Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-22T22:17:34.928Z Has data issue: false hasContentIssue false

Part III - Laboratory Handling of Retrieved Sperm

Published online by Cambridge University Press:  09 April 2021

Ashok Agarwal
Affiliation:
The Cleveland Clinic Foundation, Cleveland, OH, USA
Ahmad Majzoub
Affiliation:
Hamad Medical Corporation, Doha, Qatar
Sandro C. Esteves
Affiliation:
Andrology & Human Reproduction Clinic, Sao Paulo, Brazil
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Male Infertility Best Practice Policy Committee of the American Urological Association Practice Committee of the American Society for Reproductive Medicine. Report on evaluation of the azoospermic male. Fertil Steril 2006;86:S210S215.CrossRefGoogle Scholar
Proctor, M, Johnson, N, van Peperstraten, AM, Phillipson, G. Techniques for surgical retrieval of sperm prior to intra‐cytoplasmic sperm injection (ICSI) for azoospermia. Cochrane Database Syst Rev 2008;2:CD002807.Google Scholar
Semiao-Francisco, L, Braga, DP, Figueira Rde, C, et al. Assisted reproductive technology outcomes in azoospermic men: 10 years of experience with surgical sperm retrieval. Aging Male 2010;13:4450.Google Scholar
Borges, E Jr., Braga, DP, Bonetti, TC, Pasqualotto, FF, Iaconelli, A Jr. Predictive factors of repeat sperm aspiration success. Urology 2010;75:8791.Google Scholar
Urman, B, Alatas, C, Aksoy, S, et al. Performing testicular or epididymal sperm retrieval prior to the injection of hCG. J Assist Reprod Genet 1998;15:125128.CrossRefGoogle ScholarPubMed
Levran, D, Ginath, S, Farhi, J, et al. Timing of testicular sperm retrieval procedures and in vitro fertilization-intracytoplasmic sperm injection outcome. Fertil Steril 2001;76:380383.Google Scholar
Verheyen, G, Popovic-Todorovic, B, Tournaye, H. Processing and selection of surgically-retrieved sperm for ICSI: a review. Basic Clin Androl 2017;27:6.Google Scholar
Oates, RD, Mulhall, J, Burgess, C, Cunningham, D, Carson, R. Fertilization and pregnancy using intentionally cryopreserved testicular tissue as the sperm source for intracytoplasmic sperm injection in 10 men with non-obstructive azoospermia. Hum Reprod 1997;12:734739.CrossRefGoogle ScholarPubMed
Verheyen, G, De Croo, I, Tournaye, H, et al. Comparison of four mechanical methods to retrieve spermatozoa from testicular tissue. Hum Reprod 1995;10:29562959.Google Scholar
Crabbé, E, Verheyen, G, Silber, S, et al. Enzymatic digestion of testicular tissue may rescue the intracytoplasmic sperm injection cycle in some patients with non-obstructive azoospermia. Hum Reprod 1998;13:27912796.CrossRefGoogle ScholarPubMed
Dalzell, LH, McVicar, CM, McClure, N, Lutton, D, Lewis, SE. Effects of short and long incubations on DNA fragmentation of testicular sperm. Fertil Steril 2004;82:14431445.CrossRefGoogle Scholar
de Oliveira, NM, Vaca Sanchez, R, Rodriguez Fiesta, S, et al. Pregnancy with frozen-thawed and fresh testicular biopsy after motile and immotile sperm microinjection, using the mechanical touch technique to assess viability. Hum Reprod 2004;19:262265.Google Scholar
Loughlin, KR, Agarwal, A. Use of theophylline to enhance sperm function. Arch Androl 1992;28:99103.Google Scholar
Aktan, TM, Montag, M, Duman, S, et al. Use of a laser to detect viable but immotile spermatozoa. Andrologia 2004;36:366369.Google Scholar
Nordhoff, V, Schuring, AN, Krallmann, C, et al. Optimizing TESE-ICSI by laser-assisted selection of immotile spermatozoa and polarization microscopy for selection of oocytes. Andrology 2013;1:6774.CrossRefGoogle ScholarPubMed
Baccetti, B. Microscopical advances in assisted reproduction. J Submicrosc Cytol Pathol 2004;36:333339.Google Scholar
Tournaye, H, Verheyen, G, Nagy, P, et al. Are there any predictive factors for successful testicular sperm recovery in azoospermic patients?. Hum Reprod 1997;12:8086.Google Scholar
Henkel, R. Novel sperm tests and their importance. In Agarwal, A, Borges, E Jr, Setti, A (eds.) Non-Invasive Sperm Selection for In Vitro Fertilization. Springer, New York, 2015, pp. 2340.CrossRefGoogle Scholar
Ciapa, B,Chiri, S. Egg activation: upstream of the fertilization calcium signal. Biol Cell 2000;92:215233.Google Scholar
Malcuit, C, Kurokawa, M, Fissore, RA. Calcium oscillations and mammalian egg activation. J Cell Physiol 2006;206:565573.Google Scholar
Yeste, M, Jones, C, Amdani, SN, Patel, S, Coward, K. Oocyte activation deficiency: a role for an oocyte contribution? Hum Reprod Update 2016;22:2347.Google Scholar
Yelumalai, S, Yeste, M, Jones, C, et al. Total levels, localization patterns, and proportions of sperm exhibiting phospholipase C zeta are significantly correlated with fertilization rates after intracytoplasmic sperm injection. Fertil Steril 2015;104:561–8 e4.CrossRefGoogle ScholarPubMed
Lee, HC, Arny, M, Grow, D, et al. Protein phospholipase C Zeta1 expression in patients with failed ICSI but with normal sperm parameters. J Assist Reprod Genet 2014;31:749756.CrossRefGoogle ScholarPubMed
Mahutte, NG, Arici, A. Failed fertilization: is it predictable? Curr Opin Obstet Gynecol 2003;15:211218.Google Scholar
Tesarik, J, Rienzi, L, Ubaldi, F, Mendoza, C, Greco, E. Use of a modified intracytoplasmic sperm injection technique to overcome sperm-borne and oocyte-borne oocyte activation failures. Fertil Steril 2002;78:619624.Google Scholar
Ebner, T, Moser, M, Sommergruber, M, Jesacher, K, Tews, G. Complete oocyte activation failure after ICSI can be overcome by a modified injection technique. Hum Reprod 2004;19:18371841.Google Scholar
Sasagawa, I, Yanagimachi, R. Comparison of methods for activating mouse oocytes for spermatid nucleus transfer. Zygote 1996;4:269274.Google Scholar
Yanagida, K, Katayose, H, Yazawa, H, et al. Successful fertilization and pregnancy following ICSI and electrical oocyte activation. Hum Reprod 1999;14:13071311.CrossRefGoogle ScholarPubMed
Mansour, R, Fahmy, I, Tawab, NA, et al. Electrical activation of oocytes after intracytoplasmic sperm injection: a controlled randomized study. Fertil Steril 2009;91:133139.Google Scholar
Baltaci, V, Ayvaz, OU, Unsal, E, et al. The effectiveness of intracytoplasmic sperm injection combined with piezoelectric stimulation in infertile couples with total fertilization failure. Fertil Steril 2010;94:900904.CrossRefGoogle ScholarPubMed
Zhang, J, Wang, CW, Blaszcyzk, A, et al. Electrical activation and in vitro development of human oocytes that fail to fertilize after intracytoplasmic sperm injection. Fertil Steril 1999;72:509512.Google Scholar
Tesarik, J, Sousa, M, Mendoza, C. Sperm-induced calcium oscillations of human oocytes show distinct features in oocyte center and periphery. Mol Reprod Dev 1995;41:257263.CrossRefGoogle ScholarPubMed
Borges, E Jr., de Almeida Ferreira Braga, DP, de Sousa Bonetti, TC, Iaconelli, A Jr., Franco, JG Jr. Artificial oocyte activation with calcium ionophore A23187 in intracytoplasmic sperm injection cycles using surgically retrieved spermatozoa. Fertil Steril 2009;92:131136.Google Scholar
Borges, E Jr., de Almeida Ferreira Braga, DP, de Sousa Bonetti, TC, Iaconelli, A Jr., Franco, JG Jr. Artificial oocyte activation using calcium ionophore in ICSI cycles with spermatozoa from different sources. Reprod Biomed Online 2009;18:4552.Google Scholar
Murugesu, S, Saso, S, Jones, BP, et al. Does the use of calcium ionophore during artificial oocyte activation demonstrate an effect on pregnancy rate? A meta-analysis. Fertil Steril 2017;108:468–482 e3.Google Scholar
Capalbo, A, Ottolini, CS, Griffin, DK, et al. Artificial oocyte activation with calcium ionophore does not cause a widespread increase in chromosome segregation errors in the second meiotic division of the oocyte. Fertil Steril 2016;105:807–814.e2.Google Scholar
Vanden Meerschaut, F, D’Haeseleer, E, Gysels, H, et al. Neonatal and neurodevelopmental outcome of children aged 3–10 years born following assisted oocyte activation. Reprod Biomed Online 2014;28:5463.Google Scholar
D’haeseleer, E, Vanden Meerschaut, F, Bettens, K, et al. Language development of children born following intracytoplasmic sperm injection (ICSI) combined with assisted oocyte activation (AOA). Int J Lang Commun Disorders 2014;49:702709.Google Scholar
Kim, JW, Kim, SD, Yang, SH, et al. Successful pregnancy after SrCl2 oocyte activation in couples with repeated low fertilization rates following calcium ionophore treatment. Syst Biol Reprod Med 2014;60:177182.CrossRefGoogle ScholarPubMed
Yanagida, K, Morozumi, K, Katayose, H, Hayashi, S, Sato, A. Successful pregnancy after ICSI with strontium oocyte activation in low rates of fertilization. Reprod Biomed Online 2006;13:801806.Google Scholar
Kashir, J, Nomikos, M, Lai, FA, Swann, K. Sperm-induced Ca2+ release during egg activation in mammals. Biochem Biophys Res Commun 2014;450:12041211.Google Scholar
Nomikos, M, Kashir, J, Swann, K, Lai, FA. Sperm PLCzeta: from structure to Ca2+ oscillations, egg activation and therapeutic potential. FEBS Lett 2013;587:36093616.Google Scholar
Sanusi, R, Yu, Y, Nomikos, M, Lai, FA, Swann, K. Rescue of failed oocyte activation after ICSI in a mouse model of male factor infertility by recombinant phospholipase Czeta. Mol Hum Reprod 2015;21:783791.Google Scholar
Lu, Q, Zhao, Y, Gao, X, et al. Combination of calcium ionophore A23187 with puromycin salvages human unfertilized oocytes after ICSI. Eur J Obstet Gynecol Reprod Biol 2006;126:7276.Google Scholar

References

AbdelHafez, FBedaiwy, MEl-Nashar, SASabanegh, EDesai, N. Techniques for cryopreservation of individual or small numbers of human spermatozoa: a systematic review. Hum Reprod Update 2008;15:153164.Google Scholar
Holt, W. Basic aspects of frozen storage of semen. Anim Reprod Sci 2000;62(1–3):322.Google Scholar
Hezavehei, M, Sharafi, M, Kouchesfahani, HM, et al. Sperm cryopreservation: a review on current molecular cryobiology and advanced approaches. Reprod Biomed Online 2018;37(3):327339.CrossRefGoogle ScholarPubMed
Agha‐Rahimi, A, Khalili, M, Nottola, S, Miglietta, S, Moradi, A. Cryoprotectant‐free vitrification of human spermatozoa in new artificial seminal fluid. Andrology 2016;4(6):10371044.Google Scholar
Di Santo, M, Tarozzi, N, Nadalini, M, Borini, A. Human sperm cryopreservation: update on techniques, effect on DNA integrity, and implications for ART. Adv Urol 2012;2012:854837.Google Scholar
Mocé, E, Fajardo, AJ, Graham, JK. Human sperm cryopreservation. EMJ 2016;1(1):8691.Google Scholar
Hammerstedt, RH, Graham, JK, Nolan, JP. Cryopreservation of mammalian sperm: what we ask them to survive. J Androl 1990;11(1):7388.Google Scholar
Mazur, P. Freezing of living cells: mechanisms and implications. Am J Physiol Cell Physiol 1984;247(3):C125C142.Google Scholar
Day, JG, Harding, KC, Nadarajan, J, Benson, EE. Cryopreservation: Molecular Biomethods Handbook. Humuna Press, Totowa, NJ, 2008.Google Scholar
Rozati, H, Handley, T, Jayasena, C. Process and pitfalls of sperm cryopreservation. J Clin Med 2017;6(9):89.Google Scholar
Medrano, JV, Del Mar Andrés, M, García, S, et al. Basic and clinical approaches for fertility preservation and restoration in cancer patients. Trends Biotechnol 2018;36(2):199215.Google Scholar
Gupta, S, Agarwal, A, Sharma, R, Ahmady, A. Sperm banking via cryopreservation. In: RizkBotros, RMB, Aziz, N, Agarwal, A, Sabanegh, E (eds.) Medical and Surgical Management of Male Infertility. Jaypee Brothers, New Delhi, 2014, pp. 234243.Google Scholar
Kagalwala, S. Sperm vitrification. In Allahabadia, G, Kuwayama, M, Gandhi, G (eds.) Vitrification in Assisted Reproduction: A User’s Manual. Springer, New Delhi, 2015, pp. 3142.Google Scholar
Agarwal, A, Gupta, S, Sharma, R. Cryopreservation of client depositor semen. In: Agarwal, A, Gupta, S, Sharma, R (eds.) Andrological Evaluation of Male Infertility: A Laboratory Guide. Springer, Cham, 2016, pp. 113133.Google Scholar
Agarwal, A, Tvrda, E. Slow freezing of human sperm. In: Nagy Zsolt, P, Vargheses, A, Agarwal, A (eds.) Cryopreservation of Mammalian Gametes and Embryos: Methods and Protocols. Springer Science + Business Media, New York, 2017, pp. 6778.Google Scholar
Sharma, R, Kattoor, AJ, Ghulmiyyah, J, Agarwal, A. Effect of sperm storage and selection techniques on sperm parameters. Syst Biol Reprod Med 2015;61(1):112.Google Scholar
Gupta, S, Sharma, R, Agarwal, A. The process of sperm cryopreservation, thawing and washing techniques. In: Majoub, A, Agarwal, A (eds.) The Complete Guide to Male Fertility Preservation. Springer, Cham, 2018, pp. 183204.Google Scholar
Agarwal, A, Sharma, R, Gupta, S, Sharma, R. NextGen® home sperm banking kit: outcomes of offsite vs onsite collection—preliminary findings. Urology 2015;85(6):13391346.Google Scholar
Bunge, R, Sherman, J. Fertilizing capacity of frozen human spermatozoa. Nature 1953;172(4382):767768.Google Scholar
Oldenhof, HM. Gojowsky, S, Wang, S, et al. Osmotic stress and membrane phase changes during freezing of stallion sperm: mode of action of cryoprotective agents. Biol Reprod 2013;88(3):68.Google Scholar
Isachenko, V, Maettner, R, Petrunkina, A, et al. Cryoprotectant-free vitrification of human spermatozoa in large (up to 0.5 mL) volume: a novel technology. Clin Lab 2011;57(9–10):643650.Google ScholarPubMed
Mohamed, MSA. Slow cryopreservation is not superior to vitrification in human spermatozoa; an experimental controlled study. Iranian J Reprod Med 2015;13(10):633644.Google Scholar
Le, MT, Nguyen, TTT, Nguyen, TT, et al. Cryopreservation of human spermatozoa by vitrification versus conventional rapid freezing: effects on motility, viability, morphology and cellular defects. Eur J Obstet Gynecol Reprod Biol 2019;234:1420.Google Scholar
Li, YX, Zhou, L, LV MQ, et al. Vitrification and conventional freezing methods in sperm cryopreservation: a systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol 2019;233:8492.Google Scholar
Slabbert, M, Du Plessis, S, Huyser, C. Large volume cryoprotectant‐free vitrification: an alternative to conventional cryopreservation for human spermatozoa. Andrologia 2015;47(5):594599.Google Scholar
Aizpurua, J, Medrano, L, Enciso, M, et al. New permeable cryoprotectant-free vitrification method for native human sperm. Hum Reprod 2017;32(10):20072015.CrossRefGoogle ScholarPubMed
Isachenko, E, Isachenko, V, Katkov, II, Dessole, S, Nawroth, F. Vitrification of mammalian spermatozoa in the absence of cryoprotectants: from past practical difficulties to present success. Reprod Biomed Online 2003;6(2):191200.CrossRefGoogle ScholarPubMed
Isachenko, E, Isachenko, V, Katkov, II et al. DNA integrity and motility of human spermatozoa after standard slow freezing versus cryoprotectants-free vitrification. Hum Reprod 2004;19:932939.Google Scholar
Isachenko, V, Isachenko, E, Katkov, II et al. Cryoprotectant-free cryopreservation of human spermatozoa by vitrification and freezing in vapor: effect of motility, DNA integrity, and fertilization ability. Biol Reprod 2004;71:11671173.CrossRefGoogle ScholarPubMed
Mansilla, MA, Merino, O, Risopatron, J, et al. High temperature is essential for preserved human sperm function during the devitrification process. Andrologia 2016;48:111113.Google Scholar
Khalili, MA, Adib, M, Halvaei, I, Nabi, A. Vitrification of neat semen alters sperm parameters and DNA integrity. Urol J 2014;11(2):14651470.Google ScholarPubMed
Riel, JM, Yamauchi, Y, Huang, TT, Grove, J, Ward, MA. Short-term storage of human spermatozoa in electrolyte-free medium without freezing maintains sperm chromatin integrity better than cryopreservation. Biol Reprod 2011;85(3):536547.Google Scholar
Podsiadly, BT, Woolcott, RJ, Stanger, JD, Stevenson, K. Pregnancy resulting from intracytoplasmic injection of cryopreserved spermatozoa recovered from testicular biopsy. Hum Reprod 1996;11(6):13061308.Google Scholar
Cohen, J, Garrisi, GJ, Congedo-Ferrara, TA, et al. Cryopreservation of single human spermatozoa. Hum Reprod 1997;12(5):9941001.Google Scholar
Isachenko, V. Clean technique for cryoprotectant-free vitrification of human spermatozoa. RBM Online 2005;10(3):350354.Google Scholar
Gil-Salom, MJ, Romero, C, Rubio, A, Remohı, RJ, Pellicer, A. Intracytoplasmic sperm injection with cryopreserved testicular spermatozoa. Mol Cell Endocrinol 2000;169(1-2):1519.CrossRefGoogle ScholarPubMed
Lane, M, Bavister, BD, Lyons, EA, Forest, KT. Containerless vitrification of mammalian oocytes and embryos. Nat Biotechnol 1999;17(12):12341236.Google Scholar
Schuster, TG, Keller, LM, Dunn, RL, Ohl, DA, Smith, GD. Ultra‐rapid freezing of very low numbers of sperm using cryoloops. Hum Reprod 2003;18(4):788795.Google Scholar
Endo, Y, Fujii, Y, Shintani, K, et al. Simple vitrification for small numbers of human spermatozoa. Reprod Biomed Online 2012;24:301307.Google Scholar
Royere, D, Hamamah, S, Nicolle, J, Lansac, J. Chromatin alterations induced by freeze–thawing influence the fertilizing ability of human sperm. Int J Androl 1991;14(5):328332.Google Scholar
Gangrade, BK. Cryopreservation of testicular and epididymal sperm: techniques and clinical outcomes of assisted conception. Clinics 2013;68:131140.Google Scholar
Friedler, S, Strassburger, D, Raziel, A, et al. Intracytoplasmic injection of fresh and cryopreserved testicular spermatozoa in patients with nonobstructive azoospermia: a comparative study. Fertil Steril 1997;68(5):892897.Google Scholar
Moskovtsev, S, Lulat, A, Librach, C. Cryopreservation of Human Spermatozoa by Vitrification vs. Slow Freezing: Canadian Experience. Intech Open, London, 2012.Google Scholar
Schlegel, PN. Testicular sperm extraction: microdissection improves sperm yield with minimal tissue excision. Hum Reprod 1999;14:131135.Google Scholar
Esteves, SC; Miyaoka, R, Agarwal, A. Sperm retrieval techniques for assisted reproduction. Int Braz J Urol 2011; 37(5): 570583.Google Scholar
Desai, N, Blackmon, H, Goldfarb, J. Single sperm cryopreservation on cryoloops: an alternative to hamster zona for cryopreservation of individual spermatozoa. Fertil Steril 2003;80:5556.Google Scholar
Tournaye, H, Merdad, T, Silber, S, et al. No differences in outcome after intracytoplasmic sperm injection with fresh or with frozen–thawed epididymal spermatozoa. Hum Reprod 1999;14(1):9095.Google Scholar
Cayan, S, Lee, D, Conaghan, J, et al. A comparison of ICSI outcomes with fresh and cryopreserved epididymal spermatozoa from the same couples. Hum Reprod 2001;16(3):495499.Google Scholar
Shibahara, H, Hamada, Y, Hasegawa, A, et al. Correlation between the motility of frozen-thawed epididymal spermatozoa and the outcome of intracytoplasmic sperm injection. Int J Androl 1999;22(5):324328.Google Scholar
Kuczynski, W, Dhont, M, Grygoruk, C, et al. The outcome of intracytoplasmic injection of fresh and cryopreserved ejaculated spermatozoa: a prospective randomized study. Hum Reprod 2001;16(10):21092113.Google Scholar
Ragni, G, Caccamo, AM, Dalla Serra, A, Guercilena, S. Computerized slow-staged freezing of semen from men with testicular tumors or Hodgkin’s disease preserves sperm better than standard vapor freezing. Fertil Steril 1990;53(6):10721075.Google Scholar
Borges, E Jr, Rossi, LM, Locambo de Freitas, CV, et al. Fertilization and pregnancy outcome after intracytoplasmic injection with fresh or cryopreserved ejaculated spermatozoa. Fertil Steril 2007;87(2):316320.Google Scholar
Gupta, S, Sekhon, LH, Agarwal, A. Sperm banking: when, why, and how? In: Sabanegh, ES Jr. (ed.) Male Infertility. Current Clinical Urology: Male Infertility: Problems and Solutions. Springer, Cham, 2011, pp. 107118.Google Scholar
Kliesch, S, Kamischke, A, Cooper, TG, Nieschlag, E. Cryopreservation of human spermatozoa. In: Andrology, Springer, Cham, 2010, pp. 505520.Google Scholar
Spanò, M, Cordelli, E, Leter, G, et al. Nuclear chromatin variations in human spermatozoa undergoing swim-up and cryopreservation evaluated by the flow cytometric sperm chromatin structure assay. Mol Hum Reprod 1999;5(1):2937.Google Scholar
Hammadeh, ME, Dehn, C, Hippach Zeginiadou, M, et al. Comparison between computerized slow-stage and static liquid nitrogen vapour freezing methods with respect to the deleterious effect on chromatin and morphology of spermatozoa from fertile and subfertile men. Int J Androl 2001;24(2):6672.Google Scholar
Gandini, l, Lombardo, F, Lenzi, A, Spanò, M, Dondero, F. Cryopreservation and sperm DNA integrity. Cell Tissue Banking 2006;7(2):9198.Google Scholar
Petyim, S, Choavaratana, R. Cryodamage on sperm chromatin according to different freezing methods, assessed by AO test. J Med Assoc Thailand 2006;89(3):306313.Google Scholar
Ngamwuttiwong, T, Kunathikom, S. Evaluation of cryoinjury of sperm chromatin according to liquid nitrogen vapour method (I). J Med Assoc Thailand 2007;90(2):224228.Google Scholar
Ahmad, L, Jalali, S, Shami, SA, et al. Effects of cryopreservation on sperm DNA integrity in normospermic and four categories of infertile males. Syst Biol Reprod Med 2010;56(1):7483.Google Scholar
Donnelly, ET, McClure, N, Lewis, SE. Cryopreservation of human semen and prepared sperm: effects on motility parameters and DNA integrity. Fertil Steril 2001;76(5):892900.Google Scholar
Kalthur, G, Adiga, SK, Upadhya, D, Rao, S, Kumar, P. Effect of cryopreservation on sperm DNA integrity in patients with teratospermia. Fertil Steril 2008;89(6):17231727.Google Scholar
de Paula, TS, Bertolla, RP, Spaine, DM, et al. Effect of cryopreservation on sperm apoptotic deoxyribonucleic acid fragmentation in patients with oligozoospermia. Fertil Steril 2006;86(3):597600.Google Scholar
Thomson, LK, Fleming, SD, Aitken, RJ, et al. Cryopreservation-induced human sperm DNA damage is predominantly mediated by oxidative stress rather than apoptosis. Hum Reprod 2009;24(9):20612070.Google Scholar
Zribi, N, Chakroun, NF, El Euch, H, et al. Effects of cryopreservation on human sperm deoxyribonucleic acid integrity. Fertil Steril 2010;93(1):159166.Google Scholar
Høst, E, Lindenberg, S, Kahn, JA, Christensen, F. DNA strand breaks in human sperm cells: a comparison between men with normal and oligozoospermic sperm samples. Acta Obstet Gynecol Scand 1999;78(4):336339.Google Scholar
Steele, EK, McClure, N, Lewis, SEM. Comparison of the effects of two methods of cryopreservation on testicular sperm DNA. Fertil Steril 2000;74(3):450453.Google Scholar
Duru, NK, Morshedi, MS, Schuffner, A, Oehninger, S. Cryopreservation-thawing of fractionated human spermatozoa is associated with membrane phosphatidylserine externalization and not DNA fragmentation. J Androl 2001;22(4):646651.Google Scholar
Paasch, U, Sharma, RK, Gupta, AK, et al. Cryopreservation and thawing is associated with varying extent of activation of apoptotic machinery in subsets of ejaculated human spermatozoa. Biol Reprod 2004;71(6):18281837.Google Scholar
Varghese, AC, Nandi, P, Mahfouz, R, Athayde, KS, Agarwal, A. Human Sperm Cryopreservation: Andrology Laboratory Manual. Jaypee Brothers, New Delhi, 2010, pp. 196208.Google Scholar

References

Sharma, R, Agarwal, A. Spermatogenesis: an overview. In: Zini, A, Ashok, A (eds.) Sperm Chromatin. Springer, New York, 2011, pp. 1944.Google Scholar
Agarwal, A, Mulgund, A, Hamada, A, Chyatte, MR. A unique view on male infertility around the globe. Reprod Biol Endocrinol 2015;13(1):37.Google Scholar
Sunderam, S, Kissin, DM, Crawford, SB, et al. Assisted reproductive technology surveillance: United States, 2015. MMWR Surveill Summ 2018;67(3):128.CrossRefGoogle Scholar
Tarozzi, N, Nadalini, M, Borini, A. Effect on sperm DNA quality following sperm selection for ART: new insights. Adv Exp Med Biol 2019;1166:169187.Google Scholar
Henkel, R. Sperm preparation: state-of-the-art: physiological aspects and application of advanced sperm preparation methods. Asian J Androl 2012;14(2):260.Google Scholar
Tarozzi, N, Nadalini, M, Borini, A. Effect on sperm DNA quality following sperm selection for ART: new insights. In: Baldi, E, Muratori, M (eds.) Genetic Damage in Human Spermatozoa. Springer, New York, 2019, pp. 169187.Google Scholar
Gangrade, BK, Agarwal, A. Sperm processing and selection techniques in an IVF/ICSI. In: Varghese, AC, Sjoblom, P, Jayaprakasan, K (eds.), A Practical Guide to Setting Up an IVF Lab, Embryo Culture Systems and Running the Unit. JP Medical, London, 2013, pp. 151159.Google Scholar
Muratori, M, Tarozzi, N, Carpentiero, F, et al. Sperm selection with density gradient centrifugation and swim up: effect on DNA fragmentation in viable spermatozoa. Sci Rep 2019;9(1):7492.Google Scholar
Beydola, T, Sharma, RK, Lee, W, et al. Sperm preparation and selection techniques. In: Rizk, BRMB, Aziz, N, Agarwal, A, Sanbanegh, E (eds.) Male Infertility Practice. Jaypee Brothers, New Delhi, 2013, pp. 244251.Google Scholar
Otsuki, J, Chuko, M, Momma, Y, Takahashi, K, Nagai, Y. A comparison of the swim-up procedure at body and testis temperatures. J Assist Reprod Genet 2008;25(8):413415.Google Scholar
Agarwal, A, Gupta, S, Sharma, R. Sperm preparation for intrauterine insemination (IUI) by swim-up method. In: Agarwal, A, Gupta, S, Sharma, R (eds.) Andrological Evaluation of Male Infertility. Springer, New York, 2016, pp. 109112.Google Scholar
Dickey, RP, Pyrzak, R, Lu, PY, Taylor, SN, Rye, PH. Comparison of the sperm quality necessary for successful intrauterine insemination with World Health Organization threshold values for normal sperm. Fertil Steril 1999;71(4):684689.Google Scholar
Younglai, EV, Holt, D, Brown, P, Jurisicova, A, Casper, RF. Sperm swim-up techniques and DNA fragmentation. Hum Reprod 2001;16(9):19501953.Google Scholar
Esteves, SC, Sharma, RK, Thomas, AJ Jr, Agarwal, A. Effect of swim-up sperm washing and subsequent capacitation on acrosome status and functional membrane integrity of normal sperm. Int J Fertil Women Med 2000;45(5):335341.Google Scholar
Grunewald, S, Paasch, U. Sperm processing and selection. In Parekattil, SJ, Agarwal, A (eds.) Male Infertility: Contemporary Clinical Approaches, Andrology, ART & Antioxidants. Springer, New York, 2012, pp. 423430.Google Scholar
Malvezzi, H, Sharma, R, Agarwal, A, Abuzenadah, AM, Abu-Elmagd, M. Sperm quality after density gradient centrifugation with three commercially available media: a controlled trial. Reprod Biol Endocrinol 2014;12(1):121.Google Scholar
Agarwal, A, Selvam, MKP. Advanced sperm processing/selection techniques. In: Zini, A, Agarwal, A (eds.) A Clinician’s Guide to Sperm DNA and Chromatin Damage. Springer, New York, 2018, pp. 529543.Google Scholar
Molday, RS, Yen, SPS, Rembaum, A. Application of magnetic microspheres in labelling and separation of cells. Nature 1977;268(5619):437438.Google Scholar
Asghar, W, Velasco, V, Kingsley, JL, et al. Selection of functional human sperm with higher DNA integrity and fewer reactive oxygen species. Adv Healthcare Mater 2014;3(10):16711679.Google Scholar
Nosrati, R, Vollmer, M, Eamer, L, et al. Rapid selection of sperm with high DNA integrity. Lab Chip 2014;14(6):11421150.Google Scholar
Bartoov, B, Berkovitz, A, Eltes, F, et al. Real‐time fine morphology of motile human sperm cells is associated with IVF‐ICSI outcome. J Androl 2002;23(1):18.Google Scholar
Perdrix, A, Saïdi, R, Ménard, JF, et al. Relationship between conventional sperm parameters and motile sperm organelle morphology examination (MSOME). Int J Androl 2012;35(4):491498.Google Scholar
Ebner, T, Shebl, O, Oppelt, P, Mayer, RB. Some reflections on intracytoplasmic morphologically selected sperm injection. Int J Fertil Steril 2014;8(2):105112.Google Scholar
Mahfouz, RZ, Said, TM, Agarwal, A. The diagnostic and therapeutic applications of flow cytometry in male infertility. Arch Med Sci 2009;5(1A):S99S108.Google Scholar
Suh, TK, Schenk, JL, Seidel, GE Jr., High pressure flow cytometric sorting damages sperm. Theriogenology 2005;64(5):10351048.Google Scholar
De Geyter, C, Gobrecht-Keller, U, Ahler, A, Fischer, M. Removal of DNA-fragmented spermatozoa using flow cytometry and sorting does not improve the outcome of intracytoplasmic sperm injection. J Assist Reprod Genet 2019;36(10):20792086.Google Scholar
Ainsworth, C, Nixon, B, Aitken, RJ. Development of a novel electrophoretic system for the isolation of human spermatozoa. Hum Reprod 2005;20(8):22612270.Google Scholar
Simon, L, Murphy, K, Aston, KI, et al. Optimization of microelectrophoresis to select highly negatively charged sperm. J Assist Reprod Genet 2016;33(6):679688.CrossRefGoogle ScholarPubMed
Chan, PJ, Jacobson, JD, Corselli, JU, Patton, WC. A simple zeta method for sperm selection based on membrane charge. Fertil Steril 2006;85(2):481486.Google Scholar
Kheirollahi-Kouhestani, M, Razavi, S, Tavalaee, M, et al. Selection of sperm based on combined density gradient and zeta method may improve ICSI outcome. Hum Reprod 2009;24(10):24092416.Google Scholar
Martins, AD, Agarwal, A, Henkel, R. Sperm cryopreservation. In: Nagy, ZP, Varghese, A, Agarwal, A (eds.) In Vitro Fertilization. Springer, New York, 2019, pp. 625642.Google Scholar
Allamaneni, SS, Agarwal, A, Rama, S, et al. Comparative study on density gradients and swim‐up preparation techniques utilizing neat and cryopreserved spermatozoa. Asian J Androl 2005;7(1):8692.Google Scholar
Said, TM, Grunewald, S, Paasch, U, et al. Effects of magnetic-activated cell sorting on sperm motility and cryosurvival rates. Fertil Steril 2005;83(5):14421446.Google Scholar
Kam, TL, Jacobson, JD, Patton, WC, Corselli, JU, Chan, PJ. Retention of membrane charge attributes by cryopreserved-thawed sperm and zeta selection. J Assist Reprod Genet 2007;24(9):429434.Google Scholar
Ainsworth, C, Nixon, B, Jansen, RP, Aitken, RJ. First recorded pregnancy and normal birth after ICSI using electrophoretically isolated spermatozoa. Hum Reprod 2006;22(1):197200.Google Scholar
Karamahmutoglu, H, Erdem, A, Erdem, M, et al. The gradient technique improves success rates in intrauterine insemination cycles of unexplained subfertile couples when compared to swim up technique; a prospective randomized study. J Assist Reprod Genet 2014;31(9):11391145.Google Scholar
Berg, U, Brucker, C, Berg, FD., Effect of motile sperm count after swim-up on outcome of intrauterine insemination. Fertil Steril 1997;67(4):747750.Google Scholar
Boomsma, CM, Heineman, MJ, Cohlen, BJ, Farquhar, CM. Semen preparation techniques for intrauterine insemination. Cochrane Database Syst Rev 2004;3:CD004507.Google Scholar
Said, TM Land, JA. Effects of advanced selection methods on sperm quality and ART outcome: a systematic review. Hum Reprod Update 2011;17(6):719733.Google Scholar
Jakab, A, Sakkas, D, Delpiano, E, et al. Intracytoplasmic sperm injection: a novel selection method for sperm with normal frequency of chromosomal aneuploidies. Fertil Steril 2005;84(6):16651673.CrossRefGoogle ScholarPubMed
Parmegiani, L, Cognigni, GE, Bernardi, S, et al. “Physiologic ICSI”: hyaluronic acid (HA) favors selection of spermatozoa without DNA fragmentation and with normal nucleus, resulting in improvement of embryo quality. Fertil Steril 2010;93(2):598604.Google Scholar
Oehninger, SC, Kotze, D. Sperm binding to the zona pellucida, hyaluronic acid binding assay, and PICSI. In: Agarwal, A, Borges, E Jr., Setti, AS (eds.) Non-Invasive Sperm Selection for In Vitro Fertilization: Novel Concepts and Methods, Springer, New York, 2015, pp. 5968.Google Scholar
Nasr-Esfahani, MH, Razavi, S, Vahdati, AA, Fathi, F, Tavalaee, M. Evaluation of sperm selection procedure based on hyaluronic acid binding ability on ICSI outcome. J Assist Reprod Genet 2008;25(5):197203.Google Scholar
Avalos-Durán, G, Cañedo-Del Ángel, AME, Rivero-Murillo, J, et al. Physiological ICSI (PICSI) vs. conventional ICSI in couples with male factor: a systematic review. JBRA Assist Reprod 2018;22(2):139.Google Scholar
Miller, D, Pavitt, S, Sharma, V, et al. Physiological, hyaluronan-selected intracytoplasmic sperm injection for infertility treatment (HABSelect): a parallel, two-group, randomised trial. Lancet 2019;393(10170):416422.Google Scholar
Parrella, A, Choi, D, Keating, D, Rosenwaks, Z, Palermo, GD. A microfluidic device for selecting the most progressively motile spermatozoa yields a higher rate of euploid embryos. Fertil Steril 2018;110(4):e342.Google Scholar
Chinnasamy, T, Behr, B, Demirci, U. Microfluidic sperm sorting device for selection of functional human sperm for IUI application. Fertil Steril 2016;105(2):e17e18.Google Scholar
Parrella, A, Choi, D, Keating, D, Rosenwaks, Z, Palermo, GD. Effects of the microfluidic chip technique in sperm selection for intracytoplasmic sperm injection for unexplained infertility: a prospective, randomized controlled trial. J Assist Reprod Genet 2019;36(3):403409.Google Scholar
Knowlton, SM, Sadasivam, M, Tasoglu, S. Microfluidics for sperm research. Trends Biotechnol 2015;33(4):221229.Google Scholar
Souza Setti, A, Ferreira, RC, Paes de Almeida Ferreira Braga, D, et al. Intracytoplasmic sperm injection outcome versus intracytoplasmic morphologically selected sperm injection outcome: a meta-analysis. Reprod Biomed Online 2010;21(4):450455.Google Scholar
De Vos, A, Van de Velde, H, Bocken, G, et al. Does intracytoplasmic morphologically selected sperm injection improve embryo development? A randomized sibling-oocyte study. Hum Reprod 2013;28(3):617626.CrossRefGoogle ScholarPubMed
Duran-Retamal, M, Morris, G, Achilli, C, et al. Live birth and miscarriage rate following intracytoplasmic morphologically selected sperm injection vs intracytoplasmic sperm injection: an updated systematic review and meta-analysis. Acta Obstet Gynecol Scand, 2019;99:2433.Google Scholar
Brauchle, E, Schenke‐Layland, K. Raman spectroscopy in biomedicine–non‐invasive in vitro analysis of cells and extracellular matrix components in tissues. Biotechnol J 2013;8(3):288297.Google Scholar
Liu, Y, Zhu, Y, Li, Z. Application of Raman spectroscopy in andrology: non-invasive analysis of tissue and single cell. Transl Androl Urol 2014;3(1):125.Google Scholar
Mirsky, SK, Barnea, I, Levi, M, Greenspan, H, Shaked, NT. Automated analysis of individual sperm cells using stain‐free interferometric phase microscopy and machine learning. Cytometry A 2017;91(9):893900.Google Scholar
Eravuchira, PJ, Mirsky, SK, Barnea, I, et al. Individual sperm selection by microfluidics integrated with interferometric phase microscopy. Methods 2018;136:152159.Google Scholar
Itzkan, I, Qiu, L, Fang, H, et al. Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels. PNAS 2007;104(44):1725517260.Google Scholar
Enciso, M, Pieczenik, G, Cohen, J, Wells, D. Development of a novel synthetic oligopeptide for the detection of DNA damage in human spermatozoa. Hum Reprod 2012;27(8):22542266.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×