Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-vkn6t Total loading time: 1.039 Render date: 2022-08-18T09:23:01.507Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

8 - Visible to near-IR multispectral orbital observations of Mars

from Part III - Mineralogy and Remote Sensing of Rocks, Soil, Dust, and Ices

Published online by Cambridge University Press:  10 December 2009

J. F. Bell III
Affiliation:
Cornell University, Department of Astronomy, 402 Space Sciences Building, Ithaca, NY 14853-6801, USA
T. D. Glotch
Affiliation:
Department of Geosciences, SUNY at Stony Brook Stony Brook, NY 11794, USA
V. E. Hamilton
Affiliation:
Hawaii Institute of Geophysics & Planetology, University of Hawaii, 1680 East-West Road, Honolulu, HI 96822, USA
T. McConnochie
Affiliation:
NASA Goddard Space Flight Center Mailstop 693.0 Greenbelt, MD 20771, USA
T. McCord
Affiliation:
Space Science Institute 4750 Walnut Street, Suite 205 Boulder, Colorado 80301, USA
A. McEwen
Affiliation:
Lunar & Planetary Laboratory University of Arizona, 1541 E. University Blvd. Tuscon, AZ 85721-0063, USA
P. R. Christensen
Affiliation:
Planetary Exploration Laboratory Arizona State University Moeur Building 110D Tempe, AZ 85287, USA
R. E. Arvidson
Affiliation:
Earth & Planetary Science, Washington University St Louis, MO 63130, USA
Jim Bell
Affiliation:
Cornell University, New York
Get access

Summary

ABSTRACT

This chapter reviews observations and interpretations since the 1990s from orbital telescopic and spacecraft observations of Mars from the extended visible to short-wave near-IR (VNIR) wavelength range. Imaging and spectroscopic measurements from the Hubble Space Telescope (HST), Mars Global Surveyor Mars Orbiter Camera Wide Angle (MGS MOC/WA) instrument, Mars Odyssey Thermal Emission Imaging System Visible Subsystem (THEMIS-VIS), and Mars Express High Resolution Stereo Camera (MEx HRSC) and Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité (OMEGA) have been acquired at spatial scales from global-scale ∼ 1 to hundreds of kilometers resolution to regional-scale ∼ 20–100 m resolution. Most high-albedo regions are homogeneous in color and thus, likely, composition, a supposition consistent with the long-held idea of the presence of a globally homogeneous aeolian dust unit covering much of the surface. Despite the presence and ubiquity of dust, these measurements still reveal the presence of significant VNIR spectral variability at a variety of spatial scales. For example, color variations and possibly mineralogic variations have been detected among small-scale (tens of meters) exposures of light-toned outcrop and layered materials in Meridiani Planum, Valles Marineris, and other areas. Within low-albedo regions, much of the observed color variability appears simply related to different amounts of covering or coating by nanophase ferric oxide-bearing dust and/or ferrous silicate-bearing sand. Some VNIR color units, however, in regions spanning the full range of observed surface albedos, correlate with geologic, topographic, or thermal inertia boundaries, suggesting that either composition/mineralogy or variations in physical properties (e.g., grain size, roughness, packing density) influence the observed color.

Type
Chapter
Information
The Martian Surface
Composition, Mineralogy and Physical Properties
, pp. 169 - 192
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. B. and Gillespie, A. R., Remote Sensing of Landscapes with Spectral Images: A Physical Modeling Approach, Cambridge University Press, 362pp., 2006.CrossRefGoogle Scholar
Adams, J. B., Smith, M. O., and Johnson, P. E., Spectral mixture modeling: a new analysis of rock and soil types at the Viking Lander I site, J. Geophys. Res. 91, 8098–112, 1986.CrossRefGoogle Scholar
Anderson, F. S. and V. E. Hamilton, A method for identifying mineralogical signatures in locales with large topography using atmospherically equalized THEMIS data, Fall Meeting 2005, American Geophysical Union, Abstract #P24A-05, 2005.
Arvidson, R. E., Seelos, F. P., Deal, K., et al., Mantled and exhumed terrains in Terra Meridiani, Mars, J. Geophys. Res. 108(E12), ROV 14–1, CiteID 8073, doi:10.1029/2002JE001982, 2003.CrossRefGoogle Scholar
Arvidson, R. E., Poulet, F., Bibring, J. P., et al., Spectral reflectance and morphologic correlations in eastern Terra Meridiani, Mars, Science 307(5715), 1591–4, doi:10.1126/science.1109509, 2005CrossRefGoogle ScholarPubMed
Arvidson, R. E., Poulet, F., Morris, R. V., et al., Nature and origin of the hematite-bearing plains of Terra Meridiani based on analyses of orbital and Mars Exploration Rover data sets, J. Geophys. Res. 111(E12), 2006.CrossRefGoogle Scholar
Bandfield, J. L., Hamilton, V. E., and Christensen, P. R., A global view of martian volcanic compositions, Science 287, 1626–30, 2000.CrossRefGoogle Scholar
Barker, E., Pirzkal, N., Noll, K., et al., NICMOS Instrument Handbook, Version 9.0, Baltimore: STScI, www.stsci.edu/hst/nicmos/documents/handbooks/current_NEW/cover.html, 2006.Google Scholar
Bell, J. F. III, Charge-coupled device imaging spectroscopy of Mars: 2. Results and implications for martian ferric mineralogy, Icarus 100, 575–97, 1992.CrossRefGoogle Scholar
Bell III, J. F., HST studies of Mars. In A Decade of Hubble Space Telescope Science (ed. Livio, M., Noll, K., and Stiavelli, M.), Cambridge University Press, pp. 1–24, 2003.CrossRefGoogle Scholar
Bell, J. F. III and Ansty, T. M., High spectral resolution UV to near-IR observations of Mars during 1999, 2001, and 2003 using HST/STIS, Icarus 191, 581–602, doi:10.1016/j.icarus.2007.05.019, 2007.CrossRefGoogle Scholar
Bell, J. F. III, McCord, T. B., and Owensby, P. D., Observational evidence of crystalline iron oxides on Mars, J. Geophys. Res. 95, 14447–61, 1990.CrossRefGoogle Scholar
Bell, J. F. III, Morris, R. V., and Adams, J. B., Thermally altered palagonitic tephra: a spectral and process analog to the soil and dust of Mars, J. Geophys. Res. 98(E02), 3373–85, 1993.CrossRefGoogle Scholar
Bell, J. F. III, Wolff, M. J., James, P. B., et al., Mars surface mineralogy from Hubble Space Telescope imaging during 1994–1995: observations, calibration, and initial results, J.Geophys. Res. 102, 9109–23, 1997a.CrossRefGoogle Scholar
Bell, J. F. III, Wolff, M. J., Thomas, P. C., James, P. B., and Cloutis, E. A., Mineralogy of unweathered Mars surface materials from HST multispectral imaging, Mars Telescopic Observations Workshop II, LPI Technical Report 97-03, 7–9, 1997b.Google Scholar
Bell, J. F. III, Wolff, M. J., Daley, T. C., et al., Near-infrared imaging of Mars from HST: surface reflectance, photometric properties, and implications for MOLA data, Icarus 138, 25–35, 1999.CrossRefGoogle Scholar
Bell, J. F. III, McSween, H. Y. Jr., Crisp, J. A., et al., Mineralogic and compositional properties of martian soil and dust: results from Mars Pathfinder, J. Geophys. Res. 105, 1721–55. 2000.CrossRefGoogle Scholar
Bell, J. F. III, Wolff, M. J., Sohl-Dickstein, J., and Morris, R. V., High resolution imaging spectroscopy of Mars using HST/STIS during 1999 and 2001, Bull. Am. Astron. Soc. 33, 1127, 2001.Google Scholar
Bell, J. F. III, Farrand, W. H., Johnson, J. R., and Morris, R. V., Low abundance materials at the Mars Pathfinder landing site: an investigation using spectral mixture analysis and related techniques, Icarus 158, 56–71, 2002.CrossRefGoogle Scholar
Bell, J. F. III, McConnochie, T. H., Wolff, M. J., et al., Visible color properties of Mars at sub-100 m resolutions from Mars Odyssey THEMIS-VIS, Bull. Am. Astron. Soc. 35, 926, 2003.Google Scholar
Bell, J. F. III, Squyres, S. W., Arvidson, R. E., et al., Pancam multispectral imaging results from the Spirit rover at Gusev crater, Science 305, 800–6, 2004a.CrossRefGoogle Scholar
Bell, J. F. III, Squyres, S. W., Arvidson, R. E., et al., Pancam multispectral imaging results from the Opportunity rover at Meridiani Planum, Science 306, 1703–9, 2004b.CrossRefGoogle Scholar
Bell III, J. F., H. M. Arneson, W. H. Farrand, et al., Large multispectral and albedo Panoramas acquired by the Pancam instruments on the Mars Exploration Rovers Spirit and Opportunity, Lunar Planet. Sci. XXXVI, Houston: Lunar and Planetary Institute, Abstract #1337 (CDROM), 2005.
Bell III, J. F., K. C. Bender, M. Caplinger, et al., High spatial resolution visible wavelength orbital multispectral imaging of Mars from the Mars Odyssey THEMIS-VIS instrument, Lunar Planet. Sci. Conf. 37, Abstract #1653, 2006.
Benson, J. L., Bonev, B. P., James, P. B., et al., The seasonal behavior of water ice clouds in the Tharsis and Valles Marineris regions of Mars: Mars Orbiter Camera observations, Icarus 165, 34–52, 2003.CrossRefGoogle Scholar
Bibring, J.-P.Soufflot, A., Berthé, M., et al., OMEGA: Observatoire pour la Mineralogie, l'Eau, les Glaces et l'Activité. In Mars Express: The Scientific Payload, ESA Special Publication 1240, Noordwijk: ESA Publications Division, pp. 37–49, 2004.Google Scholar
Bibring, J.-P., Langevin, Y., Gendrin, A., et al., Mars surface diversity as revealed by the OMEGA/Mars Express observations, Science 307(5715), 1576–81, doi:10.1126/science.1109509, 2005.CrossRefGoogle ScholarPubMed
Biretta, J. A., Wide Field and Planetary Camera 2 Instrument Handbook, Version 9.2, Baltimore, MD: Space Telescope Science Institute Publication, STScI, www.stsci.edu/hst/wfpc2/documents/handbook/cycle16/cover.html, 2006.Google Scholar
Burns, R. G., Mineralogical Applications of Crystal Field Theory, New York: Cambridge University Press, 224pp., 1970.Google Scholar
Burns, R. G., Origin of electronic spectra of minerals in the visible-near infrared region. In Remote Geochemical Analysis: Elemental and Mineralogical Composition (ed. Pieters, C. and Englert, P.), Cambridge: Cambridge University Press, pp. 3–29, 1993.Google Scholar
Cantor, B. A., James, P. B., Caplinger, M., and Wolff, M. J., Martian dust storms: 1999 Mars Orbiter Camera observations, J. Geophys. Res. 106, 23653–88, 2001.CrossRefGoogle Scholar
Cantor, B. A., Malin, M., and Edgett, K. S., Multiyear Mars Orbiter Camera (MOC) observations of repeated martian weather phenomena during the northern summer season, J. Geophys. Res. 107, 5014, doi:10.1029/2001JE001588, 2002.CrossRefGoogle Scholar
Carr, M. H., The Surface of Mars, Cambridge University Press, 2006.Google Scholar
Catling, D. C. and Moore, J. M., The nature of coarse-grained crystalline hematite and its implications for the early environment of Mars, Icarus 165, 277–300, 2003.CrossRefGoogle Scholar
Christensen, P. R., Formation of recent martian gullies through melting of extensive water-rich snow deposits, Nature 422, 45–8, 2003.CrossRefGoogle ScholarPubMed
Christensen, P. R., Anderson, D. L., Chase, S. C., et al., Thermal emission spectrometer experiment: the Mars observer mission, J. Geophys. Res. 97, 7719–34, 1992.CrossRefGoogle Scholar
Christensen, P. R., Bandfield, J. L., Halilton, B. E., et al., Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results, J. Geophys. Res. 106, 23823–71, 2001.CrossRefGoogle Scholar
Christensen, P. R., Bandfield, J. L., Bell, J. F. III, et al., Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results, Science 300, 2056–61, 2003.CrossRefGoogle ScholarPubMed
Christensen, P. R., Jakosky, B. M., Kieffer, H. H., et al., The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission, Space Sci. Rev. 110, 37–83, 2004a.CrossRefGoogle Scholar
Christensen, P. R., Wyatt, M. B., Glotch, T. D., et al., Mineralogy at Meridiani Planum from the Mini-TES experiment on the Opportunity Rover, Science 306, 1733–9, 2004b.CrossRefGoogle Scholar
Christensen, P. R., Ruff, S. W., Fergason, R. L., et al., Initial results from the Mini-TES experiment in Gusev crater from the Spirit Rover, Science 305(5685), 837–42, 2004c.CrossRefGoogle Scholar
Clancy, R. T. and Lee, S. W., A new look at dust and clouds in the Mars atmosphere: analysis of emission-phase-function sequences from global Viking IRTM observations, Icarus 93, 135–58, 1991.CrossRefGoogle Scholar
Clancy, R. T., Wolff, M. J., and Christensen, P. R., Mars aerosol studies with the MGS TES emission phase function observations: optical depths, particle sizes, and ice cloud types versus latitude and solar longitude, J. Geophys. Res. 108(E9), 5098, doi:10.1029/2003JE002058, 2003.CrossRefGoogle Scholar
Clark, R. N. and Roush, T. L., Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications, J. Geophys. Res. 89, 6329–40, 1984.CrossRefGoogle Scholar
Cloutis, E. A. and Gaffey, M. J., Pyroxene spectroscopy revisited: spectral-compositional correlations and relationship to geothermometry, J. Geophys. Res. 96, 22809–26, 1991.CrossRefGoogle Scholar
Vaucouleurs, G., Physics of the Planet Mars, London: Faber and Faber, 365pp., 1954.Google Scholar
Edgett, K. S., The sedimentary rocks of Sinus Meridiani: five key observations from data acquired by the Mars Global Surveyor and Mars Odyssey orbiters, Mars 1, 5–58, 2005.CrossRefGoogle Scholar
Farrand, W. H., Bell, J. F. III, Morris, R. V., and Wolff, M. J., Global color units on Mars from 1999 HST/WFPC2 imaging data, Bull. Am. Astron. Soc. 32, 1119, 2000.Google Scholar
Geissler, P. E., Three decades of martian surface changes, J. Geophys. Res. 110, E02001, doi:10.1029/2004JE002345, 2005.CrossRefGoogle Scholar
Gendrin, A., Mangold, N., Bibring, J.-P., et al., Sulfates in martian layered terrains: the OMEGA/Mars Express view, Science 307, 1587–90, 2005.CrossRefGoogle ScholarPubMed
Glotch, T. D. and Christensen, P. R., Geologic and mineralogic mapping of Aram Chaos: evidence for a water-rich history, J. Geophys. Res. 110, E09006, doi:10.1029/2004JE002389, 2005.CrossRefGoogle Scholar
Glotch, T. D. and Rogers, A. D., Evidence for aqueous deposition of hematite- and sulfate-rich light-toned layered deposits in Aureum and Iani Chaos, Mars, J. Geophys. Res. 112, E06001, doi:10.1029/2006JE002863, 2007.CrossRefGoogle Scholar
Greeley, R., Arvidson, R. E., Barlett, P. W., et al., Gusev crater: wind-related features and processes observed by the Mars Exploration Rover Spirit, J. Geophys. Res. 111, E02S09, doi:10.1029/2005JE002491, 2006.CrossRefGoogle Scholar
Guinness, E. A., Arvidson, R. E., Dale-Bannister, M. A., Singer, R. B., and Bruckenthal, E. A., On the spectral reflectance properties of materials exposed at the Viking landing sites. J. Geophys. Res. 92, E575–87, 1987.CrossRefGoogle Scholar
Hamilton, V. E. and P. R. Christensen, Green Mars: geologic characteristics of olivine-bearing terrains as observed by THEMIS, MOC, and MOLA, Lunar Planet. Sci. XXXV, Houston: Lunar and Planetary Institute, Abstract #2131 (CD-ROM), 2004.
Hamilton, V. E. and Christensen, P. R., Evidence for extensive, olivine-rich bedrock on Mars, Geology 33, 433–6, doi: 410.1130/G21258.21251, 2005.CrossRefGoogle Scholar
Hamilton, V. E., Christensen, P. R., McSween, H. Y. Jr., and Bandfield, J. L., Searching for the source regions of martian meteorites using MGS TES: Integrating martian meteorites into the global distribution of volcanic materials on Mars, Meteorit. Planet. Sci. 38, 871–85, 2003.CrossRefGoogle Scholar
Hapke, B., Theory of Reflectance and Emittance Spectroscopy, New York: Cambridge University Press, 455pp., 1993.CrossRefGoogle Scholar
Hapke, B., Bidirectional reflectance spectroscopy: 5. The coherent backscatter opposition effect and anisotropic scattering, Icarus 157, 523–34, 2002.CrossRefGoogle Scholar
Heldmann, J. L., Toon, O. B., Pollard, W. H., et al., Formation of martian gullies by the action of liquid water flowing under current martian environmental conditions, J. Geophys. Res. 110, CiteID E05004, 2005.CrossRefGoogle Scholar
Hoefen, T. M., Clark, R. N., Bandfield, J. L., et al., Discovery of olivine in the Nili Fossae region of Mars, Science 302, 627–30, 2003.CrossRefGoogle ScholarPubMed
James, P. B. and Cantor, B. A., Martian north polar cap recession: 2000 Mars Orbiter Camera observations, Icarus 154, 131–44, 2001.CrossRefGoogle Scholar
James, P. B., Clancy, R. T., Lee, S., et al., Monitoring Mars with the Hubble Space Telescope: 1990–1991 observations, Icarus 109, 79–101, 1994.CrossRefGoogle Scholar
James, P. B., Bell, J. F. III, Clancy, R. T., et al., Global imaging of Mars by Hubble Space Telescope during the 1995 opposition, J. Geophys. Res. 101, 18883–90, 1996.CrossRefGoogle Scholar
James, P. B., Cantor, B. A., Malin, M. C., et al., The 1997 spring regression of the martian south polar cap: Mars Orbiter Camera observations, Icarus 144, 410–18, 2000.CrossRefGoogle Scholar
James, P. B., Cantor, B. A., and Davis, S., Mars Orbiter Camera observations of the martian south polar cap in 1999–2000, J. Geophys. Res. 106, 23635–52, 2001.CrossRefGoogle Scholar
Jaumann, R., Neukum, G., Behnke, T., et al., The High Resolution Stereo Camera (HRSC) experiment on Mars Express: instrument aspects and experiment conduct from interplanetary cruise through nominal mission, Planet. Space Sci. 55, 928–52, 2007.CrossRefGoogle Scholar
Johnson, J. R. and Grundy, W. M., Visible/near-infrared spectra and two-layer modeling of palagonite-coated basalts, Geophys. Res. Lett. 28, 2101–4, 2001.CrossRefGoogle Scholar
Johnson, J. R., Bell, J. F. III, Cloutis, E. A., et al., Mineralogic constraints on sulfur-rich soils from Pancam spectra at Gusev crater, Mars, Geophys. Res. Lett. 34, L13202, doi:10.1029/2007GL029894, 2007.CrossRefGoogle Scholar
Kieffer, H. H., B. M. Jakosky, and C. W. Snyder, The planet Mars: from antiquity to the present. In Mars (ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.), Tucson: University of Arizona Press, pp. 1–33, 1992a.Google Scholar
Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S. (eds.), Mars, Tucson: University of Arizona Press, 1498pp., 1992b.Google Scholar
Kim Quijano, J., Brown, T., Busko, I., et al., STIS Instrument Handbook, Version 7.0, Baltimore: Space Telescope Science Institute, www.stsci.edu/hst/stis/documents/handbooks/currentIHB/cover.html, 2003.Google Scholar
King, T. V. V. and Ridley, W. I., Relation of the spectroscopic reflectance of olivine to mineral chemistry and some remote sensing applications, J. Geophys. Res. 92, 11457–69, 1987.CrossRefGoogle Scholar
Klingelhöfer, G., Morris, R. V., Bernhardt, B., et al., Jarosite and hematite at Meridiani Planum from Opportunity's Mössbauer Spectrometer, Science 306, 1740–5, 2004.CrossRefGoogle ScholarPubMed
Kuiper, G. P., Planetary atmospheres and their origin. In The Atmospheres of the Earth and Planets (ed. Kuiper, G. P.), University of Chicago Press, pp. 306–405, 1952.Google Scholar
Lichtenberg, K. A., Arvidson, R. E., Poulet, F., et al., Coordinated analyses of orbital and Spirit rover data to characterize surface materials on the cratered plains of Gusev Crater, Mars, J. Geophys. Res. 112, E12S90, doi:10.1029/2006JE002850, 2007.CrossRefGoogle Scholar
Malin, M. C. and Edgett, K. S., Evidence for recent groundwater seepage and surface runoff on Mars, Science 288, 2330–5, 2000a.CrossRefGoogle Scholar
Malin, M. C. and Edgett, K. S., Sedimentary rocks of early Mars, Science 290, 1927–37, 2000b.CrossRefGoogle Scholar
Malin, M. C. and Edgett, K. S., Mars Global Surveyor Mars Orbiter Camera: interplanetary cruise through primary mission, J. Geophys. Res. 106, 23429–570, 2001.CrossRefGoogle Scholar
Malin, M. C., Danielson, G. E., Ingersoll, A. P., et al., Mars Observer Camera, J. Geophys. Res. 97, 7699–718, 1992.CrossRefGoogle Scholar
Malin, M., Bell, J. F. III, Calvin, W., et al., The Mars Color Imager (MARCI) on the Mars Climate Orbiter, J. Geophys. Res. 106, 17651–72, 2001.CrossRefGoogle Scholar
Martin, L. J., P. B. James, A. Dollfus, K. Iwasaki, and J. D. Beish, Telescopic observations: visual, photographic, polarimetric. In Mars (ed. Kieffer, H. H.), Tucson: University of Arizona Press, pp. 34–70, 1992.Google Scholar
McConnochie, T. H., Bell, J. F. III, Savransky, D., et al., Calibration and In-flight performance of the Mars Odyssey THEMIS Visible Imaging Subsystem (VIS) instrument, J. Geophys. Res. 111, E06018, doi:10.1029/2005JE002568, 2006.CrossRefGoogle Scholar
McCord, T. B., Elias, J. H., and Westphal, J. A., Mars: the spectral albedo (0.3–2.5 µm) of small bright and dark regions, Icarus 14, 245–51, 1971.CrossRefGoogle Scholar
McCord, T. B., Singer, R. B., Hawke, B. R., et al., Mars: definition and characterization of global surface units with emphasis on composition. J. Geophys. Res. 87, 10129–48, 1982.CrossRefGoogle Scholar
McCord, T. B., Adams, J. B., Bellucci, G., et al., Mars Express High Resolution Stereo Camera spectrophotometric data: characteristics and science analysis, J. Geophys. Res. 112, E06004, doi:10.1029/2006JE002769, 2007.CrossRefGoogle Scholar
McEwen, A. S., Eliason, E. M., Bergstrom, J. W., et al., MRO's High Resolution Imaging Science Experiment (HiRISE), J. Geophys. Res. 112, CiteID E05S02, doi:10.1029/2005JE002605, 2007.CrossRefGoogle Scholar
McSween, H. Y. Jr., Murchie, S. L., Crisp, J., et al., Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site, J. Geophys. Res. 104, 8679–716, 1999.CrossRefGoogle Scholar
McSween, H. Y., Wyatt, M. B., Gellert, R., et al., Characterization and petrologic interpretation of olivine-rich basalts at Gusev crater, Mars, J. Geophys. Res. 111, E02S10, doi:10.1029/2005JE002477, 2006.CrossRefGoogle Scholar
Morris, R. V. and Lauer, H. V. Jr., Matrix effects for reflectivity spectra of dispersed nanophase (superparamagnetic) hematite with application to martian spectral data. J. Geophys. Res. 95, 5101–9, 1990.CrossRefGoogle Scholar
Morris, R. V., Golden, D. C., Bell, J. F. III, and Lauer, H. V. Jr., Hematite, pyroxene, and phyllosilicates on Mars: implications from oxidized impact melt rocks from Manicougan crater, Quebec, Canada, J. Geophys. Res. 100, 5319–29, 1995.CrossRefGoogle Scholar
Morris, R. V., Golden, D. C., Bell, J. F. III, et al., Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples, J. Geophys. Res. 105, 1757–817, 2000.CrossRefGoogle Scholar
Morris, R. V., J. F. Bell III, W. H. Farrand, and M. J. Wolff, Constraints on martian global surface mineralogical composition, albedo, and thermal inertia from Hubble Space Telescope extended-visible multispectral data, Lunar Planet. Sci. XXXIII, Houston: Lunar and Planetary Institute, Abstract #1913 (CD-ROM), 2002.
Morris, R. V., Klingelhöfer, G., Schröder, C., et al, Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills, J. Geophys. Res. 111, E02S13, doi:10.1029/2005JE002584, 2006.CrossRefGoogle Scholar
Murchie, S., Arvidson, R., Bedini, P., et al., Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO), J. Geophys. Res. 112, CiteID E05S03, doi:10.1029/2006JE002682, 2007.CrossRefGoogle Scholar
Mustard, J. F. and Bell, J. F. III, New composite reflectance spectra of Mars from 0.4 to 3.14 µm, Geophys. Res. Lett. 21, 353–6, 1994.CrossRefGoogle Scholar
Mustard, J. F. and Pieters, C. M., Quantitative abundance estimates from bidirectional reflectance measurements, J. Geophys. Res. 92, E617–26, 1987.CrossRefGoogle Scholar
Mutch, T. A., Arvidson, R. E., Head, J. W. III, Jones, K. L., and Saunders, R. S., The Geology of Mars, Princeton, NJ: Princeton University Press, 400pp., 1976.Google Scholar
Neukum, G. and R. Jaumann, The high resolution stereo camera of Mars Express. In Mars Express: The Scientific Payload (ed. Wilson, A. and Chicarro, A.), ESA SP-1240, Noordwijk, Netherlands: ESA Publications Division, pp. 17–35, 2004.Google Scholar
Noe Dobrea, E. Z., Bell, J. F. III, Wolff, M. J., and Gordon, K. D., H2O- and OH-bearing minerals in the martian regolith: analysis of 1997 observations from HST/NICMOS, Icarus 166, 1–20, 2003.CrossRefGoogle Scholar
Noe Dobrea, E. Z., Bell, J. F. III, McConnochie, T. H., and Malin, M., Analysis of a spectrally unique deposit in the dissected Noachian terrain of Mars, J. Geophys. Res. 111, E06007, doi:10.1029/2005JE002431, 2006.CrossRefGoogle Scholar
Noe Dobrea, E. Z., Bell, J. F. III, Wolff, M. J., et al., Global-scale near infrared variability on Mars: analysis of 2003 Mars opposition observations from HST/NICMOS, Icarus 193, 112–24, doi:10.1016/j.icarus.2007.07.026, 2008.CrossRefGoogle Scholar
Oberst, J., Roatsch, T., Giese, B., et al., The mapping performance of the HRSC/SRC in Mars orbit, Proc. IAU Commission IV, WG IV/9, 2004.Google Scholar
Pavlovsky, C., et al., Advanced Camera for Surveys Instrument Handbook for Cycle 16, Version 7.1, Baltimore: STScI, www.stsci.edu/hst/acs/documents/handbooks/cycle16/cover.html, 2006.Google Scholar
Plaut, J. J., P. Christensen, K. Bender, et al., THEMIS visible imaging of the south polar layered deposits, Martian southern spring, 3rd Int. Conf. Mars Polar Sci. Exploration, October 13–17, 2003, Alberta, Canada, Abstract #8130, 2003.
Pleskot, L. K. and Miner, E. D., Time variability of martian bolometric albedo, Icarus 45, 179–201, 1981.CrossRefGoogle Scholar
Poulet, F. and Erard, S., Nonlinear spectral mixing: quantitative analysis of laboratory mineral mixtures, J. Geophys. Res. 109, E02009, 2004.CrossRefGoogle Scholar
Poulet, F., Bibring, J.-P., Mustard, J. F., et al., Phyllosilicates on Mars and implications for early martian climate, Nature 438(7068), 623–7, doi:10.1038/nature04274, 2005.CrossRefGoogle ScholarPubMed
Roush, T. L., D. L. Blaney, and R. B. Singer, The surface composition of Mars as inferred from spectroscopic observations. In Remote Geochemical Analysis: Elemental and Mineralogical Composition (ed. Pieters, C. and Englert, P.), Cambridge: Cambridge University Press, pp. 367–93, 1993.Google Scholar
Ruff, S. W.Christensen, P. R., Clark, R. N., et al., Mars “White Rock” feature lacks evidence of an aqueous origin: results from Mars Global Surveyor, J. Geophys. Res. 106, 23921–8, 2001.CrossRefGoogle Scholar
Schaeffer, D., J. F. Bell III, M. Malin, et al., Calibration and validation of images from the Mars Reconnaissance Orbiter Mars Color Imager (MARCI) and Context Camera (CTX) instruments, Bull. Am. Astron. Soc. 38, 604–5, Abstract #61.11, 2006.
Sheehan, W., Planets and Perception: Telescopic Views and Interpretations, 1609–1909, Tucson: University of Arizona Press, 324pp., 1988.Google Scholar
Singer, R. B., McCord, T. B., Clark, R. N., Adams, J. B., and Huguenin, R. L., Mars surface composition from reflectance spectroscopy: a summary, J. Geophys. Res. 84, 8415–26, 1979.CrossRefGoogle Scholar
Smith, M. D., Interannual variability in TES atmospheric observations of Mars during 1999–2003, Icarus 167(1), 148–65, 2004.CrossRefGoogle Scholar
Smith, M. D., Wolff, M. J., Lemmon, M. T., et al., First atmospheric science results from the Mars Exploration Rovers Mini-TES, Science 306, 1750–3, 2004.CrossRefGoogle ScholarPubMed
Smith, P. H., Bell, J. F. III, Bridges, N. T., et al., First results from the Pathfinder camera, Science 278, 1758–65, 1997.CrossRefGoogle Scholar
Soderblom, J. M., Bell, J. F. III, Hubbard, M. Y. H., and Wolff, M. J., Martian phase function: modeling the visible to near-infrared surface photometric function using HST-WFPC2 data, Icarus 184, 401–23, doi:10.1016/j.icarus.2006.05.006, 2006.CrossRefGoogle Scholar
Soderblom, L. A., The composition and mineralogy of the martian surface from spectroscopic observations: 0.3 µm to 50 µm. In Mars (ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.), Tucson: University of Arizona Press, pp. 557–97, 1992.Google Scholar
Soderblom, L. A., Edwards, K., Eliason, E. M., Sanchez, E. M., and Charette, M. P., Global color variations on the martian surface, Icarus 34, 446–64, 1978.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R. E., Baumgartner, E. T., et al., Athena Mars rover science investigation, J. Geophys. Res. 108(E12), 8062, doi:10.1029/2003JE002121, 2003.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R. E., Bell, J. F. III, et al., The Spirit Rover's Athena science investigation at Gusev crater, Mars, Science 305(5685), 794–9, doi:10.1126/science.1100194, 2004a.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R. E., Bell, J. F. III, et al., The Opportunity Rover's Athena science investigation at Meridiani Planum, Mars, Science 306(5702), 1698–703, doi:10.1126/science.1106171, 2004b.CrossRefGoogle Scholar
Squyres, S. W., Grotzinger, J. P., Arvidson, R. E., et al., In-situ evidence for an ancient aqueous environment on Mars, Science 306, 1709–14, 2004c.CrossRefGoogle Scholar
Stamnes, K., Tsay, S., Wiscombe, W., and Jayaweera, K., Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media, Appl. Opt. 27, 2502–9, 1988.CrossRefGoogle ScholarPubMed
Thomas, N., Markiewicz, W. J., Sablotny, R. M., et al., The color of the martian sky and its influence on the illumination of the martian surface, J. Geophys. Res. 104, 8795–808, 1999.CrossRefGoogle Scholar
Thorpe, T. E., Martian surface properties indicated by the opposition effect, Icarus 49, 398–415, 1982.CrossRefGoogle Scholar
Wolff, M. J. and Clancy, R. T., Constraints on the size of martian aerosols from TES spectral observations, J. Geophys. Res. 108(E9), 5097, doi:10.1029/2003JE002057, 2003.CrossRefGoogle Scholar
Wolff, M. J., Lee, S. W., Clancy, R. T., et al., 1995 observations of martian dust storms using the Hubble Space Telescope, J. Geophys. Res. 102, 1679–92, 1997.CrossRefGoogle Scholar
Wolff, M. J., Bell, J. F. III, James, P. B., Clancy, R. T., and Lee, S. W., Hubble Space Telescope observations of the martian aphelion cloud belt prior to the Mars Pathfinder mission: water ice cloud and dust optical depths, J. Geophys. Res. 104, 9027–42, 1999.CrossRefGoogle Scholar
7
Cited by

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Visible to near-IR multispectral orbital observations of Mars
    • By J. F. Bell III, Cornell University, Department of Astronomy, 402 Space Sciences Building, Ithaca, NY 14853-6801, USA, T. D. Glotch, Department of Geosciences, SUNY at Stony Brook Stony Brook, NY 11794, USA, V. E. Hamilton, Hawaii Institute of Geophysics & Planetology, University of Hawaii, 1680 East-West Road, Honolulu, HI 96822, USA, T. McConnochie, NASA Goddard Space Flight Center Mailstop 693.0 Greenbelt, MD 20771, USA, T. McCord, Space Science Institute 4750 Walnut Street, Suite 205 Boulder, Colorado 80301, USA, A. McEwen, Lunar & Planetary Laboratory University of Arizona, 1541 E. University Blvd. Tuscon, AZ 85721-0063, USA, P. R. Christensen, Planetary Exploration Laboratory Arizona State University Moeur Building 110D Tempe, AZ 85287, USA, R. E. Arvidson, Earth & Planetary Science, Washington University St Louis, MO 63130, USA
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Visible to near-IR multispectral orbital observations of Mars
    • By J. F. Bell III, Cornell University, Department of Astronomy, 402 Space Sciences Building, Ithaca, NY 14853-6801, USA, T. D. Glotch, Department of Geosciences, SUNY at Stony Brook Stony Brook, NY 11794, USA, V. E. Hamilton, Hawaii Institute of Geophysics & Planetology, University of Hawaii, 1680 East-West Road, Honolulu, HI 96822, USA, T. McConnochie, NASA Goddard Space Flight Center Mailstop 693.0 Greenbelt, MD 20771, USA, T. McCord, Space Science Institute 4750 Walnut Street, Suite 205 Boulder, Colorado 80301, USA, A. McEwen, Lunar & Planetary Laboratory University of Arizona, 1541 E. University Blvd. Tuscon, AZ 85721-0063, USA, P. R. Christensen, Planetary Exploration Laboratory Arizona State University Moeur Building 110D Tempe, AZ 85287, USA, R. E. Arvidson, Earth & Planetary Science, Washington University St Louis, MO 63130, USA
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Visible to near-IR multispectral orbital observations of Mars
    • By J. F. Bell III, Cornell University, Department of Astronomy, 402 Space Sciences Building, Ithaca, NY 14853-6801, USA, T. D. Glotch, Department of Geosciences, SUNY at Stony Brook Stony Brook, NY 11794, USA, V. E. Hamilton, Hawaii Institute of Geophysics & Planetology, University of Hawaii, 1680 East-West Road, Honolulu, HI 96822, USA, T. McConnochie, NASA Goddard Space Flight Center Mailstop 693.0 Greenbelt, MD 20771, USA, T. McCord, Space Science Institute 4750 Walnut Street, Suite 205 Boulder, Colorado 80301, USA, A. McEwen, Lunar & Planetary Laboratory University of Arizona, 1541 E. University Blvd. Tuscon, AZ 85721-0063, USA, P. R. Christensen, Planetary Exploration Laboratory Arizona State University Moeur Building 110D Tempe, AZ 85287, USA, R. E. Arvidson, Earth & Planetary Science, Washington University St Louis, MO 63130, USA
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.009
Available formats
×