Skip to main content Accessibility help
×
Home
Hostname: page-component-5959bf8d4d-kpqxq Total loading time: 1.134 Render date: 2022-12-08T14:11:17.111Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

11 - Mars' crustal magnetization: a window into the past

from Part III - Mineralogy and Remote Sensing of Rocks, Soil, Dust, and Ices

Published online by Cambridge University Press:  10 December 2009

M. H. Acuña
Affiliation:
NASA Goddard Space Flight Center Laboratory for Extraterrestrial Physics Code 695 Greenbelt, MD 20771, USA
G. Kletetschka
Affiliation:
NASA Goddard Space Flight Center Code 691 Greenbelt, MD, USA
J. E. P. Connerney
Affiliation:
NASA Goddard Space Flight Center Code 691 Greenbelt, MD, USA
Jim Bell
Affiliation:
Cornell University, New York
Get access

Summary

ABSTRACT

Mars Global Surveyor (MGS) discovered intense magnetization in the Mars crust. The planet, which today lacks a dynamo, somehow acquired a crust with at least 10, and perhaps as much as 100 times the volume magnetization intensity of Earth's crust. Interpretation of these data has provided a new and unique window into the origin and evolution of the planet. In this chapter we consider the implications of these discoveries for the understanding of processes that may have led to the minerals and geology that are observed on Mars' surface today. We also include relevant work associated with Earth's magnetic minerals and magnetic and mineralogical characteristics of SNC (SNC – Shergottite, Nakhlite, and Chassignite) meteorites. There is widespread agreement that the Martian dynamo ceased operation within < 500 Myr of accretion and core formation, exposing the atmosphere to erosion by ion-pickup processes in the solar wind for > 4 Gyr. This may constitute an important additional constraint on the minerals and geochemistry observed to date. There is less agreement on whether the magnetic record requires an early era of plate tectonics on Mars. A complete understanding of the crustal magnetic record remains as one of the most significant challenges in Martian geophysical research, one with great potential for understanding not only Mars' evolution but also many aspects of that of the terrestrial planets, asteroids, and the Moon.

Type
Chapter
Information
The Martian Surface
Composition, Mineralogy and Physical Properties
, pp. 242 - 262
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acuña, M. H., Connerney, J. E. P., Wasilewski, P., et al., Mars Observer magnetic fields investigation, J. Geophys. Res. 97, 7799–814, 1992.CrossRefGoogle Scholar
Acuña, M. H., Connerney, J. E. P., Wasilewski, P., et al., Magnetic field and plasma observations at Mars: initial results of the Mars Global Surveyor Mission, Science 279, 1676–80, 1998.Google ScholarPubMed
Acuña, M. H., Connerney, J. E. P., Ness, N. F., et al., Global distribution of crustal magnetism discovered by the Mars Global Surveyor MAG/ER Experiment, Science 284, 790–3, 1999.Google ScholarPubMed
Acuña, M. H., Connerney, J. E. P., Wasilewski, P., et al., The magnetic field of Mars: summary of results from the aerobraking and mapping orbits, J. Geophys. Res. 106, 23403–17, 2001.CrossRefGoogle Scholar
Albee, A. L., Palluconi, F. D., and Arvidson, R. E., Mars global surveyor mission: overview and status, Science 279, 1671–2, 1998.CrossRefGoogle ScholarPubMed
Albee, A. L., Arvidson, R. E., Palluconi, F. D., and Thorpe, T., Overview of the Mars Global Surveyor mission, J. Geophys. Res. 106, 23291–316, 2001.CrossRefGoogle Scholar
Arkani-Hamed, J., A 50-degree spherical harmonic model of the magnetic field of Mars, J. Geophys. Res. 106(E10), 23197–208, 2001a.CrossRefGoogle Scholar
Arkani-Hamed, J., Paleomagnetic pole positions and pole reversals on Mars, Geophys. Res. Lett. 28(17), 3409–12, 2001b.CrossRefGoogle Scholar
Arkani-Hamed, J., An improved 50-degree spherical harmonic model of the magnetic field of Mars derived from both high-altitude and low-altitude data, J. Geophys. Res. 107(E5), doi:10.1029/2001JE001496, 2002a.CrossRefGoogle Scholar
Arkani-Hamed, J., Magnetization of the Mars crust, J. Geophys. Res. 107(E10), 5083, doi:10.1029/2001JE001835, 2002b.CrossRefGoogle Scholar
Arkani-Hamed, J. and Boutin, D., Paleomagnetic poles of Mars: revisited, J. Geophys. Res. 109(E03011), doi:10.1029/2003JE002229, 2004.Google Scholar
Arkani-Hamed, J., Magnetic crust of Mars. J. Geophys. Res. – Planets 110(E8), 2005.CrossRefGoogle Scholar
Artemieva, N., Hood, L., and Ivanov, B. A., Impact demagnetization of the martian crust: primaries versus secondaries, Geophys. Res. Lett. 32, L22204, doi:10.1029/2005GL024385, 2005.CrossRefGoogle Scholar
Barber, D. J. and Scott, E. R. D., Origin of supposedly biogenic magnetite in the martian meteorite Allan Hills 84001, Proc. Nat. Acad. Sci. USA 99, 6556–61, 2002.CrossRefGoogle ScholarPubMed
Barber, D. J. and Scott, E. R. D., Transmission electron microscopy of minerals in the martian meteorite Allan Hills 84001, Meteorit. Planet. Sci. 38, 831–48, 2003.CrossRefGoogle Scholar
Barlow, N. G., Boyce, J. M., Costard, F. M., et al., Standardizing the nomenclature of Martian impact crater ejecta morphologies, J. Geophys. Res. 105, 26733–8, 2000.CrossRefGoogle Scholar
Bell, J. F., McSween, H. Y., Crisp, J. A., et al., Mineralogic and compositional properties of martian soil and dust: results from Mars Pathfinder, J. Geophys. Res. – Planets 105(E1), 1721–55, 2000.CrossRefGoogle Scholar
Bertelsen, P., Goetz, W., Madsen, M. B., et al., Magnetic properties experiments on the Mars exploration Rover Spirit at Gusev crater, Science 305(5685), 827–9, 2004.CrossRefGoogle ScholarPubMed
Brachfeld, S. A. and Hammer, J., Rock-magnetic and remanence properties of synthetic Fe-rich basalts: implications for Mars crustal anomalies, Earth Planet. Sci. Lett. 248, 599–617, 2006.CrossRefGoogle Scholar
Brain, D. A. and Jakosky, B. M., Atmospheric loss since the onset of the martian geologic record: the combined role of impact erosion and sputtering, J. Geophys. Res. 103(E10), 22689–94, 1998.CrossRefGoogle Scholar
Cain, J. C., Ferguson, B., and Mozzoni, D., An n = 90 internal potential function of the magnetic field of the martian crustal magnetic field, J. Geophys. Res. 107(E10), doi:10.1029/2000JE001487, 2002.Google Scholar
Cisowski, S. M., Magnetic studies on Shergotty and other SNC meteorites, Geochim. Cosmochim. Acta 50, 1043–8, 1986.CrossRefGoogle Scholar
Cisowski, S. M. and Fuller, M., Effect of shock on magnetism of terrestrial rocks, J. Geophys. Res. 83(NB7), 3441–58, 1978.CrossRefGoogle Scholar
Clark, D. A., Comments of magnetic petrophysics, Bull. Aust. Soc. Explor. Geophys. 14, 49–62, 1983.CrossRefGoogle Scholar
Collinson, D. W., Magnetic properties of martian meteorites: implications for an ancient martian magnetic field, Meteorit. Planet. Sci. 32(6), 803–11, 1997.CrossRefGoogle Scholar
Connerney, J. E. P., Acuña, M. H., Wasilewski, P. J., et al., Magnetic lineations in the ancient crust of Mars, Science 284, 794–8, 1999.CrossRefGoogle ScholarPubMed
Connerney, J. E. P., Acuña, M. H., Wasilewski, P. J., et al., The global magnetic field of Mars and implications for crustal evolution, Geophys. Res. Lett. 28, 4015–18, 2001.CrossRefGoogle Scholar
Connerney, J. E. P., Acuña, M. H., Ness, N. F., Spohn, T., and Schubert, G., Mars crustal magnetism, Space Sci. Rev. 111(1–2), 1–32, 2004.CrossRefGoogle Scholar
Connerney, J. E. P., Acuña, M. H., Ness, N. F., et al., Tectonic implications of Mars crustal magnetism, Proc. Nat. Acad. Sci. 102(42), 14970–5, doi:10.1073/pnas.0507469102, 2005.CrossRefGoogle ScholarPubMed
Curtis, S. A. and Ness, N. F., Remanent magnetism at Mars, Geophys. Res. Lett. 15, 737, 1988.CrossRefGoogle Scholar
Dekkers, M. J., Magnetic properties of natural pyrrhotite. II. High- and low-temperature behavior of Jrs and TRM as a function of grain size, Phys. Earth Planet. Int. 57, 266–83, 1989.CrossRefGoogle Scholar
Dekkers, M. J. and Linssen, J. H., Rockmagnetic properties of fine-grained natural low temperature haematite with reference to remanence acquisition mechanisms in red beds, Geophys. J. Int. 99, 1–18, 1989.CrossRefGoogle Scholar
Dolginov, Sh. Sh. and Zhuzgov, L. N., The magnetic field and magnetosphere of the planet Mars, Planet. Space Sci. 39, 1493–510, 1991.CrossRefGoogle Scholar
Dunlop, D. J. and Argyle, K. S., Thermoremanence and anhysteretic remanence of small multidomain magnetites, J. Geophys. Res., 95, 4561–77, 1990.CrossRefGoogle Scholar
Dunlop, D. J. and Özdemir, Ö., Rock Magnetism: Fundamentals and Frontiers, Cambridge, UK: Cambridge University Press, 1997.CrossRefGoogle Scholar
Ernst, R. E., Grosfils, E. B., and Mege, D., Giant dike swarms: Earth, Venus, and Mars, Ann. Rev. Earth Planet. Sci. 29, 489–534, 2001.CrossRefGoogle Scholar
Fairen, A. G., Ruiz, J., and Anguita, F., An origin for the linear magnetic anomalies on Mars through accretion of terranes: implications for dynamo timing, Icarus 160, 220–3, 2002.CrossRefGoogle Scholar
Frawley, J. J. and Taylor, P. T., Paleo-pole positions from martian magnetic anomaly data, Icarus 172, 316–27, doi:10.1016/j.icarus.2004.07.025, 2004.CrossRefGoogle Scholar
French, B. M., Stability relations of siderite (FeCO3) in system Fe-C-O, Am. J. Sci. 271, 37–78, 1971.CrossRefGoogle Scholar
Frey, H., Impact constraints on the age and origin of the lowlands of Mars, Geophys. Res. Lett. 33, L08S02, doi:10.129/2005GL024484, 2006a.CrossRefGoogle Scholar
Frey, H., Impact constraints on, and a chronology for, major events in early Mars history, J. Geophys. Res. 111, E08S91, doi:10.1029/2005JE002449, 2006b.CrossRefGoogle Scholar
Frey, H. and Schultz, R. A., Large impact basins and the mega-impact origin for the crustal dichotomy on Mars, Geophys. Res. Lett. 15, 229–32, 1988.CrossRefGoogle Scholar
Frost, B. R., Stability of oxide minerals in metamorphic rocks. In Oxides Minerals: Petrologic and Magnetic Significance (ed. Lindsley, D. H.), Blacksburg: Mineralogical Society of America, pp. 490–509, 1991.Google Scholar
Geissman, J. W., Harlan, S. S., and Brearley, A. J., The physical isolation and identification of carriers of geologically stable remanent magnetization: paleomagnetic and rock magnetic microanalysis and electron-microscopy, Geophys. Res. Lett. 15, 479–82, 1988.CrossRefGoogle Scholar
Gilder, S. A., LeGoff, M., Peyronneau, J., and Chervin, J., Novel high pressure magnetic measurements with application to magnetite, Geophys. Res. Lett. 29(10), doi:10.1029/2001GL014227, 2002.CrossRefGoogle Scholar
Goetz, W., Bertelsen, P., Binau, C. S., et al., Chemistry and mineralogy of atmospheric dust at Gusev crater: indication of dryer periods on Mars, Nature 436, 62–5, 2005.CrossRefGoogle Scholar
Golden, D. C., Ming, D. W., Schwandt, C. S., et al., A simple inorganic process for formation of carbonates, magnetite, and sulfides, in Martian Meteroite ALH84001, Am. Mineral. 86, 370–5, 2001.CrossRefGoogle Scholar
Greeley, R. and Spudis, P. D., Volcanism on Mars, Rev. Geophys. Space Phys. 19(1), 13–41, 1981.CrossRefGoogle Scholar
Gringauz, K. I., Verigin, M., Luhmann, J., Russell, C. T., and Mihalov, J. D., On the compressibility of the magnetic tails of Mars and Venus, Plasma Environments of Non-magnetic Planets, New York: Pergammon, pp. 265–70, 1993.Google Scholar
Halekas, J. S., Mitchell, D. L., Lin, R. P., et al., Demagnetization signatures of lunar impact craters, Geophys. Res. Lett. 29(13), 1645, 2002.CrossRefGoogle Scholar
Hargraves, R. B., Collinson, D. W., Arvidson, R. E., and Spitzer, C. R., The Viking magnetic properties experiment: primary mission results, J. Geophys. Res. 82, 4547–58, 1977.CrossRefGoogle Scholar
Harrison, K. P. and Grimm, R. E., Controls on martian hydrothermal systems: application to valley network and magnetic anomaly formation, J. Geophys. Res. – Planets 107(E5), art. no. 5025, 2002.CrossRefGoogle Scholar
Hartmann, W. and Neukum, G., Chronology and evolution of Mars, Space Sci. Rev. 96, 165–94, 2001.CrossRefGoogle Scholar
Hartstra, R. L., Some rock magnetic parameters for natural iron-titanium oxides, Doctoral thesis, State University of Utrecht, 145pp., 1982.
Hauck, S. A. and Phillips, R. J., Thermal and crustal evolution of Mars, J. Geophys. Res. 107(E7), doi:10.1029/2001JE001801, 2002.CrossRefGoogle Scholar
Head, J. W. III, Kreslavsky, M. A., and Pratt, S., Northern lowlands of Mars: evidence for widespread volcanic flooding and tectonic deformation in the Hesperian period, J. Geophys. Res. 107 (cite ID 5003), doi:10.1029/2000JE001445, 2002.CrossRefGoogle Scholar
Hood, L. L. and Zakharian, A., Mapping and modeling of magnetic anomalies in the northern polar region of Mars, J. Geophys. Res. 106, 14601–19, 2001.CrossRefGoogle Scholar
Hood, L. L., Richmond, N. C., Pierazzo, E., and Rochette, P., Distribution of crustal magnetic anomalies on Mars: shock effects of basin-forming impacts, Geophys. Res. Lett. 30(6), doi:10.1029/2002GL016657, 2003.CrossRefGoogle Scholar
Hood, L. L., Young, C. N., Richmond, N. C., and Harrison, K. P., Modeling of major martian magnetic anomalies: further evidence for polar reorientations during the Noachian, Icarus 177(1): 144–73, 2005.CrossRefGoogle Scholar
Hunt, C. P., Moskowitz, B. M., and Banerjee, S. K., Magnetic properties of rocks and minerals. In Rock Physics and Phase Relations: A Handbook of Physical Constants, American Geophysical Union, pp. 189–203, 1995.Google Scholar
Jacquemont, B., Etude des interactions eaux-roches dans le granite de Soultz-sous-Forêts. Quantification et modélisation des transferts de matière par les fluides. Strasbourg: Université Luis Pasteur, 2002.Google Scholar
Just, J. and A. Kontny, The influence of hydrothermal activity on rock magnetic properties of granites from the EPS-1 drilling (Soultz-sous-Forêts, France), European Geophysical Society Scientific Program, EGS-A-04733, 2002.
Kletetschka, G., Intense remanence of hematite-ilmenite solid solution, Geologica Carpathica 51(3), 187–187, 2000.Google Scholar
Kletetschka, G. and Wasilewski, P. J., Grain size limit for SD hematite, Phys. Earth Planet. Inter. 129(1–2), 173–9, 2002.CrossRefGoogle Scholar
Kletetschka, G. and Stout, J. H., The origin of magnetic anomalies in lower crustal rocks, Labrador, Geophys. Res. Lett. 25(2), 199–202, 1998.CrossRefGoogle Scholar
Kletetschka, G., Wasilewski, P. J., and Taylor, P. T., Hematite vs. magnetite as the signature for planetary magnetic anomalies?, Phys. Earth Planet. Inter. 119(3–4), 259–67, 2000a.CrossRefGoogle Scholar
Kletetschka, G., Wasilewski, P. J., and Taylor, P. T., Mineralogy of the sources for magnetic anomalies on Mars, Meteorit. Planet. Sci. 35(5), 895–9, 2000b.CrossRefGoogle Scholar
Kletetschka, G., Wasilewski, P. J., and Taylor, P. T., Unique thermoremanent magnetization of multidomain sized hematite: implications for magnetic anomalies, Earth Planet. Sci. Lett. 176(3–4), 469–79, 2000c.CrossRefGoogle Scholar
Kletetschka, G., Wasilewski, P. J., and Taylor, P. T., The role of hematite–ilmenite solid solution in the production of magnetic anomalies in ground and satellite based data, Tectonophysics 347(1–3), 166–77, 2002.CrossRefGoogle Scholar
Kletetschka, G., Ness, N. F., Wasilewski, P. J., Connerney, J. E. P., and Acuña, M. H., Possible mineral sources of magnetic anomalies on Mars, The Leading Edge 22(8), 766–8, 2003.CrossRefGoogle Scholar
Kletetschka, G., Acuña, M. H., Kohout, T., Wasilewski, P. J., and Connerney, J. E. P., An empirical scaling law for acquisition of thermoremanent magnetization, Earth Planet. Sci. Lett. 226(3–4), 521–8, 2004a.CrossRefGoogle Scholar
Kletetschka, G., Connerney, J. E. P., Ness, N. F., and Acuña, M. H., Pressure effects on martian crustal magnetization near large impact basins, Meteorit. Planet. Sci. 39(11), 1839–48, 2004b.CrossRefGoogle Scholar
Kletetschka, G., Ness, N. F., Connerney, J. E. P., Acuña, M. H., and Wasilewski, P. J., Grain size dependent potential for self generation of magnetic anomalies on Mars via thermoremanent magnetic acquisition and magnetic interaction of hematite and magnetite, Phys. Earth Planet. Inter. 148(2–4), 149–56, 2005.CrossRefGoogle Scholar
Kontny, A., Woodland, A. B., and Koch, M., Temperature-dependent magnetic susceptibility behaviour of spinelloid and spinel solid solutions in the systems Fe2SiO4-Fe3O4 and (Fe, Mg)2SiO4-Fe3O4, Phys. Chem. Miner. 31(1), 28–40, 2004.CrossRefGoogle Scholar
Kumar, A. and Bhalla, M. S., Source of stable remanence in chromite ores, Geophys. Res. Lett. 11(3), 177–80, 1984.CrossRefGoogle Scholar
Langlais, B., Purucker, M. E., and Mandea, M., Crustal magnetic field of Mars, J. Geophys. Res. 109, E02008, doi:10.1029/2003JE002048, 2004.CrossRefGoogle Scholar
Leweling, M. and Spohn, T., Mars: a magnetic field due to thermoremanence?, Planet. Space Sci. 45, 1389–400, 1997.CrossRefGoogle Scholar
Lillis, R. J., Mitchell, D. L., Lin, R. P., Connerney, J. E. P., and Acuña, M. H., Mapping crustal magnetic fields at Mars using electron reflectometry, Geophys. Res. Lett. 31, l15702, doi:10.1029/2004gl020189, 2004.CrossRefGoogle Scholar
Luhmann, J. G., The solar wind interaction with Venus and Mars: cometary analogies and contrasts, Geophys. Monog. Ser. 61, 5, 1991.Google Scholar
Luhmann, J. G., Johnson, R. E., and Zhang, M. H. G., Evolutionary impact of sputtering of the martian atmosphere by O+ pickup ions, Geophys. Res. Lett. 19(21), 2151, 1992.CrossRefGoogle Scholar
Madsen, M. B., Hviid, S. F., Gunnlaugsson, H. P., et al., The magnetic properties experiments on Mars Pathfinder, J. Geophys. Res. – Planets 104(E4), 8761–79, 1999.CrossRefGoogle Scholar
Madsen, M. B., Bertelsen, P., Goetz, W., et al., The magnetic properties experiments on the Mars Exploration Rover mission, J. Geophys. Res. 108(E12), 8069, 2003.Google Scholar
McEnroe, S. A., Harrison, R. J., Robinson, P., Golla, U., and Jercinovic, M. J., Effect of fine-scale microstructures in titanohematite on the acquisition and stability of natural remanent magnetization in granulite facies metamorphic rocks, southwest Sweden: implication for crustal magnetism, J. Geophys. Res. 106(B12), 30523–46, 2001a.CrossRefGoogle Scholar
McEnroe, S. A., Robinson, P., and Panish, P. T., Aeromagnetic anomalies, magnetic petrology, and rock magnetism of hemo-ilmenite- and magnetite-rich cumulate rocks from the Sokndal Region, South Rogaland, Norway, Am. Mineral. 86(11–12), 1447–68, 2001b.CrossRefGoogle Scholar
McSween, H. Y., SNC meteorites: clues to Martian petrologic evolution, Rev. Geophys. 23(4), 391–416, 1985.CrossRefGoogle Scholar
Melosh, H. J., Impact Cratering: A Geologic Process, New York: Oxford University Press, p. 245, 1989.Google Scholar
Milkovich, S. M., Head, J. W., and Pratt, S., Meltback of Hesperian-aged ice-rich deposits near the south pole of Mars: evidence for drainage channels and lakes, J. Geophys. Res. – Planets 107(E6), 2002.CrossRefGoogle Scholar
Mitchell, D. L., Lin, R. P., Mazelle, C., et al., Probing Mars' crustal magnetic field and ionosphere with the MGS Electron Reflectometer, J. Geophys. Res. 106(E10), 23418–27, doi:10.1029/2000JE001435, 2001.CrossRefGoogle Scholar
Mitchell, D. L., Lillis, R. J., Lin, R. P., Connerney, J. E. P., and Acuña, M. H., A global map of Mars' crustal magnetic field based on electron reflectometry, J. Geophys. Res. 112 (E01002), doi:10.1029/2005JE002564, 2007.CrossRefGoogle Scholar
Mohit, P. S. and Arkani-Hamed, J., Impact demagnetization of the martian crust, Icarus 168(2), 305–17, 2004.CrossRefGoogle Scholar
Mohlmann, D., Riedler, W., Rustenbach, J., et al., The question of an internal martian magnetic field, Planet. Space Sci. 39, 83, 1991.CrossRefGoogle Scholar
Nagata, T., Introductory notes on shock remanent magnetization and shock demagnetization of igneous rocks, Pure Appl. Geophys. 89(6), 159–77, 1971.CrossRefGoogle Scholar
Ness, N. F., The magnetic fields of Mercury, Mars and Moon, Annu. Rev. Earth Planet Sci. 7, 248–88, 1979.CrossRefGoogle Scholar
Ness, N. F., Acuña, M. H., Connerney, J., et al., MGS magnetic fields and electron reflectometer investigation: discovery of paleomagnetic fields due to crustal remanence, Adv. Space Res. 23(11), 1879–86, 1999.CrossRefGoogle Scholar
Nimmo, F., Dike intrusion as a possible cause of linear martian magnetic anomalies, Geology 28, 391–4, 2000.2.0.CO;2>CrossRefGoogle Scholar
Nimmo, F. and Gilmore, M. S., Constraints on the depth of magnetized crust on Mars from impact craters, J. Geophys. Res. 106, 12315–23, 2001.CrossRefGoogle Scholar
Nimmo, F. and Stevenson, D., Influence of early plate tectonics on the thermal evolution and magnetic field of Mars, J. Geophys. Res. 105, 11969–79, 2000.CrossRefGoogle Scholar
Özdemir, Ö. and O'Reilly, W., An experimental study of thermoremanent magnetization acquired by synthetic monodomain titanomaghemites, J. Geomag. Geoelec. 34, 467–78, 1982.CrossRefGoogle Scholar
Parker, R. L., Ideal bodies for Mars magnetics, J. Geophys. Res. 108(E1), 5006, doi:10.1029/2001JE001760, 2003.Google Scholar
Pilkington, M. and Grieve, R. A. F., The geophysical signature of terrestrial impact craters, Rev. Geophys. 30(2), 161–81, 1992.CrossRefGoogle Scholar
Pohl, J., Bleil, U., and Hornemann, U., Shock magnetization and demagnetization of basalt by transient stress up to 10 Kbar, J. Geophys. – Zeitschrift Fur Geophysik 41(1), 23–41, 1975.Google Scholar
Purucker, M., Rauat, D., Frey, H., et al., An altitude-normalized magnetic map of Mars and its interpretation, Geophys. Res. Lett. 27, 2449–52, 2000.CrossRefGoogle Scholar
Riedler, W., Mohlmann, D., Oraeusky, V. N., et al., Magnetic fields near Mars: first results, Nature 341, 604–7, 1989.CrossRefGoogle Scholar
Robinson, P., Harrison, R. J., McEnroe, S. A., and Hargraves, R. B., Lamellar magnetism in the haematite-ilmenite series as an explanation for strong remanent magnetization, Nature 418, 517–20, 2002.CrossRefGoogle ScholarPubMed
Rochette, P., Lorand, J. P., Fillion, G., et al., Pyrrhotite and the remanent magnetization of SNC meteorites: a changing perspective on martian magnetism, Earth Planet. Sci. Lett. 190 (1–2), 1–12, 2001.CrossRefGoogle Scholar
Rochette, P., Fillion, G., Ballou, R., et al., High pressure magnetic transition in pyrrhotite and impact demagnetization on Mars, Geophys. Res. Lett. 30(13), 1683, doi:10.1029/2003GL017359, 2003a.CrossRefGoogle Scholar
Rochette, P., Fillion, G., Ballou, R., et al., High pressure magnetic transition in monoclinic pyrrhotite, Geophys. Res. Abs. 30, Abstract No. 01526, 2003b.Google Scholar
Rochette, P., Gattacceca, J., Cheurier, V., et al., Matching martian crustal magnetization and magnetic properties of martian meteorites, Meteorit. Planet. Sci. 40, 529–40, 2005.CrossRefGoogle Scholar
Russell, C. T., The magnetic field of Mars: Mars 3 evidence re-examined, Geophys. Res. Lett. 5, 81–4, 1978a.CrossRefGoogle Scholar
Russell, C. T., The magnetic field of Mars: Mars 5 evidence re-examined, Geophys. Res. Lett. 5, 85–8, 1978b.Google Scholar
Schenk, P. M. and Moore, J. M., Stereo topography of the south polar region of Mars: volatile inventory and Mars Polar Lander landing site, J. Geophys. Res. – Planets 105(E10), 24529–46, 2000.CrossRefGoogle Scholar
Schubert, G. and Spohn, T., Thermal history of Mars and the sulfur content of its core, J. Geophys. Res. 95, 14095–104, 1990.CrossRefGoogle Scholar
Schubert, G., S. C. Solomon, D. L. Turcotte, M. J. Drake, and N. H. Sleep, Origin and thermal evolution of Mars. In Mars (ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.), Tucson, AZ: University of Arizona Press, pp. 147–83, 1992.Google Scholar
Schubert, G., Russell, C. T., and Moore, W. B., Geophysics: timing of the martian dynamo, Nature 408, 666–7, 2000.CrossRefGoogle ScholarPubMed
Scott, E. R. D. and Fuller, M., A possible source for the martian crustal magnetic field, Earth Planet. Sci. Lett. 220, 83–90, 2004.CrossRefGoogle Scholar
Slavin, J. A. and Holzer, R. E., The solar wind interaction with Mars revisited, J. Geophys. Res. 87, 10285–96, 1982.CrossRefGoogle Scholar
Slavin, J. A., Schwingenschuh, K., Riedler, W., and Yeroshenko, Y., The solar wind interaction with Mars: Mariner 4, Mars 2, Mars 3, Mars 5, and Phobos 2 observations of bow shock position and shape, J. Geophys. Res. 96, 11235–41, 1991.CrossRefGoogle Scholar
Sleep, N. H., Martian plate tectonics, J. Geophys. Res. 99, 5639–55, 1994.CrossRefGoogle Scholar
Smith, D. E., Zuber, M. T., Solomon, S. C., et al., The global topography of Mars and implications for surface evolution, Science 284, 1495–503, 1999.CrossRefGoogle ScholarPubMed
Smith, D. E., Zuber, M. T., and Neumann, G. A., Seasonal variations of snow depth on Mars, Science 294(5549), 2141–6, 2001.CrossRefGoogle ScholarPubMed
Smith, E. J., Davis, L. Jr., Coleman, P. J., and Jones, D. E., Magnetic field measurements near Mars, Science 149, 1241–2, 1965.CrossRefGoogle ScholarPubMed
Spohn, T., Mantle differentiation and thermal evolution of Mars, Mercury, and Venus, Icarus 90(2), 222–36, 1991.CrossRefGoogle Scholar
Spohn, T., Sohl, F., and Breuer, D., Mars, Astron. Astrophys. Rev. 8, 181–235, 1998.CrossRefGoogle Scholar
Spohn, T., Acuña, M. A., Breuer, D., et al., Geophysical constraints on the evolution of Mars, Space Sci. Rev. 96, 231–62, 2001.CrossRefGoogle Scholar
Sprenke, K. F. and Baker, L. L., Magnetization, paleomagnetic poles, and polar wander on Mars, Icarus 147, 26–34, 2000.CrossRefGoogle Scholar
Squyres, S. W., Grotzinger, J. P., Arvidson, R. E., et al., In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars, Science 306 (5702), 1709, 2004.CrossRefGoogle ScholarPubMed
Stevenson, D. J., Spohn, T., and Schubert, G., Magnetism and thermal evolution of the terrestrial planets, Icarus 54, 466–89, 1983.CrossRefGoogle Scholar
Talwani, M., Computation with help of a digital computer of magnetic anomalies caused by bodies of arbitrary shape, Geophysics 30, 797, 1965.CrossRefGoogle Scholar
Tanaka, K. L. and Scott, D. H., Geological Map of the Polar Regions of Mars, Reston, VA: US Geological Survey, 1987.Google Scholar
Tanaka, K. L., Greeley, R., Scott, D. H., and Guest, J. E., New geologic map of Mars, NASA Technical Memorandum 88383, 601–2, 1986.Google Scholar
Tucker, P. and O'Reilly, W., The laboratory simulation of deuteric oxidation of titanomagnetites: effect on magnetic properties and stability of thermoremanence, Phys. Earth Planet. Int. 23, 112–33, 1980.CrossRefGoogle Scholar
Uyeda, S., Thermo-remanent magnetism as medium of Paleomagnetism, with special reference to reverse thermo-remanent magnetism, Jap. J. Geophys., 2, 1–23, 1958.Google Scholar
Vine, F. J. and Matthews, D. H., Magnetic anomalies over oceanic ridges, Nature 199, 947–9, 1963.CrossRefGoogle Scholar
Voorhies, C. V., Sabaka, T. J., and Purucker, M., On magnetic spectra of Earth and Mars, J. Geophys. Res. 107(E6), doi:10.1029/2001JE001534, 2002.CrossRefGoogle Scholar
Weiss, B. P., Shuster, D. L., and Stewart, S. T., Temperatures on Mars from 40Ar/39Ar thermochronology of ALH84001, Earth Planet. Sci. Lett. 201, 465–72, 2002a.CrossRefGoogle Scholar
Weiss, B. P., Vali, H., Baudenbacher, F. J., et al., Record of an ancient martian magnetic field in ALH84001. Earth Planet. Sci. Lett. 201, 449–63, 2002b.CrossRefGoogle Scholar
Weiss, B. P., Vali, H., Baudenbacher, F. J., et al., Records of an ancient martian magnetic field in ALH84001, Earth Planet. Sci. Lett. 201(3–4), 449–63, 2002c.CrossRefGoogle Scholar
Wilhelms, D. E. and Squyres, S. W., The martian hemispheric dichotomy may be due to a giant impact, Nature 309, 138–40, 1984.CrossRefGoogle Scholar
Wilson, J. R., B. Robins, F. M. Nielsen, J. C. Duchesne, and J. V. Auwera, The Bjerkreim-Sokndal Layered Intrusion, Southwest Norway. In Layered Intrusions (ed. Cawthorn, R. G.), Amsterdam: Elsevier Science, pp. 231–55, 1996.Google Scholar
Wise, D. U., Golombek, M. P., and McGill, G. E., Tharsis province of Mars: geologic sequence, geometry, and a deformation mechanism, Icarus 38, 456–72, 1979.CrossRefGoogle Scholar
Yu, Y., Dunlop, D. J., Özdemir, Ö., et al., Magnetic properties of Kurokami pumices from Mt. Sakurajima, Japan, Earth Planet. Sci. Lett. 192(3), 439–46, 2001.CrossRefGoogle Scholar
Zuber, M. T., The crust and mantle of Mars, Nature 412, 220–7, 2001.CrossRefGoogle ScholarPubMed
Zuber, M. T., Solomon, S. C., Phillips, R. J., et al., Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity, Science 287, 1788–93, 2000.CrossRefGoogle ScholarPubMed
10
Cited by

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×