling, L. (1992). Some parameters of latent inhibition. Learning and Motivation, 23, 269–287.CrossRefGoogle Scholar
Baker, A. G. (1974). Conditioned inhibition is not the symmetrical opposite of conditioned excitation: a test of the Rescorla-Wagner model. Learning and Motivation, 5, 396–379.CrossRefGoogle Scholar
Baker, A. G. & Mercier, P. (1982). Extinction of the context and latent inhibition. Learning and Motivation, 13, 391–416.CrossRefGoogle Scholar
Baker, A. G., Haskins, C. E. & Hall, G. (1990). Stimulus generalization decrement in latent inhibition to a compound following exposure to the elements of the compound. Animal Learning & Behavior, 18, 162–170.CrossRefGoogle Scholar
Baker, A. G., Mercier, P., Gabel, J. & Baker, P. A. (1981). Contextual conditioning and the US preexposure effect in conditioned fear. Journal of Experimental Psychology: Animal Behavior Processes, 7, 109–128.Google ScholarPubMed
Barela, P. (1999). Theoretical mechanisms underlying the trial-spacing effect in Pavlovian fear conditioning. Journal of Experimental Psychology: Animal Behavior Processes, 25, 177–195.Google ScholarPubMed
Barnet, R. C., Grahame, N. J. & Miller, R. R. (1993). Temporal encoding as a determinant of blocking. Journal of Experimental Psychology: Animal Behavior Processes, 19, 327–341.Google ScholarPubMed
Baruch, I., Hemsley, D. & Gray, J. A. (1988). Differential performance of acute and chronic schizophrenics in a latent inhibition task. Journal of Nervous and Mental Diseases, 176, 598–606.CrossRefGoogle Scholar
Beckers, T., Houwer, J., Pineno, O. & Miller, R. R. (2005). Outcome additivity and outcome maximality influence cue competition in human causal learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31, 238–249.Google ScholarPubMed
Beckers, T., Miller, R. R., Houwer, J. & Urushihara, K. (2006). Reasoning rats: forward blocking in Pavlovian animal conditioning is sensitive to constraints of causal inference. Journal of Experimental Psychology: General, 135, 92–102.CrossRefGoogle ScholarPubMed
Bennett, C. H., Maldonado, A. & Mackintosh, N. J. (1995). Learned irrelevance is not the sum of exposure to CS and US. The Quarterly Journal of Experimental Psychology B: Comparative and Physiological Psychology, 48B, 117–128.Google Scholar
Berger, T. W. & Orr, W. B. (1983). Hippocampectomy selectively disrupts discrimination reversal conditioning of the rabbit nictitating membrane response. Behavioral Brain Research, 8, 49–68.CrossRefGoogle ScholarPubMed
Berger, T. W. & Thompson, R. F. (1978a). Neuronal plasticity in the limbic system during classical conditioning of the rabbit nictitating membrane response. I. The hippocampus. Brain Research, 145, 323–346.Google ScholarPubMed
Berger, T. W. & Thompson, R. F. (1978b). Neuronal plasticity in the limbic system during classical conditioning of the rabbit nictitating membrane response. II. Septum and mammillary bodies. Brain Research, 156, 293–314.CrossRefGoogle ScholarPubMed
Berger, T. W. & Thompson, R. F. (1982). Hippocampal cellular plasticity during extinction of classically conditioned nictitating membrane behavior. Behavioral Brain Research, 4, 63–76.CrossRefGoogle ScholarPubMed
Berger, T. W., Clark, G. A. & Thompson, R. F. (1980). Learning dependent neuronal responses recorded from limbic system brain structures during classical conditioning. Physiological Psychology, 8, 155–167.CrossRefGoogle Scholar
Berger, T. W., Rinaldi, P. C., Weisz, D. J. & Thompson, R. F. (1983). Single unit analysis of different hippocampal cell types during classical conditioning of rabbit nictitating membrane response. Journal of Neurophysiology, 50, 1197–1219.CrossRefGoogle ScholarPubMed
Berthier, N. E. & Moore, J. W. (1990). Activity of deep cerebellar nuclear cells during classical conditioning of nictitating membrane extension in rabbits. Experimental Brain Research, 83, 44–54.CrossRefGoogle ScholarPubMed
Best, M. R., Gemberling, G. A. & Johnson, P. E. (1979). Disrupting the conditioned stimulus preexposure effect in flavor aversion learning: effects of interoceptive distractor manipulations. Journal of Experimental Psychology: Animal Behavior Processes, 5, 321–334.Google ScholarPubMed
Blaisdell, A. P., Denniston, J. C. & Miller, R. R. (1998). Temporal encoding as a determinant of overshadowing. Journal of Experimental Psychology: Animal Behavior Processes, 24, 72–83.Google ScholarPubMed
Blaisdell, A. P., Gunther, L. & Miller, R. (1999). Recovery from blocking achieved by extinguishing the blocking CS. Animal Learning & Behavior, 27, 63–76.CrossRefGoogle Scholar
Blaisdell, A., Bristol, A., Gunther, L. & Miller, R. (1998). Overshadowing and latent inhibition counteract each other: further support for the comparator hypothesis. Journal of Experimental Psychology: Animal Behavior Processes, 24, 335–251.Google ScholarPubMed
Blaisdell, A. P., Sawa, K., Leising, K. J. & Waldmann, M. R. (2006). Causal reasoning in rats. Science, 311, 1020–1022.CrossRefGoogle ScholarPubMed
Blough, D. S. (1975). Steady state data and a quatitative model of operant generalization and discrimination. Journal of Experimental Psychology: Animal Bheavior Processes, 104, 3–21.Google Scholar
Boden, M. A. (1999). Computer models of creativity. In Handbook of Creativity, ed. Stenberg, R. J.. Cambridge: Cambridge University Press.Google Scholar
Bonardi, C. & Hall, G. (1994a). Occasion-setting training renders stimuli more similar: acquired equivalence between the targets of feature positive discriminations. Quarterly Journal of Experimental Psychology, 47B, 63–82.Google Scholar
Bonardi, C. & Hall, G. (1994b). A search for blocking of occasion setting using a nonexplicit training procedure. Learning and Motivation, 25, 105–125.CrossRefGoogle Scholar
Bonardi, C., Hall, G. & Ong, S. Y. (2005). Analysis of the learned irrelevance effect in appetitive Pavlovian conditioning. The Quarterly Journal of Experimental Psychology B: Comparative and Physiological Psychology, 58B, 141–162.Google Scholar
Bottjer, S. W. (1982). Conditioned approach and withdrawal behavior in pigeons: effects of a novel extraneous stimulus during acquisition and extinction. Learning and Motivation, 13, 44–67.CrossRefGoogle Scholar
Boughner, R. L. & Papini, M. R. (2006). Appetitive latent inhibition in rats: preexposure performance does not predict conditioned performance. Behavioural Processes, 72, 42–51.CrossRefGoogle Scholar
Bouton, M. E. (1984). Differential control by context in the inflation and reinstatement paradigms. Journal of Experimental Psychology: Animal Behavior Processes, 10, 56–74.Google Scholar
Bouton, M. E. (1986). Slow reacquisition following the extinction of conditioned suppression. Learning and Motivation, 17, 1–15.CrossRefGoogle Scholar
Bouton, M. E. (1993). Context, time, and memory retrieval in the interference paradigms of Pavlovian learning. Psychological Bulletin, 114, 80–99.CrossRefGoogle ScholarPubMed
Bouton, M. E. (1994). Conditioning, remembering, and forgetting. Journal of Experimental Psychology: Animal Behavior Processes, 20, 219–231.Google Scholar
Bouton, M. E. (2002). Context, ambiguity, and unlearning: sources of relapse after behavioral extinction. Biological Psychiatry, 52, 976–986.CrossRefGoogle ScholarPubMed
Bouton, M. E. & Bolles, R. C. (1979a). Role of conditioned contextual stimuli in reinstatement of extinguished fear. Journal of Experimental Psychology: Animal Behavior Processes, 5, 368–378.Google ScholarPubMed
Bouton, M. E. & Bolles, R. C. (1979b). Contextual control of the extinction of conditioned fear. Learning and Motivation, 10, 445–466.CrossRefGoogle Scholar
Bouton, M. E. & King, D. A. (1983). Contextual control of the extinction of conditioned fear: tests for the associative value of the context. Journal of Experimental Psychology: Animal Behavior Processes, 9, 248–265.Google ScholarPubMed
Bouton, M. E. & King, D. A. (1986). Effect of context on performance to conditioned stimuli with mixed histories of reinforcement and nonreinforcement. Journal of Experimental Psychology: Animal Behavior Processes, 12, 4–15.Google Scholar
Bouton, M. E. & Nelson, J. B. (1994). Context-specificity of target versus feature inhibition in a feature-negative discrimination. Journal of Experimental Psychology: Animal Behavior Processes, 20, 51–65.Google Scholar
Bouton, M. E. & Swartzentruber, D. (1986). Analysis of the associative and occasion-setting properties of contexts participating in a Pavlovian discrimination. Journal of Experimental Psychology: Animal Behavioral Processes, 12, 333–350.Google Scholar
Bouton, M. E. & Swartzentruber, D. (1989). Slow reacquisition following extinction: context, encoding, and retrieval mechanisms. Journal of Experimental Psychology: Animal Behavior Processes, 15, 43–53.Google Scholar
Bouton, M. E.,Woods, A. M. & Pineño, O. (2004). Occasional reinforced trials during extinction can slow the rate of rapid reacquisition. Learning and Motivation, 35, 371–390.CrossRefGoogle Scholar
Bouton, M. E., Rosengard, C., Achenbach, G. G., Peck, C. A.et al. (1993). Effects of contextual conditioning and unconditioned stimulus presentation on performance in appetitive conditioning. The Quarterly Journal of Experimental Psychology B: Comparative and Physiological Psychology, 46B, 63–95.Google Scholar
Bower, G. H. & Hilgard, E. R. (1981). Theories of Learning. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Brandon, S. E. & Wagner, A. R. (1998). Occasion setting: influences of conditioned emotional responses and configural cues. In Occasion Setting: Associative Learning and Cognition in Animals. ed. N. A. & P. C. Holland, Schmajuk. Washington, DC: American Psychological Association, pp. 343–382; p. xxi.Google Scholar
Brandon, S. E. & Wagner, A. R. (1991). Modulation of a discrete Pavlovian conditioned reflex by a putative emotive Pavlovian conditioned stimulus. Journal of Experimental Psychology: Animal Behavior Processes, 17, 299–311.Google ScholarPubMed
Brandon, S. E., Vogel, E. H. & Wagner, A. R. (2000). A componential view of configural cues in generalization and discrimination in Pavlovian conditioning. Behavioural Brain Research, 110, 67–72.CrossRefGoogle ScholarPubMed
Brandon, S. E., Vogel, E. H. & Wagner, A. R. (2002). Computational theories of classical conditioning. In A Neuroscientist's Guide to Classical Conditioning, ed. Moore, J. W.. New York: Springer, pp. 232–310.Google Scholar
Breese, C. R., Hampson, R. E. & Deadwyler, S. A. (1989). Hippocampal place cells: stereotypy and plasticity. Journal of Neuroscience, 9, 1097–1111.CrossRefGoogle ScholarPubMed
Brodal, P. (1992). The central nervous system. Structure and function. Oxford: Oxford University Press.Google Scholar
Brogden, W. J. (1939). Sensory pre conditioning. Journal of Experimental Psychology, 25, 323–332.CrossRefGoogle Scholar
Brooks, D. C. & Bouton, M. E. (1993). A retrieval cue for extinction attenuates spontaneous recovery. Journal of Experimental Psychology: Animal Behavior Processes, 19, 77–89.Google ScholarPubMed
Brooks, D. C. & Bouton, M. E. (1994). A retrieval cue for extinction attenuates response recovery (renewal) caused by a return to the conditioning context. Journal of Experimental Psychology: Animal Behavior Processes, 20, 366–379.Google Scholar
Brooks, D. C. & Bowker, J. L. (2001). Further evidence that conditioned inhibition is not the mechanism of an extinction cue's effect: a reinforced cue prevents spontaneous recovery. Animal Learning & Behavior, 29, 381–388.CrossRefGoogle Scholar
Buchanan, S. L. & Powell, D. A. (1982). Cingulate cortex: its role in Pavlovian conditioning. Journal of Comparative and Physiological Psychology, 96, 755–774.CrossRefGoogle ScholarPubMed
Buchel, C., Morris, J., Dolan, R. J. & Friston, K. J. (1998). Brain systems mediating aversive conditioning: an event-related fMRI study. Neuron, 20, 947–957.CrossRefGoogle ScholarPubMed
Buhusi, C. V. & Schmajuk, N. A. (1996). Attention, configuration, and hippocampal function. Hippocampus, 6, 621–642.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Buhusi, C. V. & Schmajuk, N. A. (1999). Timing in simple conditioning and occasion setting: a neural network approach. Behavioral Processes, 45, 33–57.CrossRefGoogle ScholarPubMed
Buhusi, C. V., Schmajuk, N. A. & Dunn, L. (1999). Haloperidol administration at preexposure may impair latent inhibition. Abstracts of the Society for Neuroscience, Miami Beach, FL.Google Scholar
Buhusi, C. V., Gray, J. A. & Schmajuk, N. A. (1998). The perplexing effects of hippocampal lesions on latent inhibition: a neural network solution. Behavioral Neuroscience, 112, 316–351.CrossRefGoogle ScholarPubMed
Bunsey, M. & Eichenbaum, H. (1996). Conservation of hippocampal memory function in rats and humans. Nature, 379, 255–257.CrossRefGoogle ScholarPubMed
Burch, G. S. J., Hemsley, D. R., Pavelis, C. & Corr, P. J. (2006). Personality, creativity and latent inhibition. European Journal of Personality, 20, 107–122.CrossRefGoogle Scholar
Burkhardt, P. E., & Ayres, J. J. (1978). CS and US duration effects in one-trial simultaneous fear conditioning as assessed by conditioned suppression of licking in rats. Animal Learning & Behavior, 6, 225–230.CrossRefGoogle Scholar
Burstein, K. R. (1967). Spontaneous recovery: a (Hullian) non-inhibition interpretation. Psychonomic Science, 7, 389–390.CrossRefGoogle Scholar
Bush, R. R. & Mosteller, F. (1955). Stochastic Models for Learning. New York: Wiley.CrossRefGoogle Scholar
Cain, C. K., Blouin, A. M. & Barad, M. (2003). Temporally massed CS presentations generate more fear extinction than spaced presentations. Journal of Experimental Psychology: Animal Behavior Processes, 29, 323–333.Google ScholarPubMed
Campbell, D. T. (1960). Blind variation and selective retention in creative thought as in other knowledge processes. Psychological Review, 67, 380–400.CrossRefGoogle ScholarPubMed
Campolattaro, M. M. & Freeman, J. H. (2006a). Perirhinal cortex lesions impair simultaneous but not serial feature-positive discrimination learning. Behavioral Neuroscience, 120, 970–975.CrossRefGoogle Scholar
Campolattaro, M. M., & Freeman, J. H. (2006b). Perirhinal cortex lesions impair feature-negative discrimination. Neurobiology of Learning & Memory, 86, 205–213.CrossRefGoogle ScholarPubMed
Capaldi, E. J. (1967). A sequential theory of instrumental training. In The Psychology of Learning and Motivation, ed. Spence, K. W. & Spence, J. T.. New York: Academic, pp. 67–156.Google Scholar
Capaldi, E. J. (1971). Memory and learning: A sequential viewpoint. In Animal Memory, eds. Honig, W. K. & James, P. H. R.. New York: Academic, pp. 111–154.Google Scholar
Carelli, R. M. & Deadwyler, S. A. (1994). A comparison of nucleus accumbens neuronal firing patterns during cocaine self-administration and water reinforcement in rats. Journal of Neuroscience, 14, 7735–7746.CrossRefGoogle ScholarPubMed
Carr, A. F. (1974). Latent inhibition and overshadowing in conditioned emotional response conditioning with rats. Journal of Comparative and Physiological Psychology, 86, 718–723.CrossRefGoogle ScholarPubMed
Carson, S. H., Peterson, J. B. & Higgins, D. M. (2003). Decreased latent inhibition is associated with increased creative achievement in high-functioning individuals. Journal of Personality and Social Psychology, 85, 499–506.CrossRefGoogle ScholarPubMed
Cassaday, H. J., Mitchell, S. N., Williams, J. H. & Gray, J. A. (1993). 5,7-Dihydroxytryptamine lesions in the fornix-fimbria attenuate latent inhibition. BehavioralNeural Biology, 59, 194–207.CrossRefGoogle Scholar
Chan, K-H, Jarrard, L. E. & Davidson, T. L. (2003). The effects of selective ibotenate lesions of the hippocamapus on conditioned inhibition and extinction. Cognitive Affective Behavioral Neuroscience, 3, 111–119.CrossRefGoogle ScholarPubMed
Channell, S. & Hall, G. (1981). Facilitation and retardation of discrimination learning after exposure to the stimuli. Journal of Experimental Psychology: Animal Behavior Processes, 7, 437–446.Google ScholarPubMed
Chapman, G. (1991). Trial order affects cue interaction in contingency judgement. Journal of Experimental Psychology: Learning, Memory & Cognition, 17, 837–854.Google Scholar
Chorazyna, H. (1962). Some properties of conditioned inhibition. Acta Biologiae Experimentalis, 22, 5–13.Google ScholarPubMed
Church, R. M. (1990). A Turing test for computational and associative theories of learning. Current Directions in Psychological Sciences, 10, 132–136.CrossRefGoogle Scholar
Church, R. M. & Broadbent, H. A. (1990). A connectionist model of timing. In Quantitative Models of Behavior: Neural Networks and Conditioning, ed. Commons, M. L., Grossberg, S. & Staddon, J. E. R.. Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 225–240.Google Scholar
Colwill, R. M. & Rescorla, R. A. (1990). Evidence for the hierarchical structure of instrumental learning. Animal Learning and Behavior, 18, 71–82.CrossRefGoogle Scholar
Corcoran, K. A. & Maren, S. (2004). Factors regulating the effects of hippocampal inactivation on renewal of conditional fear after extinction. Learning & Memory, 11, 598–603.CrossRefGoogle ScholarPubMed
Coutureau, E., Galani, R., Gosselin, O., Majchrzak, M. & Di Scala, G. (1999). Entorhinal but not hippocampal or subicular lesions disrupt latent inhibition in rats. Neurobiology of Learning and Memory 72, 143–157.CrossRefGoogle ScholarPubMed
Crowell, C. R. & Anderson, D. C. (1972). Variations in intensity, interstimulus interval, and interval between preconditioning CS exposures and conditioning with rats. Journal of Comparative and Physiological Psychology, 79, 291–298.CrossRefGoogle ScholarPubMed
Csernansky, J. G. & Bardgett, M. E. (1998). Limbic cortical neuronal damage and the pathophysiology of schizophrenia. Schizophrenia Bulletin, 24, 231–248.CrossRefGoogle ScholarPubMed
Cunningham, C. L. (1979). Alcohol as a cue for extinction: state dependency produced by conditioned inhibition. Animal Learning and Behavior, 7, 45–52.CrossRefGoogle Scholar
Cunningham, C. L. (1981). Association between the elements of a bivalent compound stimulus. Journal of Experimental Psychology: Animal Behavior Processes, 7, 425–436.Google ScholarPubMed
D'Esposito, M., Postle, B. R. & Rypma, B. (2000). Prefontal cortical contributions to working memory: evidence from event-related fMRI studies. Experimental Brain Research, 133, 3–11.CrossRefGoogle Scholar
Daly, H. B. & Daly, J. T. (1982). A mathematical model of reward and aversive nonreward: its application in over 30 appetitive learning situations. Journal of Experimental Psychology: General, 111, 441–480.CrossRefGoogle Scholar
Daum, I., Channon, S., Polkey, C. E. & Gray, J. A. (1991). Classical conditioning after temporal lobe lesions in man: impairment in conditional discrimination. Behavioral Neuroscience, 105, 396–408.CrossRefGoogle ScholarPubMed
Davidson, T. L. (1993). The nature and function of interoceptive signals to feed: toward an integration of physiological and learning perspectives. Psychological Review, 100, 640–657.CrossRefGoogle ScholarPubMed
Davidson, T. L. & Jarrard, L. E. (1989). Retention of concurrent conditional discriminations in rats with ibotenate lesions of hippocampus. Psychobiology, 17, 49–60.Google Scholar
Davidson, T. L. & Jarrard, L. E. (1993). A role for the hippocampus in the utilization of hunger signals. Behavioral and Neural Biology, 59, 167–171.CrossRefGoogle ScholarPubMed
Davidson, T. L. & Rescorla, R. A. (1986). Transfer of facilitation in the rat. Animal Learning and Behavior, 14, 380–386.CrossRefGoogle Scholar
Davidson, T. L., McKernan, M. G. & Jarrard, L. E. (1993). Hippocampal lesions do not impair negative patterning: a challenge to configural association theory. Behavioral Neuroscience, 107, 227–234.CrossRefGoogle Scholar
Houwer, J. & Beckers, T. (2002). Higher-order retrospective revaluation in human causal learning. The Quarterly Journal of Experimental Psychology, 55B, 137–151.CrossRefGoogle Scholar
Casa, L. & Lubow, R. (2000). Super-latent inhibition with delayed conditioned taste aversion testing. Animal Learning & Behavior, 28, 389–399.CrossRefGoogle Scholar
Casa, L. & Lubow, R. (2002). An empirical analysis of the super-latent inhibition effect. Animal Learning & Behavior, 30, 112–120.CrossRefGoogle ScholarPubMed
Casa, L. G. & Lubow, R. E. (1995). Latent inhibition in conditioned taste aversion: the roles of stimulus frequency and duration, and amount of fluid ingested during preexposure. Neurobiology of Learning and Memory, 64, 125–132.Google ScholarPubMed
Delamater, A. R. (1997). Selective reinstatement of stimulus-outcome associations. Animal Learning & Behavior, 25, 400–412.CrossRefGoogle Scholar
Delamater, A. R. (2004). Experimental extinction in Pavlovian conditioning: behavioural and neuroscience perspectives. Quarterly Journal of Experimental Psychology, 57B, 97–132.CrossRefGoogle Scholar
Denniston, J. C., Chang, R. C. & Miller, R. R. (2003). Massive extinction treatment attenuates the renewal effect. Learning and Motivation, 34, 68–86.CrossRefGoogle Scholar
Denniston, J. C., Savastano, H. & Miller, R. R. (2001). The extended comparator hypothesis: learning by contiguity, responding by relative strength. In Handbook of Contemporary Learning, ed. Mowrer, R. R. & Klein, S. B.. Mahwah, NJ: Lawrence Erlbaum Associates, pp. 65–117.Google Scholar
Desmond, J. E. & Moore, J. W. (1982). A brain stem region essential for classical conditioned but not unconditioned nictitating membrane response. Physiology and Behavior, 28, 1029–1033.CrossRefGoogle Scholar
Desmond, J. E. & Moore, J. W. (1988). Adaptive timing in neural networks: the conditioned response. Biological Cybernetics, 58, 405–415.CrossRefGoogle ScholarPubMed
Desmond, J. E. & Moore, J. W. (1991). Single-unit activity in red nucleus during the classically conditioned rabbit nictitating membrane response. Neuroscience Research, 10, 260–279.CrossRefGoogle ScholarPubMed
Devenport, L. D. (1998). Spontaneous recovery without interference: why remembering is adaptive. Animal Learning and Behavior, 26, 172–181.CrossRefGoogle Scholar
DeVietti, T. L. & Barrett, O. V. (1986). Latent inhibition: no effect of intertrial interval of the preexposure trials. Bulletin of the Psychonomic Society, 24, 453–455.CrossRefGoogle Scholar
Devinsky, O., Morrell, M. J. & Vogt, B. A. (1995). Contributions of anterior cingulate cortex to behavior. Brain, 118, 279–306.CrossRefGoogle Scholar
Dickey, C. C., McCarley, R. W., Xu, M. L., Seidman, L. J., Voglmaier, M. M., Niznikiewicz, M. A., Connor, E. & Shenton, M. E. (2007). MRI abnormalities of the hippocampus and cavum septi pellucidi in females with schizotypal personality disorder. Schizophrenia Research, 89, 49–58.CrossRefGoogle ScholarPubMed
Dickinson, A. (1980). Contemporary Animal Learning Theory. Cambridge: Cambridge University Press.Google Scholar
Dickinson, A. & Burke, J. (1996). Within-compound associations mediate the retrospective revaluation of causality judgments. Quarterly Journal of Experimental Psychology, 49B, 60–80.CrossRefGoogle Scholar
Dickinson, A., Hall, G.,& Mackintosh, N. J. (1976). Surprise and the attenuation of blocking. Journal of Experimental Psychology: Animal Behavior Processes, 2, 313–322.Google Scholar
Dickinson, A. & Mackintosh, N. J. (1978). Classical conditioning in animals. Annual Review of Psychology, 29, 587–612.CrossRefGoogle ScholarPubMed
Dietrich, A. (2004). The cognitive neuroscience of creativity. Psychonomic Bulletin and Review, 11, 1011–1026.CrossRefGoogle ScholarPubMed
DiMattia, B. D. & Kesner, R. P. (1988). Spatial cognitive maps: differential role of parietal cortex and hippocampal formation. Behavioral Neuroscience, 102, 471–480.CrossRefGoogle ScholarPubMed
Duda, R. O. & Hart, P. E. (1973). Pattern Classification and Scene Analysis. New York: Wiley.Google Scholar
Dunsmoor, J. E., Bandettini, P. A. & Knight, D. C. (2007). Impact of continuous versus intermittent CS-UCS pairing on human brain activation during Pavlovian fear conditioning. Behavioral Neuroscience, 121, 635–642.CrossRefGoogle ScholarPubMed
Durlach, P. J. & Rescorla, R. A. (1980). Potentiation rather than overshadowing in flavor-a version learning: an analysis in terms of within-compound associations. Journal of Experimental Psychology: Animal Behavior Processes, 6, 175–187.Google Scholar
Dykes, M. & McGhie, A. (1976). A comparative study of attentional strategies of schizophrenic and highly creative normal subjects. British Journal of Psychiatry, 128, 50–56.CrossRefGoogle ScholarPubMed
Eysenck, H. J. (1995). Genius: The Natural History of Creativity. New York: Cambridge University Press.CrossRefGoogle Scholar
Falls, W. A., Miserendino, M. J. & Davis, M. (1992). Extinction of fear-potentiated startle: blockade by infusion of an NMDA antagonist into the amygdala. Journal of Neuroscience, 12, 854–863.CrossRefGoogle ScholarPubMed
Fanselow, M. S. (1990). Factors governing one-trial contextual conditioning. Animal Learning & Behavior, 18, 264–270.CrossRefGoogle Scholar
Feldon, J., Shofel, A. & Weiner, I. (1991). Latent inhibition is unaffected by direct dopamine agonists. Pharmacology, Biochemistry, and Behavior, 38, 309–314.CrossRefGoogle ScholarPubMed
Fiorillo, C. D., Tobler, P. N. & Schultz, W. (2003). Discrete coding of reward probability and uncertainty by dopamine neurons. Science, 299, 1898–1902.CrossRefGoogle ScholarPubMed
Flaherty, A. W. (2005). Frontotemporal and dopaminergic control of idea generation and creative drive. Journal of Comparative Neurology, 493, 147–153.CrossRefGoogle ScholarPubMed
Fletcher, P. C., Anderson, J. M., Shanks, D. R., Honey, R., Carpenter, T. A., Donovan, T., Papdakis, N. & Bullmore, E. T. (2001). Responses of the human frontal cortex to surprising events are predicted by formal associative learning theory. Nature Neuroscience, 4, 1043–1048.CrossRefGoogle ScholarPubMed
Frey, P. W. & Sears, R. J. (1978). Model of conditioning incorporating the Rescorla–Wagner associative axiom, a dynamic attention process, and a catastrophe rule. Psychological Review, 85, 321–340.CrossRefGoogle Scholar
Frohardt, R. J., Guarraci, F. A. & Bouton, M. E. (2000). The effects of neurotoxic hippocampal lesions on two effects of context after fear extinction. Behavioral Neuroscience, 114, 227–240.CrossRefGoogle ScholarPubMed
Fuster, J. M. (1973). Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. Journal of Neurophysiology, 36, 61–78.CrossRefGoogle ScholarPubMed
Gabora, L. (2002). Cognitive mechanisms underlying the creative process. In Proceedings of the Fourth International Conference on Creativity and Cognition, October 13–16, ed. Hewett, T. & Kavanagh, T.. Loughborough University, UK, pp. 126–133.Google Scholar
Gal, G. & Weiner, I. (1998). Latent inhibition is disrupted by shell lesion but restored by an addition of core lesion. European Journal of Neuroscience, 10, Suppl. 10, 118.04.Google Scholar
Galef, B. G., Jr. & Osborne, B. (1978). Novel taste facilitation of the association of visual cues with toxicosis in rats. Journal of Comparative and Physiological Psychology, 92, 907–916.CrossRefGoogle ScholarPubMed
Gallagher, P. C. & Holland, P. C. (1992). Preserved configural learning and spatial learning impairments in rats with hippocampal damage. Hippocampus, 2, 81–88.CrossRefGoogle Scholar
Gallagher, P. C., Graham, P. W. & Holland, P. C. (1990). The amygdala central nucleus and appetitive Pavlovian conditioning: lesions impair one class of conditioned behavior. The Journal of Neuroscience, 10, 1906–1911.CrossRefGoogle ScholarPubMed
Gallistel, C. R. & Gibbon, J. (2000). Time, rate, and conditioning. Psychological Review, 107, 289–344.CrossRefGoogle ScholarPubMed
Gallo, M. & Candido, A. (1995). Dorsal hippocampal lesions impair blocking but not latent inhibition of taste aversion learning in rats. Behavioral Neuroscience, 109, 413–425.CrossRefGoogle Scholar
Garcia-Gutierrez, A. & Rosas, J. M. (2003). Context change as the mechanism of reinstatement in causal learning. Journal of Experimental Psychology: Animal Behavior Processes, 29, 292–310.Google ScholarPubMed
Garrud, P., Rawlins, J. N. P., Mackintosh, N. J., Goodal, G., Cotton, M. M. & Feldon, J. (1984). Successful overshadowing and blocking in hippocampectomized rats. Behavioural Brain Research, 12, 39–53.CrossRefGoogle ScholarPubMed
Gelperin, A. (1986). Complex associative learning in small neural networks. Trends in Neuro Sciences, 9, 323–328.CrossRefGoogle Scholar
Gelperin, A., Hopfield, J. J. & Tank, D. W. (1985). The logic of Limax learning. In Model Neural Networks and Behavior, ed. Selverston, A.. New York: Plenum, pp. 237–261.Google Scholar
Getzels, J. & Csikzentmihalyi, M. (1976). The Creative Vision. New York: Wiley.Google Scholar
Gewirtz, J. C., Falls, W. A. & Davis, M. (1997). Normal conditioned inhibition and extinction of freezing and fear-potentiated startle following electrolytic lesions of medical prefrontal cortex in rats. Behavioral Neuroscience, 111, 712–726.CrossRefGoogle ScholarPubMed
Gibbon, J. (1977). Scalar expectancy and Weber's Law in animal timing. Psychological Review, 84, 279–325.CrossRefGoogle Scholar
Gibbon, J. & Balsam, P. (1981). Spreading association in time. In Autoshaping and conditioning theory, eds. Locurto, C. M., Terrace, H. S. & Gibbon, J.. New York: Academic, pp. 219–253.Google Scholar
Gibbons, H. & Rammsayer, T. H. (1999). Differential effects of personality traits related to the P-ImpUSS dimension on latent inhibition in healthy female subjects. Personality and Individual Differences, 27, 1157–1166.CrossRefGoogle Scholar
Gleitman, H. (1971). Forgetting of long-term memories in animals. In Animal Memory, ed. Honig, W. K. & James, P. H. R.. New York: Academic, pp. 1–44.Google Scholar
Gluck, M. A. & Myers, C. E. (1993). Hippocampal mediation of stimulus representation: a computational theory. Hippocampus, 3, 491–516.CrossRefGoogle ScholarPubMed
Gluck, M. A. & Myers, C. E. (1994). Context, conditioning, and hippocampal representation in animal learning. Behavioral Neuroscience, 108, 835–847.Google Scholar
Goddard, M. J. & Jenkins, H. M. (1988). Blocking of a CS US association by a US US association. Journal of Experimental Psychology: Animal Behavior Processes, 14, 177–186.Google Scholar
Gonzalez, F., Quinn, J. J. & Fanselow, M. S. (2003). Differential effects of adding and removing components of a context on the generalization of conditional freezing. Journal of Experimental Psychology: Animal Behavior Processes, 29, 78–83.Google ScholarPubMed
Good, M. & Honey, R. C. (1991). Conditioning and contextual retrieval in hippocampal rats. Behavioral Neuroscience, 105, 499–509.CrossRefGoogle ScholarPubMed
Good, M. & Honey, R. (1993). Selective hippocampus lesions abolish contextual specificity of latent inhibition and conditioning. Behavioral Neuroscience, 107, 23–33.Google Scholar
Goodwin, F. K., Murphy, D. L., Brodie, H. K. & Bunney, W. E. (1970). L-dopa, catecholamines, and behavior: a clinical and biochemical study in depressed patients. Biological Psychiatry, 2, 341–366.Google ScholarPubMed
Gordon, W. C. & Weaver, M. S. (1989). Cue–induced transfer of CS preexposure effects across contexts. Animal Learning and Behavior, 17, 409–417.CrossRefGoogle Scholar
Gormezano, I. & Moore, J. W. (1969). Classical conditioning. In Learning Processes, ed. M. H. Marx. New York: Macmillan.Google Scholar
Gough, H. G. (1979). A creative personality scale for the Adjective Check List. Journal of Personality and Social Psychology, 37, 1398–1405.CrossRefGoogle Scholar
Gould, T. J., Collins, A. C. & Wehner, J. M. (2001). Nicotine enhances latent inhibition and ameliorates ethanol-induced deficits in latent inhibition. Nicotine & Tobacco Research, 3, 17–24.CrossRefGoogle ScholarPubMed
Grahame, N. J., Barnet, R., Gunther, L. & Miller, R. (1994). Latent inhibition as a performance deficit resulting from CS-context associations. Animal Learning and Behavior, 22, 395–408.CrossRefGoogle Scholar
Grahame, N. J., Hallam, S. C., Geier, L. & Miller, R. R. (1990). Context as an occasion setter following either CS Acquisition and extinction or CS acquisition alone. Learning and Motivation, 21, 237–265.CrossRefGoogle Scholar
Gray, J. A. (1971). The Psychology of Fear and Stress. London: Weidenfeld and Nicholson.Google Scholar
Gray, J. A. (1975). Elements of a two-process theory of learning. London: Academic.Google Scholar
Gray, J. A., Buhusi, C. V. & Schmajuk, N. A. (1997). The transition from automatic to controlled processing. Neural Networks, 10, 1257–1268.CrossRefGoogle Scholar
Gray, J. A., Feldon, J., Rawlins, J. N. P., Hemsley, D. R. & Smith, A. D. (1991). The neuropsychology of schizophrenia. Behavioral and Brain Sciences, 14, 20–84.CrossRefGoogle Scholar
Gray, J. A., Mitchell, S. N., Joseph, M. H., Grigoryan, G. A., Date, S. & Hedges, H. (1994). Neurochemical mechanisms mediating the behavioral and cognitive effects of nicotine. Drug Development Research, 31, 3–17.CrossRefGoogle Scholar
Gray, N. S., Hemsley, D. R. & Gray, J. A. (1992). Abolition of latent inhibition in acute, but not chronic schizophrenics. Neurology, Psychiatry and Brain Research, 1, 83–89.Google Scholar
Groenewegen, H. J., Vermeulen-Van der Zee, E., te Kortschot, A. & Witter, M. P. (1987). Organization of the projections from the subiculum to the ventral striatum in the rat. A study using anterograde transport of Phaseolus vulgaris leucoagglutinin. Neuroscience, 23, 103–120.CrossRefGoogle Scholar
Grossberg, S. (1975). A neural model of attention, reinforcement, and discrimination learning. International Review of Neurobiology, 18, 263–327.CrossRefGoogle ScholarPubMed
Grossberg, S. & Merrill, J. W. L. (1992). A neural network model of adaptively timed reinforcement learning and hippocampal dynamics. Cognitive Brain Research, 1, 3–38.CrossRefGoogle ScholarPubMed
Grossberg, S. & Schmajuk, N. A. (1989). Neural dynamics of adaptive timing and temporal discrimination during associative learning. Neural Networks, 2, 79–102.CrossRefGoogle Scholar
Groves, P. M. & Thompson, R. F. (1970). Habituation: a dual-process theory. Psychological Review, 77, 419–550.CrossRefGoogle ScholarPubMed
Guez, D. & Miller, R. R. (2008). Blocking and pseudoblocking: the reply of Rattus norvegicus to Apis mellifera. The Quarterly Journal of Experimental Psychology (Colchester), 61, 1186–98.CrossRefGoogle ScholarPubMed
Guilford, J. P. (1950). Creativity. American Psychologist, 5, 444–454.CrossRefGoogle ScholarPubMed
Hall, G. (1991). Perceptual and Associative Learning. Oxford: Clarendon.CrossRefGoogle Scholar
Hall, G. (1996). Learning about associatively activated stimulus representations: implications for acquired equivalence and perceptual learning. Animal Learning & Behavior, 24, 233–255.CrossRefGoogle Scholar
Hall, G. & Channel, S. (1985a). Latent inhibition and conditioning after preexposure to the training context. Learning and Motivation, 16, 381–481.CrossRefGoogle Scholar
Hall, G. & Channel, S. (1985b). Differential effects of contextual change on latent inhibition and on the habituation of an orienting response. Journal of Experimental Psychology: Animal Behavior Processes, 11, 470–481.Google Scholar
Hall, G. & Minor, H. (1984). A search for context-stimulus associations in latent inhibition. The Quarterly Journal of Experimental Psychology, 36B, 145–169.CrossRefGoogle Scholar
Hall, G. & Pearce, J. M. (1979). Latent inhibition of a CS during CS-US pairings. Journal of Experimental Psychology: Animal Behavior Processes, 5, 31–42.Google Scholar
Hall, G. & Pearce, J. M. (1982). Restoring the associability of a preexposed CS by a surprising event. The Quarterly Journal of Experimental Psychology, 34B, 127–140.CrossRefGoogle Scholar
Hall, G. & Schachtman, T. R. (1987). Differential effects of a retention interval on latent inhibition and the habituation of an orienting response. Animal Learning & Behavior, 15, 76–82.CrossRefGoogle Scholar
Hamann, S. B. & Squire, L. R. (1995). On the acquisition of new declarative knowledge in amnesia. Behavioral Neuroscience, 109, 1027–1044.CrossRefGoogle ScholarPubMed
Hampson, S. E. (1990). Connectionistic Problem Solving: Computational Aspects of Biological Learning. Cambridge, MA: Birkhauser.CrossRefGoogle Scholar
Han, J-S., Gallahger, M. & Holland, P. (1995). Hippocampal lesions disrupt decrements but not increments in conditioned stimulus processing. Journal of Neuroscience, 11, 7323–7329.CrossRefGoogle Scholar
Harris, J. A. (2006). Elemental representations of stimuli in associative learning. Psychological Review, 113, 584–605.CrossRefGoogle ScholarPubMed
Harris, J. A. & Westbrook, R. F. (1998). Evidence that GABA transmission mediates context-specific extinction of learned fear. Psychopharmacology, 140, 105–115.CrossRefGoogle ScholarPubMed
Harris, J. A., Jones, M. L., Bailey, G. K. & Westbrook, R. F. (2000). Contextual control over conditioned responding in an extinction paradigm. Journal of Experimental Psychology: Animal Behavior Processes, 26, 174–185.Google Scholar
Hebb, D. O. (1949). The Organization of Behavior: A Neuropsychological Theory. New York: Wiley/Interscience.Google Scholar
Heith, C. D. & Rescorla, R. A. (1973). Simultaneous and backward fear conditioning in the rat. Journal of Comparative and Physiological Psychology, 8, 434–43.CrossRefGoogle Scholar
Higgins, J., Mednick, S. A. & Thompson, R. E. (1966). Acquistion and retention of remote associates in process-reactive schizophrenia. Journal of Nervous and Mental Disease, 142, 418–423.CrossRefGoogle ScholarPubMed
Hinzman, D. L. (1991). Why are formal models useful in psychology? In Relating Theory and Data: Essays on Human Memory in Honor of Bennet B. Murdock, ed. Hockley, W. E. & Lewandosky, S.. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Hirsh, R. (1974). The hippocampus and contextual retrieval of information from memory: a theory. Behavioral Biology, 12, 421–444.CrossRefGoogle ScholarPubMed
Hirsh, R., Leber, B. & Gillman, K. (1978). Fornix fibers and motivational states as controllers of behavior: a study stimulated by the contextual retrieval theory. Behavioral Biology, 22, 463–478.CrossRefGoogle ScholarPubMed
Hobin, J. A., Ji, J. & Maren, S. (2005). Ventral hippocampal muscimol disrupts context-specific fear memory retrieval after extinction in rats. Hippocampus, 16, 174–182.CrossRefGoogle Scholar
Holland, P. C. (1977). Conditioned stimulus as a determinant of the form of the Pavlovian conditioned response. Journal of Experimental Psychology: Animal Behavior Processes, 3, 77–104.Google ScholarPubMed
Holland, P. C. (1983). Occasion-setting in Pavlovian feature positive discriminations. In Quantitative Analyses of Behavior: Discrimination Processes, ed. Commons, M. L., Herrnstein, R. J. & Wagner, A. R.. New York: Ballinger, vol. 4, pp. 183–206.Google Scholar
Holland, P. C. (1986a). Temporal determinants of occasion setting in feature positive discriminations. Animal Learning & Behavior, 14, 111–120.CrossRefGoogle Scholar
Holland, P. C. (1986b). Transfer after serial feature positive discrimination training. Learning and Motivation, 17, 243–268.CrossRefGoogle Scholar
Holland, P. C. (1989a). Acquisition and transfer of conditional discrimination performance. Journal of Experimental Psychology: Animal Behavior Processes, 15, 154–165.Google Scholar
Holland, P. C. (1989b). Feature extinction enhances transfer of occasion setting. Animal Learning & Behavior, 17, 269–279.CrossRefGoogle Scholar
Holland, P. C. (1989c). Occasion setting with simultaneous compounds in rats. Journal of Experimental Psychology: Animal Behavior Processes, 15, 183–193.Google Scholar
Holland, P. C. (1989d). Transfer of negative occasion setting and conditioned inhibition across conditioned and unconditioned stimuli. Journal of Experimental Psychology: Animal Behavior Processes, 15, 311–328.Google ScholarPubMed
Holland, P. C. (1990). Event representation in Pavlovian conditioning: image and action. Cognition, 37, 105–131.CrossRefGoogle ScholarPubMed
Holland, P. C. (1991). Learning, thirst, and drinking. In Thirst: Physiological and Psychological Aspects, eds. Ramsey, D. J. & Booth, D.. New York: Springer, pp. 279–295.Google Scholar
Holland, P. C. (1992). Occasion setting in Pavlovian conditioning. The Psychology of Learning and Motivation, 28, 69–125.CrossRefGoogle Scholar
Holland, P. C. (1998). Temporal control in Pavlovian occasion setting. Behavioral Processes, 44, 225–236.CrossRefGoogle ScholarPubMed
Holland, P. C. (1999). Overshadowing and blocking as acquisition deficits: no recovery after extinction of overshadowing or blocking cues. The Quarterly Journal of Experimental Psychology, 52B, 307–333.CrossRefGoogle Scholar
Holland, P. C. (2000). Trial and intertrial durations in appetitive conditioning in rats. Animal Learning and Behaviour, 28, 121–135.CrossRefGoogle Scholar
Holland, P. C. & Forbes, D. R. (1980). Effects of compound or element preexposure on compound flavor aversion conditioning. Animal Learning & Behavior, 8, 199–203.CrossRefGoogle Scholar
Holland, E. C. & Haas, M. L. (1993). The effects of target salience in operant feature positive discriminations. Learning and Motivation, 24, 119–140.CrossRefGoogle Scholar
Holland, E. C. & Lamarre, J. (1984). Transfer of inhibition after serial and simultaneous feature negative discrimination training. Learning and Motivation, 15, 219–243.CrossRefGoogle Scholar
Holland, P. C., Hamlin, P. A. & Parsons, J. P. (1997). Temporal specificity in serial feature positive discrimination learning. Journal of Experimental Psychology: Animal Behavior Processes, 23, 95–109.Google ScholarPubMed
Holland, P. C., Lamoureux, J. A., Han, J-S. & Gallagher, M. (1999). Hippocampal lesions interfere with Pavlovian negative occasion setting. Hippocampus, 9, 143–157.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Honey, R. & Good, M. (1993). Selective hippocampal lesions abolish the contextual specificity of latent inhibition and conditioning. Behavioral Neuroscience, 107, 23–33.CrossRefGoogle ScholarPubMed
Honey, R. C. & Hall, G. (1988). Overshadowing and blocking procedures in latent inhibition. The Quarterly Journal of Experimental Psychology, 49B, 163–186.Google Scholar
Honey, R. C. & Hall, G. (1989). Attenuation of latent inhibition after compound pre-exposure: associative and perceptual explanations. The Quarterly Journal of Experimental Psychology B: Comparative and Physiological Psychology, 41, 355–368.Google ScholarPubMed
Horvitz, J. C. (2000). Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience, 96, 651–656.CrossRefGoogle ScholarPubMed
Huff, N. C., Alba Hernandez, J., Blanding, N. & LaBar, K. S. (2007). Effects of immediate versus delayed extinction on the renewal of conditioned fear in humans. Society for Neuroscience Abstracts.
Hull, C. L. (1943). Principles of Behavior. New York: Appleton–Century–Crofts.Google Scholar
Ishii, K., Haga, Y. & Hishimura, Y. (1999). Distractor effect on latent inhibition of conditioned flavor aversion in rats. Japanese Psychological Research, 41, 229–238.CrossRefGoogle Scholar
Jarrard, L. E. & Davidson, T. L. (1991). On the hippocampus and learned conditional responding: effects of aspiration versus ibotenate lesions. Hippocampus, 1, 107–117.CrossRefGoogle ScholarPubMed
Jenkins, J. J. & Sainsbury, R. (1969). The development of stimulus control through differential reinforcement. In Fundamental Issues in Associative Learning, eds. Mackintosh, N.J. & Honig, W. K.. Halifax, Nova Scotia: Dalhousie University Press, pp. 123–161.Google Scholar
Ji, J. & Maren, S. (2005). Electrolytic lesions of the dorsal hippocampus disrupt renewal of conditional fear after extinction. Learning and Memory, 12, 270–276.CrossRefGoogle ScholarPubMed
Johnson, D. M., Baker, J. D. & Azorlosa, J. L. (2000). Acquisition, extinction, and reinstatement of Pavlovian fear conditioning: the roles of the NMDA receptor and nitric oxide. Brain Research, 857, 66–70.CrossRefGoogle ScholarPubMed
Jones, S. H., Gray, J. A. & Hemsley, D. R. (1990). The Kamin blocking effect, incidental learning and psychoticism. British Journal of Psychology, 81, 95–109.CrossRefGoogle ScholarPubMed
Jones, S. H., Gray, J. A. & Hemsley, D. R. (1992). Loss of the Kamin blocking effect in acute but not chronic schizophrenics. Biological Psychiatry, 32, 739–755.CrossRefGoogle Scholar
Joseph, M. H., Peters, S. L. & Gray, J. A. (1993). Nicotine blocks latent inhibition in rats: evidence for a critical role of increased functional activity of dopamine in the mesolimbic system at conditioning rather than pre-exposure. Psychopharmacology, 110, 187–192.CrossRefGoogle ScholarPubMed
Kamil, A. C. (1969) Some parameters of the second-order conditioning of fear in rats. Journal of Comparative and Physiological Psychology, 67, 364–369.CrossRefGoogle ScholarPubMed
Kamin, L. (1968). Attention-like processes in classical conditioning. In Miami Symposium on the Prediction of Behavior: Aversive Stimulation, ed. Ramsey, D. J. & Booth, D.. Coral Gables, FL: University of Chicago Press, pp. 9–32.Google Scholar
Kamin, L. (1969a). Predictability, surprise, attention, and conditioning. In Punishment and aversive behavior, ed. Campbell, B. A. & Church, R. M.. New York: Appleton–Century–Crofts, pp. 279–296.Google Scholar
Kamin, L. J. (1969b). Selective association and conditioning. In Fundamental Issues in Associative Learning, ed. Mackintosh, N. J. & Honig, W. K.. Proceedings of a symposium held at Dalhousie University, Halifax, June 1968. Halifax: Dalhousie University Press, pp. 42–64.Google Scholar
Kamprath, K. & Wotjak, C. T. (2004). Nonassociative learning processes determine expression and extinction of conditioned fear in mice. Learning & Memory, 11, 770–786.CrossRefGoogle ScholarPubMed
Kasprow, W., Schachtman, T. & Miller, R. (1987). The comparator hypothesis of conditioned response generation: Manifest conditioned excitation and inhibition as a function of relative excitatory associative strengths of CS and conditioning context at the time of testing. Journal of Experimental Psychology: Animal Behavioral Processes, 13, 395–406.Google ScholarPubMed
Kasprow, W., Catterson, D., Schatchman, T. & Miller, R. (1984). Attenuation of latent inhibition by postacquisition reminder. Quarterly Journal of Experimental Psychology, 36B, 53–63.CrossRefGoogle Scholar
Kaufman, M. A. & Bolles, R. C. (1981). A nonassociative aspect of overshadowing. Bulletin of the Psychonomic Society, 18, 318–320.CrossRefGoogle Scholar
Kaye, H. & Pearce, J. M. (1984). The strength of the orienting response during Pavlovian conditioning. Journal of Experimental Psychology: Animal Behavioral Processes, 10, 90–109.Google ScholarPubMed
Kehoe, E. J. (1986). Summation and configuration in conditioning of the rabbit's nictitating membrane response to compound stimuli. Journal of Experimental Psychology: Animal Behavior Processes, 12, 186–195.Google Scholar
Kehoe, E. J. (1988). A layered network model of associative learning: learning to learn and configuration. Psychological Bulletin, 95, 411–422.Google ScholarPubMed
Kehoe, E. J., Weidemann, G. & Dartnall, S. (2004). Apparatus exposure produces profound declines in conditioned nictitating-membrane responses to discrete conditioned stimuli by the rabbit (Oryctolagus cuniculus). Journal of Experimental Psychology: Animal Behavior Processes, 30, 259–270.Google Scholar
Kiernan, M. J. & Westbrook, R. F. (1993). Effects of exposure to a to-be-shocked environment upon the rat's freezing response: evidence for facilitation, latent inhibition, and perceptual learning. Quarterly Journal of Experimental Psychology, 46B, 271–288.CrossRefGoogle Scholar
Killcross, A. S., Dickinson, A. & Robbins, T. W. (1994a). Amphetamine-induced disruptions of latent inhibition are reinforcer mediated – implications for animal models of schizophrenic attentional dysfunction. Psychopharmacology, 115, 185–195.CrossRefGoogle ScholarPubMed
Killcross, A. S., Dickinson, A. & Robbins, T. W. (1994b). Effects of the neuroleptic α-flupenthixol on latent inhibition in aversely- and appetitively-motivated paradigms: evidence for dopamine-reinforcer interactions. Psychopharmacology, 115, 196–205.CrossRefGoogle Scholar
Killcross, A. S., Stanhope, K. J., Dourish, C. T. & Piras, G. (1997). WAY100635 and latent inhibition in the rat: selective effects at preexposure. Behavioural Brain Research, 88, 51–57.CrossRefGoogle ScholarPubMed
Killcross, S. (2001). Loss of latent inhibition in conditioned taste aversion following exposure to a novel flavour before test. Quarterly Journal of Experimental Psychology, 54B, 271–288.CrossRefGoogle Scholar
Killcross, S. & Balleine, B. (1996). Role of primary motivation in stimulus preexposure effects. Journal of Experimental Psychology: Animal Behavior Processes 96, 32–42.Google Scholar
Killcross, S., Robbins, T. W. & Everitt, B. J. (1997). Different types of fear conditioned behaviour mediated by separate nuclei within amygdala. Nature, 388, 377–380.CrossRefGoogle ScholarPubMed
Killeen, P. R. & Fetterman, J. G. (1988). A behavioral theory of timing. Psychological Review, 95, 274–295.CrossRefGoogle ScholarPubMed
Kishimoto, H., Yamada, K., Iseki, E., Kosaka, K. & Okoshi, T. (1998). Brain imaging of affective disorders and schizophrenia. Psychiatry and Clinical Neuroscience, 52, Suppl, S212-S214.CrossRefGoogle Scholar
Knight, D. C., Nguyen, H. T. & Bandettini, P. A. (2005). The role of the human amygdala in the production of conditioned fear responses. Neuroimage, 26, 1193–2000.CrossRefGoogle ScholarPubMed
Knudsen, E. I. & Brainard, M. S. (1995). Creating a unified representation of visual and auditory space in the brain. Annual Review of Neuroscience, 18, 19–43.CrossRefGoogle Scholar
Kohonen, T. (1977). Associative Memory. A System Theoretical Approach. New York: Springer.CrossRefGoogle Scholar
Konorski, J. (1948). Conditioned Reflexes and Neuron Organization. New York: Cambridge University Press.Google Scholar
Konorski, J. (1967). Integrative Activity of the Brain. Chicago: University of Chicago Press.Google Scholar
Krabbendam, L., Arts, B., Os, J. & Aleman, A. (2005). Cognitive functioning in patients with schizophrenia and bipolar disorder: a quantitative review. Schizophrenia Research, 80, 137–149.CrossRefGoogle ScholarPubMed
Kraemer, P. J., Randall, C. K. & Carbary, T. J. (1991). Release from latent inhibition with delayed testing. Animal Learning & Behavior, 19, 139–145.CrossRefGoogle Scholar
Kruschke, J. K. (2001). Toward a unified model of attention in associative learning. Journal of Mathematical Psychology, 45, 812–863.CrossRefGoogle Scholar
Kruschke, J. K. & Blair, N. J. (2000). Blocking and backward blocking involve learned inattention. Psychonomic Bulletin & Review, 7, 636–645.CrossRefGoogle ScholarPubMed
LaBar, K. S. & Phelps, E. A. (2005). Reinstatement of conditioned fear in humans is context dependent and impaired in amnesia. Behavioral Neuroscience, 119, 677–686.CrossRefGoogle ScholarPubMed
Lamarre, J. & Holland, P. C. (1987). Acquisition and transfer of serial feature negative discriminations. Learning and Motivation, 18, 319–342.CrossRefGoogle Scholar
Lamoureux, J. A., Buhusi, C. V. & Schmajuk, N. A. (1998). A real time theory of Pavlovian conditioning: simple stimuli and occasion setters. In: Occasion Setting: Associative Learning and Cognition in Animals, ed. Schmajuk, N. A., & Holland, P. C.. American Psychological Association, Washington, D.C., pp. 383–424.Google Scholar
Lantz, A. E. (1973). Effect of number of trials, interstimulus interval, and dishabituation on subsequent conditioning in a CER paradigm. Animal Learning & Behavior, 1, 273–277.CrossRefGoogle Scholar
Pelley, M. E. (2004). The role of associative history in models of associative learning: a selective review and a hybrid model. The Quarterly Journal of Experimental Psychology, 57B, 193–243.CrossRefGoogle Scholar
LeDoux, J. E. (1992). Emotion and the amygdala. In The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction, ed. Aggleton, J.. New York: Wiley–Liss.Google Scholar
LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155–184.CrossRefGoogle Scholar
Legault, M. & Wise, R. A. (2001). Novelty-evoked elevations of nucleus accumbens dopamine: dependence on impulse flow from the ventral subiculum and glutamatergic neurotransmission in the ventral tegmental area. European Journal of Neuroscience, 13, 819–828.CrossRefGoogle ScholarPubMed
Lencz, T., Smith, C. W., McLaughlin, D., Auther, A., Nakayama, E., Hovey, L. & Cornblatt, B. A. (2006). Generalized and specific neurocognitive deficits in prodromal schizophrenia. Biological Psychiatry, 59, 863–871.CrossRefGoogle ScholarPubMed
Lipska, B. K., Jaskiw, G. E., Chrapusta, S., Karoum, F. & Weinberger, D. R. (1992). Ibotenic acid lesion of the ventral hippocampus differentially affects dopamine and its metabolites in the nucleus accumbens and prefrontal cortex in the rat. Brain Research, 585, 1–6.CrossRefGoogle ScholarPubMed
Lipska, B. K., Jaskiw, G. E., Karoum, F., Phillips, I., Kleinman, J. E. & Weinberger, D. R. (1991). Dorsal hippocampal lesion does not affect dopaminergic indices in the basal ganglia. Pharmacology, Biochemistry and Behavior, 40, 181–184.CrossRefGoogle ScholarPubMed
Livesey, E. J. & Boakes, R. A. (2004). Outcome additivity, elemental processing and blocking in human causality judgments. Quarterly Journal of Experimental Psychology B, 57, 361–379.CrossRefGoogle Scholar
Loechner, K. J. & Weisz, D. J. (1987). Hippocampectomy and feature-positive discrimination. Behavioural Brain Research, 26, 63–73.CrossRefGoogle ScholarPubMed
LoLordo, V. M. (1979). Selective associations. In Mechanisms of Learning and Motivation, ed. Dickinson, A. & Boakes, R. A.. Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 367–398.Google Scholar
Lovibond, P. E., Been, S. L., Mitchell, C. J., Bouton, M. E. & Frohardt, R. (2003). Forward and backward blocking of causal judgment is enhanced by additivity of effect magnitude. Memory & Cognition, 31, 133–42.Google ScholarPubMed
Lovibond, P. F., Preston, G. C. & Mackintosh, N. J. (1984). Context specificity of conditioning, extinction, and latent inhibition. Journal of Experimental Pyschology: Animal Behavior Processes, 10, 360–375.Google Scholar
Lubow, R. E. (1989). Latent Inhibition and Conditioned Attention Theory. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Lubow, R. E. & Moore, A. U. (1959). Latent inhibition: the effect of nonreinforced preexposure to the conditional stimulus. Journal of Comparative and Physiological Psychology, 52, 415–419.CrossRefGoogle Scholar
Lubow, R. E., Weiner, I. & Schnur, P. (1981). Conditioned attention theory. In The Psychology of Learning and Motivation, ed. Bower, G. H.. New York: Academic, vol. 15, pp. 1–49.Google Scholar
Lubow, R. E., Weiner, I., Schlossberg, A. & Baruch, I. (1987). Latent inhibition and schizophrenia. Bulletin of the Psychonomic Society, 25, 464–467.CrossRefGoogle Scholar
Lysle, D. T. & Fowler, H. (1985). Inhibition as a “slave” process: deactivation of conditioned inhibition through extinction of conditioned excitation. Journal of Experimental Psychology: Animal Behavior Processes, 11, 71–94.Google ScholarPubMed
Machado, A. (1997). Learning the temporal dynamics of behavior. Psychological Review, 104(2), 241–265.CrossRefGoogle ScholarPubMed
Mackintosh, N. J. (1973). Stimulus selection: learning to ignore stimuli that predict no change in reinforcement. In Constraints of Learning, ed. Hinde, R. A. & Hinde, J. S.. London: Academic.Google Scholar
Mackintosh, N. J. (1975). A theory of attention: variations in the associability of stimuli with reinforcement. Psychological Review, 82, 276–298.CrossRefGoogle Scholar
Mackintosh, N. J. (1983). Conditioning and Associative Learning. Oxford: Clarendon Press.Google Scholar
Mackintosh, N. J. & Turner, C. (1971). Blocking as a function of novelty of CS and predictability of UCS. The Quarterly Journal of Experimental Psychology, 23, 359–366.CrossRefGoogle ScholarPubMed
Maes, J. H. R. & Vossen, J. M. H. (1996). Differential inhibition using contextual stimuli. Behavioural Processes, 37, 167–184.CrossRefGoogle ScholarPubMed
Maren, S. & Chang, C. (2006). Recent fear is resistant to extinction. Proceedings of the National Academy of Sciences of the United States of America, 103, 18020–18025.CrossRefGoogle Scholar
Markman, A. (1989). LMS rules and the inverse base-rate effect: comment on Gluck and Bower (1988). Journal of Experimental Psychology: General, 118, 417–421.CrossRefGoogle Scholar
Marlin, N. A. (1982). Within-compound associations between the context and the conditioned stimulus. Learning and Motivation, 13, 526–541.CrossRefGoogle Scholar
Marr, D. (1982). Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. San Francisco: W. H. Freeman.Google Scholar
Martindale, C. (1995). Creativity and connectionism. In The Creative Cognition Approach, ed. Smith, S. M., Ward, T. B. & Finke, R. A.. Cambridge, MA: MIT Press.Google Scholar
Martindale, C. (1999). Biological bases of creativity. In Handbook of Creativity, ed. Sternberg, R. J.. New York: Cambridge University Press.Google Scholar
Martindale, C. & Hasenfus, N. (1978). EEG differences as a function of creativity, stage of the creative process, and effort to be original. Biological Psychology, 6, 157–167.CrossRefGoogle ScholarPubMed
Matzel, L., Brown, A. & Miller, R. (1987). Associative effects of US preexposure: modulation of conditioned responding by an excitatory training context. Journal of Experimental Psychology: Animal Behavior Processes, 13, 65–72.Google ScholarPubMed
Matzel, L., Schachtman, T. & Miller, R. (1985). Recovery of an overshadowed association achieved by extinction of the overshadowing stimulus. Learning and Motivation, 16, 398–412.CrossRefGoogle Scholar
McLaren, I. P. L., Kaye, H. & Mackintosh, N. J. (1989). An associative theory of the representation of stimuli: applications to perceptual learning and latent inhibition. In Parallel Distributed Processing: Implications for Psychology and Neurobiology, ed. Morris, R. G. M.. Oxford: Clarendon.Google Scholar
McCloskey, M. & Cohen, N. J. (1989). Catastrophic interference in connectionist networks: The sequential learning problem. In The Psychology of Learning and Motivation, ed. Bower, G. H.. New York: Academic, vol. 24, pp. 109–165.Google Scholar
McCormick, D. A., Steinmetz, J. E. & Thompson, R. F. (1985). Lesions of the inferior olivary complex cause extinction of the classically conditioned eyeblink response. Brain Research, 359, 120–130.CrossRefGoogle ScholarPubMed
McKinzie, D. L. & Spear, N. E. (1995). Ontogenetic differences in conditioning to context and CS as a function of context saliency and CS-US interval. Animal Learning & Behavior, 23, 304–313.CrossRefGoogle Scholar
McLaren, I. P. L. & Mackintosh, N. J. (2000). An elemental model of associative learning: latent inhibition and perceptual learning. Animal Learning and Behavior, 28, 211–246.CrossRefGoogle Scholar
McLaren, I. P. L., Kaye, H. & Mackintosh, N. J. (1989). An associative theory of the representation of stimuli: applications to perceptual learning and latent inhibition. In Parallel Distributed Processing: Implications for Psychology and Neurobiology, ed. Morris, R. G. M.. Oxford: Clarendon.Google Scholar
McNaughton, N. (2004). The conceptual nervous system of J. A. Gray: anxiety and neuroticism. Neuroscience and Biobehavioral Reviews, 28, 227–228.CrossRefGoogle Scholar
McPhee, J. E., Rauhut, A. S. & Ayres, J. J. B. (2001). Evidence for learning deficit versus performance deficit theories of latent inhibition in Pavlovian fear conditioning. Learning and Motivation, 32, 274–305.CrossRefGoogle Scholar
Meck, W. H. & Church, J. (1982). Abstraction of temporal attributes. Journal of Experimental Psychology: Animal Behavior Processes, 10, 1–29.Google Scholar
Meck, W. H. & Church, J. (1987). Cholinergic modulation of the content of temporal memory. Behavioral Neuroscience, 101, 457–464.CrossRefGoogle ScholarPubMed
Mednick, S. A. (1962). The associative basis of the creative process. Psychological Review, 69, 220–232.CrossRefGoogle ScholarPubMed
Meeter, M.Myers, C. E. & Gluck, M. A. (2005). Integrating incremental learning and episodic memory models of the hippocampal region. Psychological Review, 112, 560–585.CrossRefGoogle ScholarPubMed
Melchers, K. G., Wolff, S. & Lachnit, H. (2006). Extinction of conditioned inhibition through nonreinforced presentation of the inhibitor. Psychonomic Bulletin & Review, 13, 662–667.CrossRefGoogle ScholarPubMed
Merten, T. (1992). Word association and schizophrenia: an empirical study. Nervenarzt, 63, 401–408.Google Scholar
Micco, D. J., & Schwartz, M. (1972). Effects of hippocampal lesions upon the developments of Pavlovian internal inhibition in rats. Journal of Comparative and Physiological Psychology, 76, 371–377.CrossRefGoogle Scholar
Milad, M. R., Orr, S. P., Pitman, R. K. & Rauch, S. L. (2005). Context modulation of memory for fear extinction in humans. Psychophysiology, 42, 456–464.CrossRefGoogle ScholarPubMed
Miller, R. & Matute, H. (1996). Biological significance in forward and backward blocking: resolution of a discrepancy between animal conditioning and human causal judgement. Journal of Experimental Psychology: General, 125, 370–386.CrossRefGoogle Scholar
Miller, R., Hallam, S. & Grahame, N. (1990). Inflation of comparator stimuli following CS training. Animal Learning & Behavior, 18, 434–443.CrossRefGoogle Scholar
Miller, R. R. & Matzel, L. (1988). The comparator hypothesis: a response rule for the expression of associations. In The Psychology of Learning and Motivation, ed. Bower, G. H.. Orlando, FL: Academic, vol. 2, pp. 51–92.Google Scholar
Miller, R. R. & Schachtman, T. (1985). Conditioning context as an associative baseline: implications for response generation and the nature of conditioned inhibition. In Information Processing in Animals: Conditioned Inhibition, ed. Miller, R. R. & Spear, N. E.. Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 51–88.Google Scholar
Miller, R. R., Schachtman, T. & Matzel, L. (1988). Failure to attenuate blocking by posttraining extinction of a blocking stimulus. Unpublished raw data. Cited in Blaisdell et al. (1999).
Milner, B. R. (1966). Amnesia following operation on temporal lobes. In Amnesia, ed. Whitty, C. W. N. & Zangwill, O. L.. London: Butterworths.Google Scholar
Miserendino, M. J. D., Sananes, C. B., Melia, K. R. & Davis, M. (1990). Blocking of acquisition but not expression of conditioned fear-potentiated startle by NMDA antagonists in the amygdala. Nature, 345, 716–718.CrossRefGoogle Scholar
Mitchell, C. J., Lovibond, P. F. & Condoleon, M. (2005). Evidence for deductive reasoning in blocking of causal judgments. Learning and Motivation, 36, 77–87.CrossRefGoogle Scholar
Moody, E. W., Sunsay, C. & Bouton, M. E. (2006) Priming and trial spacing in extinction: effects on extinction performance, spontaneous recovery, and reinstatement in appetitive conditioning. The Quarterly Journal of Experimental Psychology, 59, 809–829.CrossRefGoogle ScholarPubMed
Moore, J. W., & Choi, J. S. (1998). Conditioned stimuli are occasion setters. In Occasion Setting: Associative Learning and Cognition in Animals, eds. Schmajuk, N. A. & Holland, P. C.. American Psychological Association, Washington, DC, pp. 279–318.Google Scholar
Moore, J. W. &. Schmajuk, N. A. (2008). Kamin blocking. Scholarpedia 3, 3542.CrossRefGoogle Scholar
Moore, J. W. & Stickney, K. J. (1980). Formation of attentional-associative networks in real time: role of the hippocampus and implications for conditioning. Physiological Psychology, 8, 207–217.CrossRefGoogle Scholar
Moore, J. W., Yeo, C. H., Oakley, D. A. & Russell, I. S. (1980). Conditioned inhibition of the nictitating membrane response in decorticate rabbits. Behavioural Brain Research, 1, 397–409.CrossRefGoogle ScholarPubMed
Morell, J. R. & Holland, E. C. (1993). Summation and transfer of negative occasion setting. Animal Learning and Behavior, 21, 145–153.CrossRefGoogle Scholar
Morris, R. G. M., Garrud, P., Rawlins, J. N. P. & O'Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297, 681–683.CrossRefGoogle ScholarPubMed
Morris, R. G. M., Schenk, F., Tweedie, F. & Jarrard, L. E. (1990). Ibotenate lesions of hippocampus and/or subiculum: dissociating components of allocentric spatial learning. European Journal of Neuroscience, 2, 1016–1028.CrossRefGoogle ScholarPubMed
Morrow, B. A., Elsworth, J. D., Rasmusson, A. M. & Roth, R. H. (1999). The role of mesoprefrontal dopamine neurons in the acquisition and expression of conditioned fear in the rat. Neuroscience, 92, 553–564.CrossRefGoogle ScholarPubMed
Myers, C. E., Gluck, M. A. & Granger, R. (1995). Dissociation of hippocampal and entorhinal function in asociative learning: a computational approach. Psychobiology, 23, 116–138.Google Scholar
Myers, K. M., Ressler, K. J. & Davis, M. (2006). Different mechanisms of fear extinction dependent on length of time since fear acquisition. Learning and Memory, 13, 216–223.CrossRefGoogle ScholarPubMed
Nagaishi, T. & Nakajima, S. (2008). Further evidence for the summation of latent inhibition and overshadowing in rats' conditioned taste aversion. Learning and Motivation, 39, 221–242.CrossRefGoogle Scholar
Nakajima, S. & Nagaishi, T. (2005). Summation of latent inhibition and overshadowing in a generalized bait shyness paradigm of rats. Behavioural Processes, 69, 369–377.CrossRefGoogle Scholar
Napier, R. M., Macrae, M. & Kehoe, E. J. (1992). Rapid reacquisition in conditioning of the rabbit's nictitating membrane response. Journal of Experimental Psychology: Animal Behavior Processes, 18, 182–192.Google ScholarPubMed
Nicholson, D. A. & Freeman, J. H.,Jr. (2002). Medial dorsal thalamic lesions impair blocking and latent inhibition of the conditioned eyeblink response in rats. Behavioral Neuroscience, 116, 276–285.CrossRefGoogle ScholarPubMed
Oades, R. D. & Halliday, G. M. (1987). Ventral tegmental (A10) system: neurobiology. 1. Anatomy and connectivity. Brain Research, 434, 117–165.CrossRefGoogle ScholarPubMed
Oakley, D. A. & Russell, I. S. (1972). Neocortical lesions and Pavlovian conditioning. Physiology and Behavior, 8, 915–926.CrossRefGoogle ScholarPubMed
Oakley, D. A. & Russell, I. S. (1973). Differential and reversal conditioning in partially neodecorticate rabbits. Physiology and Behavior, 13, 221–230.CrossRefGoogle Scholar
Oakley, D. A. & Russell, I. S. (1975). Role of cortex in Pavlovian discrimination learning. Physiology and Behavior, 15, 315–321.CrossRefGoogle ScholarPubMed
O'Donnell, P. & Grace, A. A. (1998). Dysfunctions in multiple interrelated systems as the neurobiological bases of schizophrenic symptom clusters. Schizophrenia Bulletin, 24, 267–283.CrossRefGoogle ScholarPubMed
O'Keefe, J. & Nadel, L. (1978). The Hippocampus as a Cognitive Map. Oxford: Clarendon.Google Scholar
Orr, W. B. & Berger, T. W. (1985). Hippocampectomy disrupts the topography of conditioned nictitating membrane responses during reversal learning. Journal of Comparative and Physiological Psychology, 99, 35–45.Google ScholarPubMed
Oswald, C. J. P.,Yee, B. K., Rawlins, J. N. P., Bannerman, D. B., Good, M. & Honey, R. C. (2002). The influence of selective lesions to components of the hippocampal system on the orienting response, habituation and latent inhibition. European Journal of Neuroscience, 15, 1983–1990.CrossRefGoogle ScholarPubMed
Otto, T. & Poon, P. J. (2006). Dorsal hippocampal contributions to unimodal contextual conditioning. Journal of Neuroscience, 26: 6603–6609.CrossRefGoogle ScholarPubMed
Packard, M. G. & McGaugh, J. L. (1992). Double dissociation of fornix and caudate nucleus lesions on acquisition of two water maze tasks: further evidence for multiple memory systems. Behavioral Neuroscience, 106, 439–446.CrossRefGoogle ScholarPubMed
Padfield, P. D. & Lawrence, B. (2003). The birth of flight control: an engineering analysis of the Wright brothers' 1902 glider. The Aeronautical Journal, December, 697–718.Google Scholar
Partridge, D. & Rowe, J. (2002). Creativity: A computational modeling approach. In Creativity, Cognition, and Knowledge: An Interaction, ed. Dartnall, T.. Westport, CT: Praeger–Greenwood.Google Scholar
Pavlov, I. P. (1927). Conditioned Reflexes. London: Oxford University Press.Google Scholar
Pearce, J. M. (1987). A model for stimulus generalization in Pavlovian conditioning. Psychological Review, 94, 61–75.CrossRefGoogle ScholarPubMed
Pearce, J. M. (1994). Similarity and discrimination: a selective review and a connectionist model. Psychological Review, 101, 587–607.CrossRefGoogle Scholar
Pearce, J. M. & Hall, G. (1979). Loss of associability by a compound stimulus comprising excitatory and inhibitory elements. Journal of Experimental Psychology: Animal Behavior Processes, 5, 19–30.Google ScholarPubMed
Pearce, J. M. & Hall, G. (1980). A model for Pavlovian conditioning: variations in the effectiveness of conditioned but not unconditioned stimuli. Psychological Review, 87, 332–352.CrossRefGoogle Scholar
Pearce, J. M., Kaye, H. & Hall, G. (1983). Predictive accuracy and stimulus associability: development of a model of Pavlovian learning. In Quantitative Analyses of Behaviour, ed. Commons, M., Herrnstein, R. J. & Wagner, A. R.. Cambridge, MA: Ballinger, vol. 3, pp. 241–255.Google Scholar
Peet, M. & Peters, S. (1995). Drug-induced mania. Drug Safety, 12, 146–153.CrossRefGoogle ScholarPubMed
Penick, S. & Solomon, P. R. (1991). Hippocampus, context, and conditioning. Behavioral Neuroscience, 105, 611–617.CrossRefGoogle ScholarPubMed
Perry, B., Luchins, D. & Schmajuk, N. A. (1993). Hippocampal lesions and dopamine receptor density. Annual Meeting of the American Psychiatric Association, San Francisco, May 1993.Google Scholar
Pineño, O., Urushihara, K. & Miller, R. R. (2005). Spontaneous recovery from forward and backward blocking. Journal of Experimental Psychology: Animal Behaviour Processes, 31, 172–183.Google ScholarPubMed
Pineño, O., Urushihara, K., Stout, S., Fuss, J. & Miller, R. (2006). When more is less: extending training of the blocking association following compound training attenuates the blocking effect. Learning and Behavior, 34, 21–36.CrossRefGoogle ScholarPubMed
Port, R. L. & Patterson, M. M. (1984). Fimbrial lesions and sensory preconditioning. Behavioral Neuroscience, 98, 584–589.CrossRefGoogle ScholarPubMed
Port, R. L., Beggs, A. L. & Patterson, M. M. (1987). Hippocampal substrate of sensory associations. Physiology & Behavior, 39, 643–647.CrossRefGoogle ScholarPubMed
Pothuizen, H. H. J., Jongen-Rêlo, A. L., Feldon, J. & Yee, B. K. (2006). Latent inhibition of conditioned taste aversion is not disrupted, but can be enhanced, by selective nucleus accumbens shell lesions in rats. Neuroscience, 137, 1119–1130.CrossRefGoogle Scholar
Poulos, A. M., Pakaprot, N., Mahdi, B., Kehoe, E. J. & Thompson, R. F. (2006). Decremental effects of context exposure following delay eyeblink conditioning in rabbits. Behavioral Neuroscience, 120, 730–734CrossRefGoogle ScholarPubMed
Prados, J. (2000). Effects of varying the amount of preexposure to spatial cues on a subsequent navigation task. Quarterly Journal of Experimental Psychology, 53B, 139–148.CrossRefGoogle Scholar
Puga, F., Barrett, D. W., Bastida, C. C. & Gonzalez-Lima, F. (2007). Functional networks underlying latent inhibition learning in the mouse brain. NeuroImage, 38, 171–183.CrossRefGoogle ScholarPubMed
Purves, D., Bonardi, C. & Hall, G. (1995). Enhancement of latent inhibition in rats with electrolytic lesions of the hipopcampus. Behavioral Neuroscience, 109, 366–370.CrossRefGoogle Scholar
Rauhut, A. S., Thomas, B. L. & Ayres, J. J. B. (2001). Treatments that weaken Pavlovian conditioned fear and thwart its renewal in rats: implications for treating human phobias. Journal of Experimental Psychology: Animal Behavior Processes, 27, 99–114.Google ScholarPubMed
Rauhut, A. S., McPhee, J. E., DiPietro, N. T. & Ayres, J. J. B. (2000). Conditioned inhibition training of the competing cue after compound conditioning does not reduce cue. Animal Learning & Behavior, 28, 92–108.CrossRefGoogle Scholar
Redhead, E. S. & Pearce, J. M. (1995a). Similarity and discrimination learning. The Quaterly Journal of Experimental Psychology, 48B, 46–66.Google Scholar
Redhead, E. S. & Pearce, J. M. (1995b). Stimulus salience and negative patterning. The Quaterly Journal of Experimental Psychology, 48B, 67–83.Google Scholar
Reed, P. (1991). Blocking latent inhibition. Bulletin of the Psychonomic Society, 29, 292–294.CrossRefGoogle Scholar
Reilly, S., Harley, C. & Revusky, S. (1993). Ibotenate lesions of the hippocampus enhance latent inhibition in conditioned taste aversion and inrease resistance to extinction in conditioned taste preference. Behavioral Neuroscience, 107, 966–1004.CrossRefGoogle Scholar
Reiss, S. & Wagner, A. R. (1972). CS Habituation produces a “latent inhibition effect” but no active “conditioned inhibition”. Learning and Motivation, 3, 237–245.CrossRefGoogle Scholar
Rescorla, R. A. (1971b). Variation in the effectiveness of reinforcement and nonreinforcement following prior inhibitory conditioning. Learning and Motivation, 2, 113–123.CrossRefGoogle Scholar
Rescorla, R. A. (1973). Evidence for a unique-cue account of configural conditioning. Journal of Comparative and Physiological Psychology, 85, 331–338.CrossRefGoogle Scholar
Rescorla, R. A. (1974). Effect of inflation of the unconditioned stimulus value following conditioning. Journal of Comparative and Physiological Psychology, 86, 101–106.CrossRefGoogle Scholar
Rescorla, R. A. (1975). Pavlovian excitatory and inhibitory conditioning. In Handbook of Learning and Cognitive Processes, ed. Estes, W. K.. Hillsdale, NJ: Lawrence Erlbaum Associates, vol. 2, pp. 7–35.Google Scholar
Rescorla, R. A. (1976). Pavlovian excitatory and inhibitory conditioning. In Handbook of Learning and Cognitive Processes, ed. Estes, W. K.. Hillsdale, NJ: Lawrence Erlbaum Associates, vol. 2, pp. 7–35.Google Scholar
Rescorla, R. A. (1979). Conditioned inhibition and extinction. In Mechanisms of Learning and Motivation: A Memorial Volume for Jerzy Konorski, ed. Dickinson, A. & Boakes, R. A.. Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 83–110.Google Scholar
Rescorla, R. A. (1982). Some consequences of associations between the excitor and the inhibitor in a conditioned inhibition paradigm. Journal of Experimental Psychology: Animal Behavior Processes, 8, 288–298.Google Scholar
Rescorla, R. A. (1984). Associations between Pavlovian CSs and context. Journal of Experimental Psychology: Animal Behavior Processes, 10, 195–204.Google Scholar
Rescorla, R. A. (1985). Conditioned inhibition and facilitation. In Information Processing in Animals: Conditioned Inhibition, ed. Miller, R. R. & Spear, N. E.. Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 299–326.Google Scholar
Rescorla, R. A. (1986). Facilitation and excitation. Journal of Experimental Psychology: Animal Behavior Processes, 12, 325–332.Google Scholar
Rescorla, R. A. (1988). Facilitation based on inhibition. Animal Learning and Behavior, 16, 169–176.CrossRefGoogle Scholar
Rescorla, R. A. (1989). Simultaneous and sequential conditioned inhibition in autoshaping. The Quarterly Journal of Experimental Psychology B: Comparative and Physiological Psychology, 41, 275–286.Google Scholar
Rescorla, R. A. (1992). Hierarchical associative relations in Pavlovian conditioning and instrumental training. Current Directions in Psychological Science, 1, 66–70.CrossRefGoogle Scholar
Rescorla, R. A. (2000). Associative changes in excitors and inhibitors differ when they are conditioned in compound. Journal of Experimental Psychology: Animal Behavior Processes, 26, 428–438.Google ScholarPubMed
Rescorla, R. A. (2001). Unequal associative changes when excitors and neural stimuli are conditioned in compound. The Quarterly Journal of Experimental Psychology B: Comparative and Physiological Psychology, 54B, 53–68.CrossRefGoogle Scholar
Rescorla, R. A. (2002). Effect of following an excitatory-inhibitory compound with an intermediate reinforcer. Journal of Experimental Psychology: Animal Behavior Processes, 28, 163–174.Google ScholarPubMed
Rescorla, R. A. (2003). Protection from extinction. Learning and Behavior, 31, 124–132.CrossRefGoogle Scholar
Rescorla, R. A. (2004a). Spontaneous recovery. Learning and Memory, 11, 501–509.CrossRefGoogle ScholarPubMed
Rescorla, R. A. (2004b). Spontaneous recovery varies inversely with the training-extinction interval. Learning and Behavior, 32, 401–408.CrossRefGoogle ScholarPubMed
Rescorla, R. A., & Cunningham, C. L. (1977). The erasure of reinstated fear. Animal Learning and Behavior, 5, 386–394.CrossRefGoogle Scholar
Rescorla, R. A. & Cunningham, C. L. (1978). Recovery of the US representation over time during extinction. Learning and Motivation, 9, 373–391.CrossRefGoogle Scholar
Rescorla, R. A. & Durlach, P. J. (1981). Within-event learning in Pavlovian conditioning. In Information Processing in Animals: Memory Mechanisms, ed. Spear, N. E. & Miller, R. R.. Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 81–112.Google Scholar
Rescorla, R. A. & Heith, C. D. (1975). Reinstatement of fear to an extinguished conditioned stimulus. Journal of Experimental Psychology: Animal Behavior Processes, 1, 88–96.Google Scholar
Rescorla, R. A. & Wagner, A. (1972). A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and non-reinforcement. In Classical conditioning II: Current Research and Theory, ed. Black, A. H. & Prokasy, W. F.. New York: Appleton–Century–Crofts, pp. 64–99.Google Scholar
Revusky, S. (1971). The role of interference in association over delay. In Animal Memory, eds. Honig, W. K. & James, P. H. R.. New York: Academic, pp. 155–213.Google Scholar
Richards, R. W. & Sargent, D. M. (1983). The order of presentation of conditioned stimuli during extinction. Animal Learning and Behavior, 11, 229–236.CrossRefGoogle Scholar
Ricker, S. T. & Bouton, M. E. (1996). Reacquisition following extinction in appetitive conditioning. Animal Learning & Behavior, 24, 423–436.CrossRefGoogle Scholar
Rickert, E. J., Bent, T. L., Lane, P. & French, J. (1978). Hippocampectomy and the attenuation of blocking. Behavioral Biology, 22, 147–160.CrossRefGoogle ScholarPubMed
Rickert, E. J., Lorden, J. F., Dawson, R., Smyly, E. & Callahan, M. F. (1979). Stimulus processing and stimulus selection in rats with hippocampal lesions. Behavioral and Neural Biology, 27, 454–465.CrossRefGoogle ScholarPubMed
Robbins, S. J. (1990). Mechanisms underlying spontaneous recovery in autoshaping. Journal of Experimental Psychology: Animal Behavior Processes, 16, 235–249.Google Scholar
Roberts, W. A., Cheng, K. & Cohen, J. S. (1989). Timing light and tone signals in pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 15, 23–25.Google ScholarPubMed
Rochford, J., Sen, A. P. & Quirion, R. (1996). Effect of nicotine and nicotinic receptor agonists on latent inhibition in the rat. The Journal of Pharmacology and Experimental Therapeutics, 277, 1267–1275.Google ScholarPubMed
Rosas, J. M. & Bouton, M. E. (1996). Spontaneous recovery after extinction of a conditioned taste aversion. Animal Learning and Behavior, 24, 341–348.CrossRefGoogle Scholar
Rosenfield, M. E. & Moore, J. W. (1995). Connection to cerebellar cortex (Larsell's HVI) in the rabbit: A WGA-HRP study with implication for classical eyeblink conditioning. Behavioral Neuroscience, 109, 1106–1118.CrossRefGoogle Scholar
Ross, R. T. (1983). Relationships between the determinants of performance in serial feature positive discriminations. Journal of Experimental Psychology: Animal Behavior Processes, 9, 349–373.Google ScholarPubMed
Ross, R. T. & Holland, P. C. (1981). Conditioning of simultaneous and serial feature positive discriminations. Animal Learning & Behavior, 9, 293–303.CrossRefGoogle Scholar
Ross, R. T., Orr, W. B., Holland, P. C. & Berger, T. W. (1984). Hippocampectomy disrupts acquisition and retention of learned conditional responding. Behavioral Neuroscience, 98, 211–225.CrossRefGoogle ScholarPubMed
Rudell, A. P., Fox, S. E. & Ranck, J. B. (1980). Hippocampal excitability phase-lock to theta rhythm in walking rats. Experimental Neurology, 68, 87–96.CrossRefGoogle Scholar
Rudy, J. W. & Sutherland, R. J. (1989). The hippocampal formation is necessary for rats to learn and remember configural discriminations. Behavioral Brain Research, 34, 97–109.CrossRefGoogle ScholarPubMed
Rudy, J. W. & Sutherland, R. J. (1995). Configural association theory and the hippocampal formation: an appraisal and reconfiguration. Hippocampus, 5, 375–389.CrossRefGoogle ScholarPubMed
Rudy, J. W., Krauter, E. E. & Gaffuri, A. (1976). Attenuation of the latent inhibition effect by prior exposure to another stimulus. Journal of Experimental Psychology: Animal Behavior Processes, 2, 235–247.Google Scholar
Rudy, J. W., Rosenberg, L. & Sandell, J. H. (1977). Disruption of taste familiarity effect by novel exteroceptive stimulation. Journal of Experimental Psychology: Animal Behavior Processes, 88, 665–669.Google Scholar
Rumelhart, D. E., Hinton, G. E. & Williams, G. E. (1986). Learning internal representations by error propagation. In Parallel Distributed Processing: Explorations in the Microstructure of Cognition, eds. Rumelhart, D. E. & McClelland, J. L.. Foundations. Cambridge, MA: Bradford Books, MIT Press, vol. 1.Google Scholar
Ruob, C., Weiner, I. & Feldon, J. (1998). Haloperidol-induced potentiation of latent inhibition: interaction with parameters of conditioning. Behavioral Pharmacology, 9, 245–253.Google ScholarPubMed
Ruob, C., Elsner, J., Weiner, I. & Feldon, J. (1997). Amphetamine-induced disruption and haloperidol-induced potentiation of latent inhibition depend on the nature of the stimulus. Behavioural Brain Research, 88, 35–41.CrossRefGoogle ScholarPubMed
Russell, W. A. & Jenkins, J. J. (1954). The complete Minnesota norms for responses to 100 words from the Kent–Rosanoff word association test. Studies on the Role of Language in Behavior, Technical Report No. 11, University of Minnesota.
Santosa, C. M., Strong, C. M., Nowakowska, C., Wang, P. W., Rennicke, C. M. & Ketter, T. A. (2006). Enhanced creativity in bipolar disorder patients: a controlled study. Journal of Affective Disorders, Electronic publication.
Sass, L. A. (2000–2001). Schizophrenia, modernism, and the “creative imagination”: on creativity and psychopathology. Creativity Research Journal, 13, 55–74.CrossRefGoogle Scholar
Saul'skaya, N. B. & Gorbachevskaya, A. I. (1998). Conditioned reflex release of dopamine in the nucleus accumbens after disruption of the hippocampal formation in rats. Neuroscience and Behavioral Physiology, 28, 380–385.CrossRefGoogle ScholarPubMed
Saunders, R. C., Kolachana, B. S., Bachevalier, J. & Weinberger, D. R. (1998). Neonatal lesions of the medial temporal lobe disrupt prefrontal cortical regulation of striatal dopamine. Nature, 393, 169–171.CrossRefGoogle ScholarPubMed
Savastano, H. I., Arcediano, F., Stout, S. C. & Miller, R. R. (2003). Interaction between preexposure and overshadowing: further analysis of the extended comparator hypothesis. The Quarterly Journal of Experimental Psychology, 56B, 371–395.CrossRefGoogle Scholar
Schmajuk, N. A. (1987). SEAS: A dual memory architecture for computational cognitive mapping. Proceedings of the Ninth Annual Conference of the Cognitive Science Society, Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 644–654.Google Scholar
Schmajuk, N. A. (1990). Role of the hippocampus in temporal and spatial navigation: an adaptive neural network. Behavioral Brain Research, 39, 205–229.CrossRefGoogle Scholar
Schmajuk, N. A. (1997). Animal learning and cognition: a neural network approach. New York: Cambridge University Press.Google Scholar
Schmajuk, N. A. (2001) Hippocampal dysfunction in schizophrenia. Hippocampus, 11, 599–613.CrossRefGoogle Scholar
Schmajuk, N. A. (2002) Latent inhibition and its neural substrates. Norwell, MA: Kluwer Academic.CrossRefGoogle Scholar
Schmajuk, N. A. (2005). Brain–behaviour relationships in latent inhibition: a computational model. Neuroscience and Biobehavioral Reviews, 29, 1001–1020.CrossRefGoogle ScholarPubMed
Schmajuk, N. A. (2008a). Classical conditioning. Scholarpedia, 3, 2316.CrossRefGoogle Scholar
Schmajuk, N. A. (2008b). Computational models of classical conditioning. Scholarpedia, 3, 1664.CrossRefGoogle Scholar
Schmajuk, N. A. & Blair, H. T. (1993). Stimulus configuration, spatial learning, and hippocampal function. Behavioural Brain Research, 59, 103–117.CrossRefGoogle ScholarPubMed
Schmajuk, N. A. & Blair, H. T. (1995). Time, space, and the hippocampus. In Neurobehavioral Plasticity: Learning, Development, and Response to Brain Insult, eds. Spear, N. E., Spear, L. P. & Woodruff, M.. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Schmajuk, N. A. & Buhusi, C. V. (1997). Occasion setting, stimulus configuration, and the hippocampus: a neural network approach. Behavioral Neuroscience, 111, 235–258.CrossRefGoogle Scholar
Schmajuk, N. A. & DiCarlo, J. J. (1989). A neural network approach to hippocampal function in classical conditioning. Behavioral Neuroscience, 105, 82–110.
Schmajuk, N. A. & DiCarlo, J. J. (1991a). Neural dynamics of hippocampal modulation of classical conditioning. In Neural Network Models of Conditioning and Action, ed. Commons, M., Grossberg, S. & Staddon, J. E. R.. Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 149–180.Google Scholar
Schmajuk, N. A. & DiCarlo, J. J. (1991b). A neural network approach to hippocampal function in classical conditioning. Behavioral Neuroscience, 105, 82–110.CrossRefGoogle ScholarPubMed
Schmajuk, N. A. & DiCarlo, J. J. (1992). Stimulus configuration, classical conditioning, and the hippocampus. Psychological Review, 99, 268–305.CrossRefGoogle Scholar
Schmajuk, N. A. & Holland, P. C. (1995). Multiple response systems in classical conditioning. Proceedings of the World Congress on Neural Networks, Washington, DC, vol. 1, pp. 700–703.
Schmajuk, N. A. & Kutlu, G. M. (2009). The computational nature of associative learning. Behavioral Brain Science, 32, 223–224.CrossRefGoogle Scholar
Schmajuk, N. A. & Larrauri, J. A. (2006). Experimental challenges to theories of classical conditioning: application of an attentional model of storage and retrieval. Journal of Experimental Psychology: Animal Behavior Processes, 32, 1–20.Google ScholarPubMed
Schmajuk, N. A. & Larrauri, J. A. (2008). Associative models describe both causal learning and conditioning. Behavioral Processes, 77, 443–445.CrossRefGoogle ScholarPubMed
Schmajuk, N. A. & Moore, J. W. (1985). Real-time attentional models for classical conditioning and the hippocampus. Physiological Psychology, 13, 278–290.CrossRefGoogle Scholar
Schmajuk, N. A. & Moore, J. W. (1988). The hippocampus and the classically conditioned nictitating membrane response: a real-time attentional-associative model. Psychobiology, 16, 20–35.Google Scholar
Schmajuk, N. A. & Moore, J. W. (1989). Effects of hippocampal manipulations on the classically conditioned nictitating membrane response: simulations by an attentional associative model. Behavioral Brain Research, 32, 173–189.CrossRefGoogle ScholarPubMed
Schmajuk, N. A. & Thieme, A. D. (1992). Purposive behavior and cognitive mapping: an adaptive neural network. Biological Cybernetics, 67, 165–174.CrossRefGoogle Scholar
Schmajuk, N. A. & Tyberg, M. (1991). The hippocampal lesion animal model of schizophrenia. In Animal Models in Psychiatry, ed. Boulton, A., Baker, G. & Iverson, M. T. Martin. Clifton, NJ: Humana Press.Google Scholar
Schmajuk, N. A., Aziz, D. R. & Bates, M. J. B. (2009). Attentional-associative interactions in creativity. Creativity Research Journal, 21, 92–103.CrossRefGoogle Scholar
Schmajuk, N. A., Buhusi, C. V. & Gray, J. A. (1998). The pharmacology of latent inhibition: a neural network approach. Behavioural Pharmacology, 9, 711–730.CrossRefGoogle ScholarPubMed
Schmajuk, N. A., Christiansen, B. A. & Cox, L. (2000). Haloperidol reinstates latent inhibition impaired by hippocampal lesions: data and theory. Behavioral Neuroscience, 114, 659–670.CrossRefGoogle ScholarPubMed
Schmajuk, N. A., Cox, L. & Gray, J. A. (2001). Nucleus accumbens, entorhinal cortex and latent inhibition: a neural network model. Behavioral Brain Research, 118, 123–141.CrossRefGoogle ScholarPubMed
Schmajuk, N. A., Gray, J. A. & Larrauri, J. A. (2005). A pre-clinical study showing how dopaminergic drugs administered during pre-exposure can impair or facilitate latent inhibition. Psychopharmacology, 177, 272–279.CrossRefGoogle ScholarPubMed
Schmajuk, N. A., Lam, P. & Christiansen, B. A. (1994). Hippocampectomy disrupts latent inhibition of the rat eyeblink conditioning. Physiology and Behavior, 55, 597–601.CrossRefGoogle Scholar
Schmajuk, N. A., Lam, P. & Christiansen, B. A. (1994). Hippocampectomy disrupts latent inhibition of the rat eyeblink conditioning. Physiology and Behavior, 55, 597–601.CrossRefGoogle Scholar
Schmajuk, N. A., Lam, Y. & Gray, J. A. (1996). Latent inhibition: a neural network approach. Journal of Experimental Psychology: Animal Behavior Processes, 22, 321–349.Google ScholarPubMed
Schmajuk, N. A., Lamoureux, J. A. & Holland, P. C. (1998). Occasion setting and stimulus configuration: a neural network approach. Psychological Review, 105, 3–32.CrossRefGoogle Scholar
Schmajuk, N. A., Spear, N. E. & Isaacson, R. L. (1983). Absence of overshadowing in rats with hippocampal lesions. Physiological Psychology, 11, 59–62.CrossRefGoogle Scholar
Schmajuk. N. A., Thieme, A. D. & Blair, H. T. (1993). Maps, routes, and the hippocampus: a neural network approach. Hippocampus, 3, 387–400.Google Scholar
Schmajuk, N. A., Larrauri, J. A., Casa, L. G. & Levin, E. D. (2009). Attenuation of auditory startle and prepulse inhibition by unexpected changes in ambient illumination through dopaminergic mechanisms. Behavioural Brain Research, 197, 251–261.CrossRefGoogle ScholarPubMed
Schneider, W. & Shiffrin, R. M. (1977). Controlled and automatic human information processing: detection, search and attention. Psychological Review, 84, 1–66.CrossRefGoogle Scholar
Schnur, P. & Lubow, R. E. (1976). Latent inhibition: the effects of ITI and CS intensity during preexposure. Learning and Motivation, 7, 540–550.CrossRefGoogle Scholar
Schrag, A & Trimble, M. (2001). Poetic talent unmasked by treatment of Parkinson's disease. Movement Disorders, 16, 1175–1176.CrossRefGoogle ScholarPubMed
Schreurs, B. G. & Westbrook, R. F. (1982). The effect of changes in the CS–US interval during compound conditioning upon an otherwise blocked element. Quarterly Journal of Experimental Psychology, 34B, 19–30.CrossRefGoogle Scholar
Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80, 1–27.CrossRefGoogle ScholarPubMed
Schultz, W. & Dickinson, A. (2000). Neuronal coding of prediction errors. Annual Review of Neuroscience, 23, 473–500.CrossRefGoogle ScholarPubMed
Sears, L. L. & Steinmetz, J. E. (1990) Acquisition of classically conditioned-related activity in the hippocampus is affected by lesion of the cerebelllar interpositus nucleus. Behavioral Neuroscience, 104, 681–692.CrossRefGoogle Scholar
Seidman, L. J. (1983). Schizophrenia and brain dysfunction: an integration of recent neurodiagnostic findings. Psychological Bulletin, 94, 195–238.CrossRefGoogle ScholarPubMed
Seillier, A., Dieu, Y., Herbeaux, K., Di Scala, G., Will, B. & Majchrzak, M. (2007). Evidence for a critical role of entorhinal cortex at pre-exposure for latent inhibition disruption in rats. Hippocampus, 17, 220–226.CrossRefGoogle ScholarPubMed
Shanks, D. R. (1985). Forward and backward blocking in human contingency judgment. Quarterly Journal of Experimental Psychology, 37B, 1–21.Google Scholar
Shepard, R. N. (1991). Integrality vs. separability of stimulus dimensions. In The Perception of Structure, ed. Lockhead, G. R. & Pomerantz, J. R.. Washington, DC: American Psychological Association, pp. 53–77.Google Scholar
Sherman, J. E. & Maier, S. F. (1978). The decrement in conditioned fear with increased trials of simultaneous conditioning is not specific to the simultaneous procedure. Learning and Motivation, 9, 31–53.CrossRefGoogle Scholar
Shevill, I. & Hall, G. (2004). Retrospective revaluation effects in the conditioned suppression procedure. The Quarterly Journal of Experimental Psychology B: Comparative and Physiological Psychology, 57B, 331–347.CrossRefGoogle Scholar
Shimamura, A. P. & Squire, L. R. (1984). Paired-associate learning and priming effects in amnesia: a neuropsychological study. Journal of Experimental Psychology: General, 113, 556–570.CrossRefGoogle ScholarPubMed
Shohamy, D., Allen, M. T. & Gluck, M. A. (2000). Dissociating entorhinal and hippocampal involvement in latent inhibition. Behavioral Neuroscience, 114, 867–874.CrossRefGoogle ScholarPubMed
Sidman, M. (1986). Functional analysis of emergent verbal classes. In Analysis and Integration of Behavioral Units, ed. Thompson, T. & Zeiler, M. D.. Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 213–235.Google Scholar
Siegel, S. & Domjan, M. (1971). Backward conditioning as an inhibitory procedure. Learning and Motivation, 2, 1–11.CrossRefGoogle Scholar
Silbersweig, D. A., Stern, E., Frith, C., Cahill, C., Holmes, A., Grootoonk, S., Seaward, J., McKenna, P., Chua, S. E., Schnorr, L., Jones, T. & Frackowiak, R. S. J. (1995). A functional neuroanatomy of hallucinations in schizophrenia. Nature, 378, 176–179.CrossRefGoogle Scholar
Skinner, B. E. (1938). The Behavior of Organisms: An Experimental Analysis. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Skinner, B. F. (1950). Are theories of learning necessary? Psychological Review, 57, 193–216.CrossRefGoogle ScholarPubMed
Smith, M. (1968). CS–US interval and US intensity in classical conditioning of the rabbit's nictitating membrane response. Journal of Comparative and Physiological Psychology, 66, 679–687.CrossRefGoogle ScholarPubMed
Snyder, S. H. (1980). Biological Aspects of Mental Disorder. New York: Oxford.Google Scholar
Sokolov, E. N. (1960). Neuronal models and the orienting reflex. In The Central Nervous System and Behavior, ed. Brazier, M. A. B.. New York: Macy Foundation.Google Scholar
Sokolov, Y. N. (1963). Perception and the Conditioned Reflex. Oxford: Pergamon.Google Scholar
Solomon, P. R. (1977). Role of the hippocampus in blocking and conditioned inhibition of rabbit's nictitating membrane response. Journal of Comparative and Physiological Psychology, 91, 407–417.CrossRefGoogle ScholarPubMed
Solomon, P. R., Brennan, G. & Moore, J. W. (1974). Latent inhibition of the rabbit's nictitating membrane response as a function of CS intensity. Bulletin of the Psychonomic Society, 4, 445–448.CrossRefGoogle Scholar
Solomon, P. R., Crider, A., Winkelman, J. W., Turi, A., Kamer, R. M. & Kaplan, L. J. (1981). Disrupted latent inhibition in the rat with chronic amphetmaine or haloperidol-induced supersensitivity: relationship to schizophrenic attention disorder. Biological Psychiatry, 16, 519–537.Google ScholarPubMed
Soltysik, S. (1985). Protection from extinction: new data and a hypothesis of several varieties of conditioned inhibition. In Information Processing in Animals: Conditioned Inhibition, ed. Miller, R. R. & Spear, N. E.. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Spear, N. E. (1971). Forgetting as retrieval failure. In Animal Memory, ed. Honig, W. K. & James, P. H. R.. New York: Academic, pp. 45–109.Google Scholar
Spear, N. E. (1981). Extending the domain of memory retrieval. In Information Processing in Animals: Memory, Mechanisms, ed. Miller, R. R. & Spear, N. E.. Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 341–378.Google Scholar
Spear, N. E., Miller, J. S. & Jagielo, J. A. (1990). Animal memory and learning. Annual Review of Psychology, 41, 169–211.CrossRefGoogle ScholarPubMed
Spence, K. W. & Norris, E. B. (1950). Eyelid conditioning as a function of the inter-trial interval. Journal of Experimental Psychology, 40, 716–720.CrossRefGoogle ScholarPubMed
Squire, L. R., Shimamura, A. P. & Amaral, D. G. (1989). Memory and the hippocampus. In Neural Models of Plasticity, ed. Byrne, J. H. & Berry, W. O.. San Diego, CA: Academic, pp. 208–239.Google Scholar
Staddon, J. E. R. & Higa, J. (1999). Time and memory: towards a pacemaker free theory of interval timing. Journal of the Experimental Analysis of Behavior, 71, 215–251.CrossRefGoogle ScholarPubMed
Sternberg, R. J. & Lubart, T. I. (1995). An investment perspective on creative insight. In The Nature of Insight, eds. Sternberg, R. J. & Davidson, J. E.. Cambridge, MA: MIT Press.Google Scholar
Stout, S. C. & Miller, R. R. (2007). Sometimes-competing retrieval (SOCR): a formalization of the comparator hypothesis. Psychological Review, 114, 759–783.CrossRefGoogle ScholarPubMed
Strasser, H. C., Lilyestrom, J., Ashby, E. R., Honeycutt, N. A., Schretlen, D. J., Pulver, A. E., Hopkins, R. O., Depaolo, J. R., Potash, J. B., Schweitzer, B., Yates, K. O., Kurian, E., Barta, P. E. & Pearlson, G. D. (2005). Hippocampal and ventricular volumes in psychotic and nonpsychotic bipolar patients compared with schizophrenia patients and community control subjects: a pilot study. Biological Psychiatry, 57, 633–639.CrossRefGoogle ScholarPubMed
Suiter, R. D. & LoLordo, V. M. (1971). Blocking of inhibitory Pavlovian conditioning in the conditioned emotional response procedure. Journal of Comparative and Physiological Psychology, 76, 137–144.CrossRefGoogle ScholarPubMed
Sutherland, N. S., Mackintosh, N. J. & Mackintosh, J. (1963). Simultaneous discrimination training of Octopus and transfer of discrimination along a continuum. Journal of Comparative and Physiological Psychology, 56, 150–156.CrossRefGoogle Scholar
Sutherland, R. J. & Rudy, J. W. (1989). Configural association theory: the role of the hippocampal formation in learning, memory, and amnesia. Psychobiology, 17, 129–144.Google Scholar
Sutton, R. S. & Barto, A. G. (1981). Toward a modern theory of adaptive networks: expectation and prediction. Psychological Review, 88, 135–170.CrossRefGoogle Scholar
Sutton, R. S. & Barto, A. G. (1990). Time derivative models of Pavlovian reinforcement. In: Learning and Computational Neuroscience: Foundations of Adaptive Networks, eds. Gabriel, M. & Moore, J.Cambridge, MA: MIT Press, pp. 497–537.Google Scholar
Swartzentruber, D. (1995). Modulatory mechanisms in Pavlovian conditioning. Animal Learning and Behavior, 23, 123–143.CrossRefGoogle Scholar
Swerdlow, N. R. & Koob, G. F. (1987). Dopamine, schizophrenia, mania, and depression: toward a unified hypothesis of cortico-striato-pallido-thalamic function. Behavioral and Brain Sciences, 10, 197–245.CrossRefGoogle Scholar
Talk, A. C., Gandhi, C. C. & Matzel, L. D. (2002) Hippocampal function during behaviourally silent associative learning: dissociation of memory storage and expression. Hippocampus, 12, 648–656.CrossRefGoogle Scholar
Tamai, N. & Nakajima, S. (2000). Renewal of formerly conditioned fear in rats after extensive extinction training. International Journal of Comparative Psychology, 13, 137–146.Google Scholar
Tassoni, C. (1995). The least mean squares network with information coding: a model of cue learning. Journal of Experimental Psychology: Learning, Memory & Cognition, 21, 193–204.Google Scholar
Taylor, K. M., Joseph, V. T., Balsam, P. D. & Bitterman, M. E. (2008). Target-absent controls in blocking experiments with rats. Learning & Behavior, 36, 145–148.CrossRefGoogle ScholarPubMed
Terrace, H. S. & McGonigle, B. (1994). Memory and representation of serial order by children, monkeys, and pigeons. Current Directions in Psychological Science, 3, 80–185.CrossRefGoogle Scholar
Testa, T. J. & Ternes, J. W. (1977). Specificity of conditioning mechanisms in the modification of food preferences. In Learning Mechanisms in Food Selection, eds. Barker, L. M., Best, M. R. & Domjan, M.. Waco, TX: Baylor University Press, pp. 229–253.Google Scholar
Thomas, B. L. & Ayres, J. J. B. (2004). Use of the ABA fear renewal paradigm to assess the effects of extinction with co-present fear inhibitors or excitors: implications for theories of extinction and for treating human fears and phobias. Learning and Motivation, 35, 22–52.CrossRefGoogle Scholar
Thomas, B. L. & Papini, M. R. (2001). Adrenalectomy eliminates the extinction spike in autoshaping with rats. Physiology and Behavior, 72, 543–547.CrossRefGoogle ScholarPubMed
Thomas, B. L., Larsen, N. & Ayres, J. J. B. (2003). Role of context similarity in ABA, ABC, and AAB renewal paradigms: implications for theories of renewal and for treating human phobias. Learning and Motivation, 34, 410–436.CrossRefGoogle Scholar
Thompson, R. E. (1986). The neurobiology of learning and memory. Science, 233, 941–947.CrossRefGoogle ScholarPubMed
Tolman, E. C. (1932). Purposive Behavior in Animals and Men. New York, NY: Irvington.Google Scholar
Torrance, E. P. (1968). Examples and rationales of test tasks for assessing creative abilities. Journal of Creative Behavior, 2, 165–178.CrossRefGoogle Scholar
Totterdell, S. & Meredith, G. E. (1997). Topographical organization of projections from the entorhinal cortex to the striatum of the rat. Neuroscience, 78, 715–729.CrossRefGoogle ScholarPubMed
Trobalon, J. B., Chamizo, V. D. & Mackintosh, N. J. (1992). Role of context in perceptual learning in maze discriminations. The Quarterly Journal of Experimental Psychology, 44B, 57–73.Google Scholar
Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59, 433–460.CrossRefGoogle Scholar
Urcelay, G. P. & Miller, R. R. (2008). Counteraction between two kinds of conditioned inhibition training. Psychonomic Bulletin & Review, 15, 103–107.CrossRefGoogle ScholarPubMed
Hamme, L. & Wasserman, E. (1994). Cue competition in causality judgments: the role of nonpresentation of compound stimulus elements. Learning and Motivation, 25, 127–151.CrossRefGoogle Scholar
Vansteenwegen, D., Hermans, D., Vervliet, B., Francken, G., Beckers, T., Baeyens, F. & Helen, P. (2005). Return of fear in a human differential conditioning paradigm caused by a return to the original acquisition context. Behaviour Research and Therapy, 43, 323–336.CrossRefGoogle Scholar
Vervliet, B., Vansteenwegen, D., Baeyens, F., Hermans, D. & Helen, P. (2005). Return of fear in a human differential conditioning paradigm caused by a stimulus change after extinction. Behaviour Research and Therapy, 43, 357–371.CrossRefGoogle Scholar
Wagner, A. R. (1976). Priming in STM: an information-processing mechanism for self-generated or retrieval-generated depression in performance. In Habituation: Perspectives from Child Development, Animal Behavior, and Neurophysiology, ed. Tighe, T. J. & Leaton, R. N.. Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 95–128.Google Scholar
Wagner, A. R. (1978). Expectancies and the priming of STM. In Cognitive Processes in Animal Behavior, eds. Hulse, S. H., Fowler, H. & Honig, W. K.. Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 177–209.Google Scholar
Wagner, A. R. (1979). Habituation and memory. In Mechanisms of Learning and Motivation, eds. Dickinson, A. & Boakes, R. A.. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Wagner, A. R. (1981). SOP: A model of automatic memory processing in animal behavior. In Information Processing in Animals: Memory Mechanisms, eds. Spear, N. E. & Miller, R. R.. Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 5–47.Google Scholar
Wagner, A. R. (1992). Some complexities anticipated by AESOP and other dual-representation theories. Paper abstracted in H. Kimmel (Chair), Symposium on Pavlovian Conditioning with Complex Stimuli, XXV International Congress of Psychology. International Journal of Psychology, 101–102.Google Scholar
Wagner, A. R. & Brandon, S. E. (1989). Evolution of a structured connectionist model of Pavlovian conditioning (AESOP). In Contemporary Learning Theories: Pavlovian Conditioning and the Status of Traditional Learning Theory, ed. Klein, S. B. & Mowrer, R. R.. Lawrence Erlbaum Associates, Hillsdale, NJ, pp. 149–189.Google Scholar
Wagner, A. R., Logan, F. A., Haberlandt, K. & Price, T. (1968). Stimulus selection in animal discrimination learning. Journal of Experimental Psychology, 76, 171–180.CrossRefGoogle ScholarPubMed
Wallach, M. A. (1970). Creativity. In Carmichael's Manual of Child Psychology, 4th edn., ed. Mussen, P. H.. New York: Wiley, pp. 1211–1272.Google Scholar
Wallach, M. A. & Wing, C. W. (1969). The Talented Student. New York: Holt, Rinehart & Winston.Google Scholar
Wallas, G. (1926). The Art of Thought. London: Watts.Google Scholar
Warburton, E. C., Mitchell, S. N. & Joseph, M. H. (1996). Calcium dependent dopamine release following a second amphetamine challenge: relation to the disruption of latent inhibition. Behavioral Pharmacology, 7, 119–129.CrossRefGoogle Scholar
Ward, W. C. (1969). Creativity and environmental cues in nursery school children. Developmental Psychology, 1, 543–547.CrossRefGoogle Scholar
Ward-Robinson, J. & Hall, G. (1996). Backward sensory preconditioning. Journal of Experimental Psychology: Animal Behavior Processes, 22, 395–404.Google Scholar
Ward-Robinson, J., Coutureau, E., Good, M., Honey, R. C., Killcross, A. S. & Oswald, C. J. (2001). Excitotoxic lesions of the hippocampus leave sensory preconditioning intact: implications for models of hippocampal function. Behavioral Neuroscience, 115, 1357–1362.CrossRefGoogle ScholarPubMed
Weinberger, N. M. (1995). Dynamic regulation of receptive fields and maps in the adult cortex. Annual Review of Neuroscience, 18, 129–158.CrossRefGoogle Scholar
Weiner, I. (1990). Neural substrates of latent inhibition: the switching model. Psychological Bulletin, 108, 442–461.CrossRefGoogle ScholarPubMed
Weiner, I. (2003). The “two-headed” latent inhibition model of schizophrenia: modeling positive and negative symptoms and their treatment. Psychopharmacology, 169, 257–297.CrossRefGoogle ScholarPubMed
Weiner, I. & Feldon, J. (1997). The switching model of latent inhibition: an update of neural substrates. BehavioralBrain Research, 88, 11–25.Google Scholar
Weiner, I., Lubow, R. E. & Feldon, J. (1984). Abolition of the expression but not the acquisition of latent inhibition by chronic amphetamine in rats. Psychopharmacology, 83, 191–199.CrossRefGoogle Scholar
Weiner, I., Lubow, R. E. & Feldon, J. (1988). Disruption of latent inhibition by acute administration of low doses of amphetamine. Pharmacology, Biochemistry, and Behavior, 30, 871–878.CrossRefGoogle ScholarPubMed
Weiner, I., Gal, G., Rawlins, J. N. P. & Feldon, J. (1996). Differential involvement of the shell and core subterritories of the nucleus accumbens in latent inhibition and amphetamine-induced activity. Behavioural Brain research, 81, 123–133.CrossRefGoogle ScholarPubMed
Weisberg, R. (1986) Creativity: Genius and Other Myths. New York: W. H. Freeman/Times Books/ Henry Holt & Co.Google Scholar
Weiss, C., Kroforst-Colllins, M. A. & Disterhoft, J. F. (1996). Activity of hippocampal pyramidal neurons during trace eyeblink conditioning. Hippocampus, 6, 192–209.Google ScholarPubMed
Werbos, P. (1974). Beyond regression: New tools for prediction and analysis in the behavioral sciences. Doctoral dissertation, Harvard University, Cambridge, MA.Google Scholar
Werbos, P. (1987). Building and understanding adaptive systems: a statistical/numerical approach to factory automation and brain research. IEEE Transactions SMC, March/April, 1987.Google Scholar
Wertheimer, M. (1959). Productive Thinking. Oxford: Harper.Google Scholar
Westbrook, R. F., Bond, N. W. & Feyer, A-M. (1981). Short-and long-term decrements in toxicosis-induced odor-aversion learning: the role of duration of exposure to an odor. Journal of Experimental Psychology: Animal Behavior Processes, 7, 362–381.Google Scholar
Westbrook, R. F., Good, A. J. & Kiernan, M. J. (1997). Microinjection of morphine into the nucleus accumbens impairs contextual learning in rats. Behavioral Neuroscience, 111, 996–1013.CrossRefGoogle ScholarPubMed
Westbrook, R. F., Iordanova, M., McNally, G.,Richardson, R. & Harris, J. A. (2002). Reinstatement of fear to an extinguished conditioned stimulus: two roles for context. Journal of Experimental Psychology: Animal Behavior Processes, 28, 97–110.Google Scholar
Wheeler, D. S., Stout, S. C. & Miller, R. R. (2004). Interaction of retention interval with CS-preexposure and extinction treatments: symmetry with respect to primacy. Learning & Behavior, 32, 335–347.CrossRefGoogle Scholar
Whishaw, I. Q. & Tomie, J. (1991). Acquisition and retention by hippocampal rats of simple, conditional and configural tasks using tactile and olfactory cues: implications for hippocampal function. Behavioral Neuroscience, 105, 787–797.CrossRefGoogle ScholarPubMed
Wickelgren, W. A. (1979). Chunking and consolidation: a theoretical synthesis of semantic networks, configuring in conditioning, S-R versus cognitive learning, normal forgetting, the amnesic syndrome, and the hippocampal arousal system. Psychological Review, 86, 44–60.CrossRefGoogle Scholar
Wickens, C., Tuber, D. S. & Wickens, D. D. (1983). Memory for the conditioned response: the proactive effect of preexposure to potential conditioning stimuli and context change. Journal of Experimental Psychology: General, 112, 41–57.CrossRefGoogle Scholar
Widrow, B. & Hoff, M. E. (1960). Adaptive switching circuits. 1960 IRE WESCON Convention Record, pp. 96–104.Google Scholar
Williams, B. (1996). Evidence that blocking is due to associative deficit: blocking history affects the degree of subsequent associative competition. Psychonomic Bulletin & Review, 3, 71–74.CrossRefGoogle ScholarPubMed
Williams, G. V., Rolls, E. T., Leonard, C. M. & Stern, C. (1993). Neuronal responses in the ventral striatum of the behaving macaque. Behavioral Brain Research, 55, 243–252.CrossRefGoogle ScholarPubMed
Wilson, A., Brooks, D. C. & Bouton, M. E. (1995). The role of the rat hippocampal system in several effects of context in extinction. Behavioral Neuroscience, 109, 828–836.CrossRefGoogle ScholarPubMed
Wilson, P. N. & Pearce, J. M. (1989). A role for stimulus generalization in conditional discrimination learning. Quarterly Journal of Experimental Psychology, 41B, 243–273.Google Scholar
Wilson, P. N. & Pearce, J. M. (1990). Selective transfer of responding in conditional discriminations. Quarterly Journal of Experimental Psychology, 42B, 41–58.Google Scholar
Wilson, P. N., Boumphrey, P. & Pearce, J. M. (1992). Restoration of the orienting response to a light by a change in its predictive accuracy. The Quarterly Journal of Experimental Psychology, 44B, 17–36.Google Scholar
Winocur. G., Rawlins, J. N. P. & Gray, J. A. (1987). The hippocampus and conditioning to contextual cues. Behavioral Neuroscience, 101, 617–625.Google Scholar
Winston, P. H. (1977). Artificial Intelligence. Reading, MA: Addison-Wesley.Google Scholar
Witcher, E. S. & Ayres, J. J. B. (1984). A test of two methods for extinguishing Pavlovian conditioned inhibition. Animal Learning and Behavior, 12, 149–156.CrossRefGoogle Scholar
Woodbury, C. B. (1943). The learning of stimulus patterns by dogs. Journal of Comparative Psychology, 35, 29–40.CrossRefGoogle Scholar
Xu, Y. & Corkin, S. (2001). H. M. revisits the Tower of Hanoi puzzle. Neuropsychology, 15, 69–79.CrossRefGoogle Scholar
Yadav, R. N., Kumar, N., Kalra, P. K. & John, J. (2006). Learning with generalized-mean neuron model. Neurocomputing: An International Journal, 69, 2026–2032.CrossRefGoogle Scholar
Yee, B. K., Feldon, J. & Rawlins, J. N. P. (1995). Latent inhibition in rats is abolished by NMDA-induced neuronal loss in the retrohippocampal region, but this lesion effect can be prevented by systemic haloperidol treatment. Behavioral Neuroscience, 109, 227–240.CrossRefGoogle Scholar
Yeo, C. H., Hardiman, M. J., Moore, J. W. & Rusell, I. S. (1984). Trace conditioning of the nictitating membrane response in decorticate rabbits. Behavioural Brain Research, 11, 85–88.CrossRefGoogle ScholarPubMed
Young, M. E. & Wasserman, E. A. (2002). Limited attention and cue order consistency affect predictive learning: a test of similarity measures. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 484–496.Google ScholarPubMed
Zackheim, J., Myers, C. & Gluck, M. (1998). A temporally sensitive recurrent neural network model of occasion setting. In Occasion Setting: Associative Learning and Cognition in Animals, ed. N. A. & P. C. Holland, Schmajuk. Washington, DC, US: American Psychological Association, pp. 319–342, p. xxi.Google Scholar
Zimmer-Hart, C. L. & Rescorla, R. A. (1974). Extinction of Pavlovian conditioned inhibition. Journal of Comparative and Physiological Psychology, 86, 837–845.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Nestor Schmajuk, Duke University, North Carolina
  • Book: Mechanisms in Classical Conditioning
  • Online publication: 23 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511711831.019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Nestor Schmajuk, Duke University, North Carolina
  • Book: Mechanisms in Classical Conditioning
  • Online publication: 23 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511711831.019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Nestor Schmajuk, Duke University, North Carolina
  • Book: Mechanisms in Classical Conditioning
  • Online publication: 23 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511711831.019
Available formats
×