We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
A summary is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
Male Infertility Best Practice Policy Committee of the American Urological Association Practice Committee of the American Society for Reproductive Medicine. Report on evaluation of the azoospermic male. Fertil Steril2006;86:S210–S215.CrossRefGoogle Scholar
2
Proctor, M, Johnson, N, van Peperstraten, AM, Phillipson, G. Techniques for surgical retrieval of sperm prior to intra‐cytoplasmic sperm injection (ICSI) for azoospermia. Cochrane Database Syst Rev2008;2:CD002807.Google Scholar
3
Semiao-Francisco, L, Braga, DP, Figueira Rde, C, et al.Assisted reproductive technology outcomes in azoospermic men: 10 years of experience with surgical sperm retrieval. Aging Male2010;13:44–50.CrossRefGoogle Scholar
Urman, B, Alatas, C, Aksoy, S, et al.Performing testicular or epididymal sperm retrieval prior to the injection of hCG. J Assist Reprod Genet1998;15:125–128.CrossRefGoogle ScholarPubMed
6
Levran, D, Ginath, S, Farhi, J, et al.Timing of testicular sperm retrieval procedures and in vitro fertilization-intracytoplasmic sperm injection outcome. Fertil Steril2001;76:380–383.CrossRefGoogle ScholarPubMed
7
Verheyen, G, Popovic-Todorovic, B, Tournaye, H. Processing and selection of surgically-retrieved sperm for ICSI: a review. Basic Clin Androl2017;27:6.CrossRefGoogle ScholarPubMed
8
Oates, RD, Mulhall, J, Burgess, C, Cunningham, D, Carson, R. Fertilization and pregnancy using intentionally cryopreserved testicular tissue as the sperm source for intracytoplasmic sperm injection in 10 men with non-obstructive azoospermia. Hum Reprod1997;12:734–739.CrossRefGoogle ScholarPubMed
9
Verheyen, G, De Croo, I, Tournaye, H, et al.Comparison of four mechanical methods to retrieve spermatozoa from testicular tissue. Hum Reprod1995;10:2956–2959.CrossRefGoogle ScholarPubMed
10
Crabbé, E, Verheyen, G, Silber, S, et al.Enzymatic digestion of testicular tissue may rescue the intracytoplasmic sperm injection cycle in some patients with non-obstructive azoospermia. Hum Reprod1998;13:2791–2796.CrossRefGoogle ScholarPubMed
11
Dalzell, LH, McVicar, CM, McClure, N, Lutton, D, Lewis, SE. Effects of short and long incubations on DNA fragmentation of testicular sperm. Fertil Steril2004;82:1443–1445.CrossRefGoogle Scholar
12
de Oliveira, NM, Vaca Sanchez, R, Rodriguez Fiesta, S, et al.Pregnancy with frozen-thawed and fresh testicular biopsy after motile and immotile sperm microinjection, using the mechanical touch technique to assess viability. Hum Reprod2004;19:262–265.CrossRefGoogle ScholarPubMed
13
Loughlin, KR, Agarwal, A. Use of theophylline to enhance sperm function. Arch Androl1992;28:99–103.CrossRefGoogle ScholarPubMed
14
Aktan, TM, Montag, M, Duman, S, et al.Use of a laser to detect viable but immotile spermatozoa. Andrologia2004;36:366–369.CrossRefGoogle ScholarPubMed
15
Nordhoff, V, Schuring, AN, Krallmann, C, et al.Optimizing TESE-ICSI by laser-assisted selection of immotile spermatozoa and polarization microscopy for selection of oocytes. Andrology2013;1:67–74.CrossRefGoogle ScholarPubMed
Tournaye, H, Verheyen, G, Nagy, P, et al.Are there any predictive factors for successful testicular sperm recovery in azoospermic patients?. Hum Reprod1997;12:80–86.CrossRefGoogle ScholarPubMed
18
Henkel, R.Novel sperm tests and their importance. In Agarwal, A, Borges, EJr, Setti, A (eds.) Non-Invasive Sperm Selection for In Vitro Fertilization. Springer, New York, 2015, pp. 23–40.CrossRefGoogle Scholar
19
Ciapa, B,Chiri, S. Egg activation: upstream of the fertilization calcium signal. Biol Cell2000;92:215–233.CrossRefGoogle ScholarPubMed
20
Malcuit, C, Kurokawa, M, Fissore, RA. Calcium oscillations and mammalian egg activation. J Cell Physiol2006;206:565–573.CrossRefGoogle ScholarPubMed
21
Yeste, M, Jones, C, Amdani, SN, Patel, S, Coward, K. Oocyte activation deficiency: a role for an oocyte contribution?Hum Reprod Update2016;22:23–47.CrossRefGoogle ScholarPubMed
22
Yelumalai, S, Yeste, M, Jones, C, et al.Total levels, localization patterns, and proportions of sperm exhibiting phospholipase C zeta are significantly correlated with fertilization rates after intracytoplasmic sperm injection. Fertil Steril2015;104:561–8 e4.CrossRefGoogle ScholarPubMed
23
Lee, HC, Arny, M, Grow, D, et al.Protein phospholipase C Zeta1 expression in patients with failed ICSI but with normal sperm parameters. J Assist Reprod Genet2014;31:749–756.CrossRefGoogle ScholarPubMed
24
Mahutte, NG, Arici, A. Failed fertilization: is it predictable?Curr Opin Obstet Gynecol2003;15:211–218.CrossRefGoogle ScholarPubMed
25
Tesarik, J, Rienzi, L, Ubaldi, F, Mendoza, C, Greco, E. Use of a modified intracytoplasmic sperm injection technique to overcome sperm-borne and oocyte-borne oocyte activation failures. Fertil Steril2002;78:619–624.CrossRefGoogle ScholarPubMed
26
Ebner, T, Moser, M, Sommergruber, M, Jesacher, K, Tews, G. Complete oocyte activation failure after ICSI can be overcome by a modified injection technique. Hum Reprod2004;19:1837–1841.CrossRefGoogle ScholarPubMed
27
Sasagawa, I, Yanagimachi, R. Comparison of methods for activating mouse oocytes for spermatid nucleus transfer. Zygote1996;4:269–274.CrossRefGoogle ScholarPubMed
28
Yanagida, K, Katayose, H, Yazawa, H, et al.Successful fertilization and pregnancy following ICSI and electrical oocyte activation. Hum Reprod1999;14:1307–1311.CrossRefGoogle ScholarPubMed
29
Mansour, R, Fahmy, I, Tawab, NA, et al.Electrical activation of oocytes after intracytoplasmic sperm injection: a controlled randomized study. Fertil Steril2009;91:133–139.CrossRefGoogle ScholarPubMed
30
Baltaci, V, Ayvaz, OU, Unsal, E, et al.The effectiveness of intracytoplasmic sperm injection combined with piezoelectric stimulation in infertile couples with total fertilization failure. Fertil Steril2010;94:900–904.CrossRefGoogle ScholarPubMed
31
Zhang, J, Wang, CW, Blaszcyzk, A, et al.Electrical activation and in vitro development of human oocytes that fail to fertilize after intracytoplasmic sperm injection. Fertil Steril1999;72:509–512.CrossRefGoogle ScholarPubMed
32
Tesarik, J, Sousa, M, Mendoza, C. Sperm-induced calcium oscillations of human oocytes show distinct features in oocyte center and periphery. Mol Reprod Dev1995;41:257–263.CrossRefGoogle ScholarPubMed
33
Borges, EJr., de Almeida Ferreira Braga, DP, de Sousa Bonetti, TC, Iaconelli, AJr., Franco, JGJr.Artificial oocyte activation with calcium ionophore A23187 in intracytoplasmic sperm injection cycles using surgically retrieved spermatozoa. Fertil Steril2009;92:131–136.CrossRefGoogle ScholarPubMed
34
Borges, EJr., de Almeida Ferreira Braga, DP, de Sousa Bonetti, TC, Iaconelli, AJr., Franco, JGJr.Artificial oocyte activation using calcium ionophore in ICSI cycles with spermatozoa from different sources. Reprod Biomed Online2009;18:45–52.CrossRefGoogle ScholarPubMed
35
Murugesu, S, Saso, S, Jones, BP, et al.Does the use of calcium ionophore during artificial oocyte activation demonstrate an effect on pregnancy rate? A meta-analysis. Fertil Steril2017;108:468–482 e3.CrossRefGoogle ScholarPubMed
36
Capalbo, A, Ottolini, CS, Griffin, DK, et al.Artificial oocyte activation with calcium ionophore does not cause a widespread increase in chromosome segregation errors in the second meiotic division of the oocyte. Fertil Steril2016;105:807–814.e2.CrossRefGoogle ScholarPubMed
37
Vanden Meerschaut, F, D’Haeseleer, E, Gysels, H, et al.Neonatal and neurodevelopmental outcome of children aged 3–10 years born following assisted oocyte activation. Reprod Biomed Online2014;28:54–63.CrossRefGoogle ScholarPubMed
38
D’haeseleer, E, Vanden Meerschaut, F, Bettens, K, et al.Language development of children born following intracytoplasmic sperm injection (ICSI) combined with assisted oocyte activation (AOA). Int J Lang Commun Disorders2014;49:702–709.CrossRefGoogle Scholar
39
Kim, JW, Kim, SD, Yang, SH, et al.Successful pregnancy after SrCl2 oocyte activation in couples with repeated low fertilization rates following calcium ionophore treatment. Syst Biol Reprod Med2014;60:177–182.CrossRefGoogle ScholarPubMed
40
Yanagida, K, Morozumi, K, Katayose, H, Hayashi, S, Sato, A. Successful pregnancy after ICSI with strontium oocyte activation in low rates of fertilization. Reprod Biomed Online2006;13:801–806.CrossRefGoogle ScholarPubMed
41
Kashir, J, Nomikos, M, Lai, FA, Swann, K. Sperm-induced Ca2+ release during egg activation in mammals. Biochem Biophys Res Commun2014;450:1204–1211.CrossRefGoogle ScholarPubMed
42
Nomikos, M, Kashir, J, Swann, K, Lai, FA. Sperm PLCzeta: from structure to Ca2+ oscillations, egg activation and therapeutic potential. FEBS Lett2013;587:3609–3616.CrossRefGoogle ScholarPubMed
43
Sanusi, R, Yu, Y, Nomikos, M, Lai, FA, Swann, K. Rescue of failed oocyte activation after ICSI in a mouse model of male factor infertility by recombinant phospholipase Czeta. Mol Hum Reprod2015;21:783–791.CrossRefGoogle Scholar
44
Lu, Q, Zhao, Y, Gao, X, et al.Combination of calcium ionophore A23187 with puromycin salvages human unfertilized oocytes after ICSI. Eur J Obstet Gynecol Reprod Biol2006;126:72–76.CrossRefGoogle ScholarPubMed
References
1
AbdelHafez, F, Bedaiwy, M, El-Nashar, SA, Sabanegh, E, Desai, N. Techniques for cryopreservation of individual or small numbers of human spermatozoa: a systematic review. Hum Reprod Update2008;15:153–164.CrossRefGoogle ScholarPubMed
Hezavehei, M, Sharafi, M, Kouchesfahani, HM, et al.Sperm cryopreservation: a review on current molecular cryobiology and advanced approaches. Reprod Biomed Online2018;37(3):327–339.CrossRefGoogle ScholarPubMed
4
Agha‐Rahimi, A, Khalili, M, Nottola, S, Miglietta, S, Moradi, A. Cryoprotectant‐free vitrification of human spermatozoa in new artificial seminal fluid. Andrology2016;4(6):1037–1044.CrossRefGoogle ScholarPubMed
5
Di Santo, M, Tarozzi, N, Nadalini, M, Borini, A. Human sperm cryopreservation: update on techniques, effect on DNA integrity, and implications for ART. Adv Urol2012;2012:854837.CrossRefGoogle ScholarPubMed
6
Mocé, E, Fajardo, AJ, Graham, JK. Human sperm cryopreservation. EMJ2016;1(1):86–91.Google Scholar
7
Hammerstedt, RH, Graham, JK, Nolan, JP. Cryopreservation of mammalian sperm: what we ask them to survive. J Androl1990;11(1):73–88.Google Scholar
8
Mazur, P.Freezing of living cells: mechanisms and implications. Am J Physiol Cell Physiol1984;247(3):C125–C142.CrossRefGoogle ScholarPubMed
Rozati, H, Handley, T, Jayasena, C. Process and pitfalls of sperm cryopreservation. J Clin Med2017;6(9):89.CrossRefGoogle ScholarPubMed
11
Medrano, JV, Del Mar Andrés, M, García, S, et al.Basic and clinical approaches for fertility preservation and restoration in cancer patients. Trends Biotechnol2018;36(2):199–215.CrossRefGoogle ScholarPubMed
12
Gupta, S, Agarwal, A, Sharma, R, Ahmady, A.Sperm banking via cryopreservation. In: RizkBotros, RMB, Aziz, N, Agarwal, A, Sabanegh, E (eds.) Medical and Surgical Management of Male Infertility. Jaypee Brothers, New Delhi, 2014, pp. 234–243.Google Scholar
13
Kagalwala, S. Sperm vitrification. In Allahabadia, G, Kuwayama, M, Gandhi, G (eds.) Vitrification in Assisted Reproduction: A User’s Manual. Springer, New Delhi, 2015, pp. 31–42.Google Scholar
14
Agarwal, A, Gupta, S, Sharma, R. Cryopreservation of client depositor semen. In: Agarwal, A, Gupta, S, Sharma, R (eds.) Andrological Evaluation of Male Infertility: A Laboratory Guide. Springer, Cham, 2016, pp. 113–133.CrossRefGoogle Scholar
15
Agarwal, A, Tvrda, E. Slow freezing of human sperm. In: Nagy Zsolt, P, Vargheses, A, Agarwal, A (eds.) Cryopreservation of Mammalian Gametes and Embryos: Methods and Protocols. Springer Science + Business Media,New York, 2017, pp. 67–78.CrossRefGoogle Scholar
16
Sharma, R, Kattoor, AJ, Ghulmiyyah, J, Agarwal, A. Effect of sperm storage and selection techniques on sperm parameters. Syst Biol Reprod Med2015;61(1):1–12.CrossRefGoogle ScholarPubMed
17
Gupta, S, Sharma, R, Agarwal, A. The process of sperm cryopreservation, thawing and washing techniques. In: Majoub, A, Agarwal, A (eds.) The Complete Guide to Male Fertility Preservation. Springer, Cham, 2018, pp. 183–204.CrossRefGoogle Scholar
18
Agarwal, A, Sharma, R, Gupta, S, Sharma, R. NextGen® home sperm banking kit: outcomes of offsite vs onsite collection—preliminary findings. Urology2015;85(6):1339–1346.CrossRefGoogle Scholar
19
Bunge, R, Sherman, J. Fertilizing capacity of frozen human spermatozoa. Nature1953;172(4382):767–768.CrossRefGoogle ScholarPubMed
20
Oldenhof, HM. Gojowsky, S, Wang, S, et al.Osmotic stress and membrane phase changes during freezing of stallion sperm: mode of action of cryoprotective agents. Biol Reprod2013;88(3):68.CrossRefGoogle ScholarPubMed
21
Isachenko, V, Maettner, R, Petrunkina, A, et al.Cryoprotectant-free vitrification of human spermatozoa in large (up to 0.5 mL) volume: a novel technology. Clin Lab2011;57(9–10):643–650.Google ScholarPubMed
22
Mohamed, MSA. Slow cryopreservation is not superior to vitrification in human spermatozoa; an experimental controlled study. Iranian J Reprod Med2015;13(10):633–644.Google Scholar
23
Le, MT, Nguyen, TTT, Nguyen, TT, et al.Cryopreservation of human spermatozoa by vitrification versus conventional rapid freezing: effects on motility, viability, morphology and cellular defects. Eur J Obstet Gynecol Reprod Biol2019;234:14–20.CrossRefGoogle ScholarPubMed
24
Li, YX, Zhou, L, LV MQ, et al.Vitrification and conventional freezing methods in sperm cryopreservation: a systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol2019;233:84–92.CrossRefGoogle ScholarPubMed
25
Slabbert, M, Du Plessis, S, Huyser, C. Large volume cryoprotectant‐free vitrification: an alternative to conventional cryopreservation for human spermatozoa. Andrologia2015;47(5):594–599.CrossRefGoogle ScholarPubMed
26
Aizpurua, J, Medrano, L, Enciso, M, et al.New permeable cryoprotectant-free vitrification method for native human sperm. Hum Reprod2017;32(10):2007–2015.CrossRefGoogle ScholarPubMed
27
Isachenko, E, Isachenko, V, Katkov, II, Dessole, S, Nawroth, F. Vitrification of mammalian spermatozoa in the absence of cryoprotectants: from past practical difficulties to present success. Reprod Biomed Online2003;6(2):191–200.CrossRefGoogle ScholarPubMed
28
Isachenko, E, Isachenko, V, Katkov, IIet al.DNA integrity and motility of human spermatozoa after standard slow freezing versus cryoprotectants-free vitrification. Hum Reprod2004;19:932–939.CrossRefGoogle Scholar
29
Isachenko, V, Isachenko, E, Katkov, IIet al.Cryoprotectant-free cryopreservation of human spermatozoa by vitrification and freezing in vapor: effect of motility, DNA integrity, and fertilization ability. Biol Reprod2004;71:1167–1173.CrossRefGoogle ScholarPubMed
30
Mansilla, MA, Merino, O, Risopatron, J, et al.High temperature is essential for preserved human sperm function during the devitrification process. Andrologia2016;48:111–113.CrossRefGoogle ScholarPubMed
31
Khalili, MA, Adib, M, Halvaei, I, Nabi, A. Vitrification of neat semen alters sperm parameters and DNA integrity. Urol J2014;11(2):1465–1470.Google ScholarPubMed
32
Riel, JM, Yamauchi, Y, Huang, TT, Grove, J, Ward, MA. Short-term storage of human spermatozoa in electrolyte-free medium without freezing maintains sperm chromatin integrity better than cryopreservation. Biol Reprod2011;85(3):536–547.CrossRefGoogle ScholarPubMed
33
Podsiadly, BT, Woolcott, RJ, Stanger, JD, Stevenson, K. Pregnancy resulting from intracytoplasmic injection of cryopreserved spermatozoa recovered from testicular biopsy. Hum Reprod1996;11(6):1306–1308.CrossRefGoogle ScholarPubMed
34
Cohen, J, Garrisi, GJ, Congedo-Ferrara, TA, et al.Cryopreservation of single human spermatozoa. Hum Reprod1997;12(5):994–1001.CrossRefGoogle ScholarPubMed
35
Isachenko, V.Clean technique for cryoprotectant-free vitrification of human spermatozoa. RBM Online2005;10(3):350–354.Google ScholarPubMed
36
Gil-Salom, MJ, Romero, C, Rubio, A, Remohı, RJ, Pellicer, A. Intracytoplasmic sperm injection with cryopreserved testicular spermatozoa. Mol Cell Endocrinol2000;169(1-2):15–19.CrossRefGoogle ScholarPubMed
37
Lane, M, Bavister, BD, Lyons, EA, Forest, KT. Containerless vitrification of mammalian oocytes and embryos. Nat Biotechnol1999;17(12):1234–1236.CrossRefGoogle ScholarPubMed
38
Schuster, TG, Keller, LM, Dunn, RL, Ohl, DA, Smith, GD. Ultra‐rapid freezing of very low numbers of sperm using cryoloops. Hum Reprod2003;18(4):788–795.CrossRefGoogle ScholarPubMed
39
Endo, Y, Fujii, Y, Shintani, K, et al.Simple vitrification for small numbers of human spermatozoa. Reprod Biomed Online2012;24:301–307.CrossRefGoogle ScholarPubMed
40
Royere, D, Hamamah, S, Nicolle, J, Lansac, J. Chromatin alterations induced by freeze–thawing influence the fertilizing ability of human sperm. Int J Androl1991;14(5):328–332.CrossRefGoogle ScholarPubMed
41
Gangrade, BK. Cryopreservation of testicular and epididymal sperm: techniques and clinical outcomes of assisted conception. Clinics2013;68:131–140.CrossRefGoogle ScholarPubMed
42
Friedler, S, Strassburger, D, Raziel, A, et al.Intracytoplasmic injection of fresh and cryopreserved testicular spermatozoa in patients with nonobstructive azoospermia: a comparative study. Fertil Steril1997;68(5):892–897.CrossRefGoogle ScholarPubMed
43
Moskovtsev, S, Lulat, A, Librach, C. Cryopreservation of Human Spermatozoa by Vitrification vs. Slow Freezing: Canadian Experience. Intech Open, London, 2012.Google Scholar
Esteves, SC; Miyaoka, R, Agarwal, A. Sperm retrieval techniques for assisted reproduction. Int Braz J Urol2011; 37(5): 570–583.CrossRefGoogle ScholarPubMed
46
Desai, N, Blackmon, H, Goldfarb, J. Single sperm cryopreservation on cryoloops: an alternative to hamster zona for cryopreservation of individual spermatozoa. Fertil Steril2003;80:55–56.CrossRefGoogle Scholar
47
Tournaye, H, Merdad, T, Silber, S, et al.No differences in outcome after intracytoplasmic sperm injection with fresh or with frozen–thawed epididymal spermatozoa. Hum Reprod1999;14(1):90–95.CrossRefGoogle ScholarPubMed
48
Cayan, S, Lee, D, Conaghan, J, et al.A comparison of ICSI outcomes with fresh and cryopreserved epididymal spermatozoa from the same couples. Hum Reprod2001;16(3):495–499.CrossRefGoogle ScholarPubMed
49
Shibahara, H, Hamada, Y, Hasegawa, A, et al.Correlation between the motility of frozen-thawed epididymal spermatozoa and the outcome of intracytoplasmic sperm injection. Int J Androl1999;22(5):324–328.CrossRefGoogle ScholarPubMed
50
Kuczynski, W, Dhont, M, Grygoruk, C, et al.The outcome of intracytoplasmic injection of fresh and cryopreserved ejaculated spermatozoa: a prospective randomized study. Hum Reprod2001;16(10):2109–2113.CrossRefGoogle ScholarPubMed
51
Ragni, G, Caccamo, AM, Dalla Serra, A, Guercilena, S. Computerized slow-staged freezing of semen from men with testicular tumors or Hodgkin’s disease preserves sperm better than standard vapor freezing. Fertil Steril1990;53(6):1072–1075.CrossRefGoogle ScholarPubMed
52
Borges, E Jr, Rossi, LM, Locambo de Freitas, CV, et al.Fertilization and pregnancy outcome after intracytoplasmic injection with fresh or cryopreserved ejaculated spermatozoa. Fertil Steril2007;87(2):316–320.CrossRefGoogle ScholarPubMed
53
Gupta, S, Sekhon, LH, Agarwal, A. Sperm banking: when, why, and how? In: Sabanegh, ES Jr. (ed.) Male Infertility. Current Clinical Urology: Male Infertility: Problems and Solutions. Springer, Cham, 2011, pp. 107–118.CrossRefGoogle Scholar
54
Kliesch, S, Kamischke, A, Cooper, TG, Nieschlag, E. Cryopreservation of human spermatozoa. In: Andrology, Springer, Cham, 2010, pp. 505–520.CrossRefGoogle ScholarPubMed
55
Spanò, M, Cordelli, E, Leter, G, et al.Nuclear chromatin variations in human spermatozoa undergoing swim-up and cryopreservation evaluated by the flow cytometric sperm chromatin structure assay. Mol Hum Reprod1999;5(1):29–37.CrossRefGoogle ScholarPubMed
56
Hammadeh, ME, Dehn, C, Hippach Zeginiadou, M, et al.Comparison between computerized slow-stage and static liquid nitrogen vapour freezing methods with respect to the deleterious effect on chromatin and morphology of spermatozoa from fertile and subfertile men. Int J Androl2001;24(2):66–72.CrossRefGoogle ScholarPubMed
57
Gandini, l, Lombardo, F, Lenzi, A, Spanò, M, Dondero, F. Cryopreservation and sperm DNA integrity. Cell Tissue Banking2006;7(2):91–98.CrossRefGoogle ScholarPubMed
58
Petyim, S, Choavaratana, R. Cryodamage on sperm chromatin according to different freezing methods, assessed by AO test. J Med Assoc Thailand2006;89(3):306–313.Google ScholarPubMed
59
Ngamwuttiwong, T, Kunathikom, S. Evaluation of cryoinjury of sperm chromatin according to liquid nitrogen vapour method (I). J Med Assoc Thailand2007;90(2):224–228.Google Scholar
60
Ahmad, L, Jalali, S, Shami, SA, et al.Effects of cryopreservation on sperm DNA integrity in normospermic and four categories of infertile males. Syst Biol Reprod Med2010;56(1):74–83.CrossRefGoogle ScholarPubMed
61
Donnelly, ET, McClure, N, Lewis, SE. Cryopreservation of human semen and prepared sperm: effects on motility parameters and DNA integrity. Fertil Steril2001;76(5):892–900.CrossRefGoogle ScholarPubMed
62
Kalthur, G, Adiga, SK, Upadhya, D, Rao, S, Kumar, P. Effect of cryopreservation on sperm DNA integrity in patients with teratospermia. Fertil Steril2008;89(6):1723–1727.CrossRefGoogle ScholarPubMed
63
de Paula, TS, Bertolla, RP, Spaine, DM, et al.Effect of cryopreservation on sperm apoptotic deoxyribonucleic acid fragmentation in patients with oligozoospermia. Fertil Steril2006;86(3):597–600.CrossRefGoogle ScholarPubMed
64
Thomson, LK, Fleming, SD, Aitken, RJ, et al.Cryopreservation-induced human sperm DNA damage is predominantly mediated by oxidative stress rather than apoptosis. Hum Reprod2009;24(9):2061–2070.CrossRefGoogle ScholarPubMed
65
Zribi, N, Chakroun, NF, El Euch, H, et al.Effects of cryopreservation on human sperm deoxyribonucleic acid integrity. Fertil Steril2010;93(1):159–166.CrossRefGoogle ScholarPubMed
66
Høst, E, Lindenberg, S, Kahn, JA, Christensen, F. DNA strand breaks in human sperm cells: a comparison between men with normal and oligozoospermic sperm samples. Acta Obstet Gynecol Scand1999;78(4):336–339.Google ScholarPubMed
67
Steele, EK, McClure, N, Lewis, SEM. Comparison of the effects of two methods of cryopreservation on testicular sperm DNA. Fertil Steril2000;74(3):450–453.CrossRefGoogle ScholarPubMed
68
Duru, NK, Morshedi, MS, Schuffner, A, Oehninger, S. Cryopreservation-thawing of fractionated human spermatozoa is associated with membrane phosphatidylserine externalization and not DNA fragmentation. J Androl2001;22(4):646–651.Google Scholar
69
Paasch, U, Sharma, RK, Gupta, AK, et al.Cryopreservation and thawing is associated with varying extent of activation of apoptotic machinery in subsets of ejaculated human spermatozoa. Biol Reprod2004;71(6):1828–1837.CrossRefGoogle ScholarPubMed
70
Varghese, AC, Nandi, P, Mahfouz, R, Athayde, KS, Agarwal, A. Human Sperm Cryopreservation: Andrology Laboratory Manual. Jaypee Brothers, New Delhi, 2010, pp. 196–208.CrossRefGoogle Scholar
References
1
Sharma, R, Agarwal, A. Spermatogenesis: an overview. In: Zini, A, Ashok, A (eds.) Sperm Chromatin. Springer, New York, 2011, pp. 19–44.CrossRefGoogle Scholar
2
Agarwal, A, Mulgund, A, Hamada, A, Chyatte, MR. A unique view on male infertility around the globe. Reprod Biol Endocrinol2015;13(1):37.CrossRefGoogle ScholarPubMed
3
Sunderam, S, Kissin, DM, Crawford, SB, et al.Assisted reproductive technology surveillance: United States, 2015. MMWR Surveill Summ2018;67(3):1–28.CrossRefGoogle ScholarPubMed
4
Tarozzi, N, Nadalini, M, Borini, A. Effect on sperm DNA quality following sperm selection for ART: new insights. Adv Exp Med Biol2019;1166:169–187.CrossRefGoogle ScholarPubMed
5
Henkel, R.Sperm preparation: state-of-the-art: physiological aspects and application of advanced sperm preparation methods. Asian J Androl2012;14(2):260.CrossRefGoogle ScholarPubMed
6
Tarozzi, N, Nadalini, M, Borini, A. Effect on sperm DNA quality following sperm selection for ART: new insights. In: Baldi, E, Muratori, M (eds.) Genetic Damage in Human Spermatozoa. Springer, New York, 2019, pp. 169–187.CrossRefGoogle Scholar
7
Gangrade, BK, Agarwal, A. Sperm processing and selection techniques in an IVF/ICSI. In: Varghese, AC, Sjoblom, P, Jayaprakasan, K (eds.), A Practical Guide to Setting Up an IVF Lab, Embryo Culture Systems and Running the Unit. JP Medical, London, 2013, pp. 151–159.Google Scholar
8
Muratori, M, Tarozzi, N, Carpentiero, F, et al.Sperm selection with density gradient centrifugation and swim up: effect on DNA fragmentation in viable spermatozoa. Sci Rep2019;9(1):7492.CrossRefGoogle ScholarPubMed
9
Beydola, T, Sharma, RK, Lee, W, et al.Sperm preparation and selection techniques. In: Rizk, BRMB, Aziz, N, Agarwal, A, Sanbanegh, E (eds.) Male Infertility Practice. Jaypee Brothers, New Delhi, 2013, pp. 244–251.Google Scholar
10
Otsuki, J, Chuko, M, Momma, Y, Takahashi, K, Nagai, Y. A comparison of the swim-up procedure at body and testis temperatures. J Assist Reprod Genet2008;25(8):413–415.CrossRefGoogle ScholarPubMed
11
Agarwal, A, Gupta, S, Sharma, R. Sperm preparation for intrauterine insemination (IUI) by swim-up method. In: Agarwal, A, Gupta, S, Sharma, R (eds.) Andrological Evaluation of Male Infertility. Springer, New York, 2016, pp. 109–112.CrossRefGoogle Scholar
12
Dickey, RP, Pyrzak, R, Lu, PY, Taylor, SN, Rye, PH. Comparison of the sperm quality necessary for successful intrauterine insemination with World Health Organization threshold values for normal sperm. Fertil Steril1999;71(4):684–689.CrossRefGoogle ScholarPubMed
13
Younglai, EV, Holt, D, Brown, P, Jurisicova, A, Casper, RF. Sperm swim-up techniques and DNA fragmentation. Hum Reprod2001;16(9):1950–1953.CrossRefGoogle ScholarPubMed
14
Esteves, SC, Sharma, RK, Thomas, AJ Jr, Agarwal, A. Effect of swim-up sperm washing and subsequent capacitation on acrosome status and functional membrane integrity of normal sperm. Int J Fertil Women Med2000;45(5):335–341.Google ScholarPubMed
15
Grunewald, S, Paasch, U. Sperm processing and selection. In Parekattil, SJ, Agarwal, A (eds.) Male Infertility: Contemporary Clinical Approaches, Andrology, ART & Antioxidants. Springer, New York, 2012, pp. 423–430.CrossRefGoogle Scholar
16
Malvezzi, H, Sharma, R, Agarwal, A, Abuzenadah, AM, Abu-Elmagd, M. Sperm quality after density gradient centrifugation with three commercially available media: a controlled trial. Reprod Biol Endocrinol2014;12(1):121.CrossRefGoogle ScholarPubMed
17
Agarwal, A, Selvam, MKP. Advanced sperm processing/selection techniques. In: Zini, A, Agarwal, A (eds.) A Clinician’s Guide to Sperm DNA and Chromatin Damage. Springer, New York, 2018, pp. 529–543.CrossRefGoogle Scholar
18
Molday, RS, Yen, SPS, Rembaum, A. Application of magnetic microspheres in labelling and separation of cells. Nature1977;268(5619):437–438.CrossRefGoogle ScholarPubMed
19
Asghar, W, Velasco, V, Kingsley, JL, et al.Selection of functional human sperm with higher DNA integrity and fewer reactive oxygen species. Adv Healthcare Mater2014;3(10):1671–1679.CrossRefGoogle ScholarPubMed
20
Nosrati, R, Vollmer, M, Eamer, L, et al.Rapid selection of sperm with high DNA integrity. Lab Chip2014;14(6):1142–1150.CrossRefGoogle ScholarPubMed
21
Bartoov, B, Berkovitz, A, Eltes, F, et al.Real‐time fine morphology of motile human sperm cells is associated with IVF‐ICSI outcome. J Androl2002;23(1):1–8.CrossRefGoogle ScholarPubMed
22
Perdrix, A, Saïdi, R, Ménard, JF, et al.Relationship between conventional sperm parameters and motile sperm organelle morphology examination (MSOME). Int J Androl2012;35(4):491–498.CrossRefGoogle Scholar
23
Ebner, T, Shebl, O, Oppelt, P, Mayer, RB. Some reflections on intracytoplasmic morphologically selected sperm injection. Int J Fertil Steril2014;8(2):105–112.Google ScholarPubMed
24
Mahfouz, RZ, Said, TM, Agarwal, A. The diagnostic and therapeutic applications of flow cytometry in male infertility. Arch Med Sci2009;5(1A):S99–S108.Google Scholar
De Geyter, C, Gobrecht-Keller, U, Ahler, A, Fischer, M. Removal of DNA-fragmented spermatozoa using flow cytometry and sorting does not improve the outcome of intracytoplasmic sperm injection. J Assist Reprod Genet2019;36(10):2079–2086.CrossRefGoogle Scholar
27
Ainsworth, C, Nixon, B, Aitken, RJ. Development of a novel electrophoretic system for the isolation of human spermatozoa. Hum Reprod2005;20(8):2261–2270.CrossRefGoogle ScholarPubMed
28
Simon, L, Murphy, K, Aston, KI, et al.Optimization of microelectrophoresis to select highly negatively charged sperm. J Assist Reprod Genet2016;33(6):679–688.CrossRefGoogle ScholarPubMed
29
Chan, PJ, Jacobson, JD, Corselli, JU, Patton, WC. A simple zeta method for sperm selection based on membrane charge. Fertil Steril2006;85(2):481–486.CrossRefGoogle ScholarPubMed
30
Kheirollahi-Kouhestani, M, Razavi, S, Tavalaee, M, et al.Selection of sperm based on combined density gradient and zeta method may improve ICSI outcome. Hum Reprod2009;24(10):2409–2416.CrossRefGoogle ScholarPubMed
31
Martins, AD, Agarwal, A, Henkel, R. Sperm cryopreservation. In: Nagy, ZP, Varghese, A, Agarwal, A (eds.) In Vitro Fertilization. Springer, New York, 2019, pp. 625–642.CrossRefGoogle Scholar
32
Allamaneni, SS, Agarwal, A, Rama, S, et al.Comparative study on density gradients and swim‐up preparation techniques utilizing neat and cryopreserved spermatozoa. Asian J Androl2005;7(1):86–92.CrossRefGoogle ScholarPubMed
33
Said, TM, Grunewald, S, Paasch, U, et al.Effects of magnetic-activated cell sorting on sperm motility and cryosurvival rates. Fertil Steril2005;83(5):1442–1446.CrossRefGoogle ScholarPubMed
34
Kam, TL, Jacobson, JD, Patton, WC, Corselli, JU, Chan, PJ. Retention of membrane charge attributes by cryopreserved-thawed sperm and zeta selection. J Assist Reprod Genet2007;24(9):429–434.CrossRefGoogle ScholarPubMed
35
Ainsworth, C, Nixon, B, Jansen, RP, Aitken, RJ. First recorded pregnancy and normal birth after ICSI using electrophoretically isolated spermatozoa. Hum Reprod2006;22(1):197–200.CrossRefGoogle ScholarPubMed
36
Karamahmutoglu, H, Erdem, A, Erdem, M, et al.The gradient technique improves success rates in intrauterine insemination cycles of unexplained subfertile couples when compared to swim up technique; a prospective randomized study. J Assist Reprod Genet2014;31(9):1139–1145.CrossRefGoogle ScholarPubMed
37
Berg, U, Brucker, C, Berg, FD., Effect of motile sperm count after swim-up on outcome of intrauterine insemination. Fertil Steril1997;67(4):747–750.CrossRefGoogle ScholarPubMed
38
Boomsma, CM, Heineman, MJ, Cohlen, BJ, Farquhar, CM. Semen preparation techniques for intrauterine insemination. Cochrane Database Syst Rev2004;3:CD004507.Google Scholar
39
Said, TMLand, JA. Effects of advanced selection methods on sperm quality and ART outcome: a systematic review. Hum Reprod Update2011;17(6):719–733.CrossRefGoogle ScholarPubMed
40
Jakab, A, Sakkas, D, Delpiano, E, et al.Intracytoplasmic sperm injection: a novel selection method for sperm with normal frequency of chromosomal aneuploidies. Fertil Steril2005;84(6):1665–1673.CrossRefGoogle ScholarPubMed
41
Parmegiani, L, Cognigni, GE, Bernardi, S, et al.“Physiologic ICSI”: hyaluronic acid (HA) favors selection of spermatozoa without DNA fragmentation and with normal nucleus, resulting in improvement of embryo quality. Fertil Steril2010;93(2):598–604.CrossRefGoogle ScholarPubMed
42
Oehninger, SC, Kotze, D. Sperm binding to the zona pellucida, hyaluronic acid binding assay, and PICSI. In: Agarwal, A, Borges, EJr., Setti, AS (eds.) Non-Invasive Sperm Selection for In Vitro Fertilization: Novel Concepts and Methods, Springer, New York, 2015, pp. 59–68.CrossRefGoogle Scholar
43
Nasr-Esfahani, MH, Razavi, S, Vahdati, AA, Fathi, F, Tavalaee, M. Evaluation of sperm selection procedure based on hyaluronic acid binding ability on ICSI outcome. J Assist Reprod Genet2008;25(5):197–203.CrossRefGoogle ScholarPubMed
44
Avalos-Durán, G, Cañedo-Del Ángel, AME, Rivero-Murillo, J, et al.Physiological ICSI (PICSI) vs. conventional ICSI in couples with male factor: a systematic review. JBRA Assist Reprod2018;22(2):139.Google ScholarPubMed
45
Miller, D, Pavitt, S, Sharma, V, et al.Physiological, hyaluronan-selected intracytoplasmic sperm injection for infertility treatment (HABSelect): a parallel, two-group, randomised trial. Lancet2019;393(10170):416–422.CrossRefGoogle ScholarPubMed
46
Parrella, A, Choi, D, Keating, D, Rosenwaks, Z, Palermo, GD. A microfluidic device for selecting the most progressively motile spermatozoa yields a higher rate of euploid embryos. Fertil Steril2018;110(4):e342.CrossRefGoogle Scholar
47
Chinnasamy, T, Behr, B, Demirci, U. Microfluidic sperm sorting device for selection of functional human sperm for IUI application. Fertil Steril2016;105(2):e17–e18.CrossRefGoogle Scholar
48
Parrella, A, Choi, D, Keating, D, Rosenwaks, Z, Palermo, GD. Effects of the microfluidic chip technique in sperm selection for intracytoplasmic sperm injection for unexplained infertility: a prospective, randomized controlled trial. J Assist Reprod Genet2019;36(3):403–409.Google Scholar
49
Knowlton, SM, Sadasivam, M, Tasoglu, S. Microfluidics for sperm research. Trends Biotechnol2015;33(4):221–229.CrossRefGoogle ScholarPubMed
50
Souza Setti, A, Ferreira, RC, Paes de Almeida Ferreira Braga, D, et al.Intracytoplasmic sperm injection outcome versus intracytoplasmic morphologically selected sperm injection outcome: a meta-analysis. Reprod Biomed Online2010;21(4):450–455.CrossRefGoogle ScholarPubMed
51
De Vos, A, Van de Velde, H, Bocken, G, et al.Does intracytoplasmic morphologically selected sperm injection improve embryo development? A randomized sibling-oocyte study. Hum Reprod2013;28(3):617–626.CrossRefGoogle ScholarPubMed
52
Duran-Retamal, M, Morris, G, Achilli, C, et al.Live birth and miscarriage rate following intracytoplasmic morphologically selected sperm injection vs intracytoplasmic sperm injection: an updated systematic review and meta-analysis. Acta Obstet Gynecol Scand, 2019;99:24–33.CrossRefGoogle ScholarPubMed
53
Brauchle, E, Schenke‐Layland, K. Raman spectroscopy in biomedicine–non‐invasive in vitro analysis of cells and extracellular matrix components in tissues. Biotechnol J2013;8(3):288–297.CrossRefGoogle ScholarPubMed
54
Liu, Y, Zhu, Y, Li, Z. Application of Raman spectroscopy in andrology: non-invasive analysis of tissue and single cell. Transl Androl Urol2014;3(1):125.Google ScholarPubMed
55
Mirsky, SK, Barnea, I, Levi, M, Greenspan, H, Shaked, NT. Automated analysis of individual sperm cells using stain‐free interferometric phase microscopy and machine learning. Cytometry A2017;91(9):893–900.CrossRefGoogle ScholarPubMed
56
Eravuchira, PJ, Mirsky, SK, Barnea, I, et al.Individual sperm selection by microfluidics integrated with interferometric phase microscopy. Methods2018;136:152–159.CrossRefGoogle ScholarPubMed
57
Itzkan, I, Qiu, L, Fang, H, et al.Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels. PNAS2007;104(44):17255–17260.CrossRefGoogle ScholarPubMed
58
Enciso, M, Pieczenik, G, Cohen, J, Wells, D. Development of a novel synthetic oligopeptide for the detection of DNA damage in human spermatozoa. Hum Reprod2012;27(8):2254–2266.CrossRefGoogle ScholarPubMed