Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-t4qhp Total loading time: 0.6 Render date: 2022-08-08T20:00:47.420Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

References

Published online by Cambridge University Press:  05 May 2022

Damir Z. Arov
Affiliation:
South Ukrainian Pedagogical University
Olof J. Staffans
Affiliation:
Åbo Akademi University, Finland
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aalto, A. and Malinen, J. (2013). Compositions of passive boundary control systems. Math.CrossRefGoogle Scholar
Control Relat. Fields, 3(1), 119. https://doi.org/10.3934/mcrf.2013.3.1.Google Scholar
Adamyan, V. M. and Arov, D. Z. (1970). On unitary couplings of semiunitary operators. In Eleven Papers in Analysis, volume 95 of American Mathematical Society Translations, pp. 75129. Providence, RI: American Mathematical Society.Google Scholar
Akhiezer, N. I. and Glazman, I. M. (1993). Theory of Linear Operators in Hilbert Space. New York: Dover Publications, Inc., translation from the Russian and with a preface by Merlynd Nestell. Reprint of the 1961 and 1963 translations, two volumes bound as one.Google Scholar
Albiac, F. and Kalton, N. J. (2016). Topics in Banach Space Theory, volume 233 of Graduate Texts in Mathematics. Cham: Springer, second edition. With a foreword by Gilles Godefory. https://doi.org/10.1007/978-3-319-31557-7.CrossRefGoogle Scholar
Arov, D. Z. and Dym, H. (2008). J-Contractive Matrix Valued Functions and Related Topics, volume 116 of Encyclopedia of Mathematics and Its Applications. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511721427.Google Scholar
Arov, D. Z. and Dym, H. (2012). Bitangential Direct and Inverse Problems for Systems of Integral and Differential Equations, volume 145 of Encyclopedia of Mathematics and Its Applications. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781139093514.CrossRefGoogle Scholar
Arov, D. Z. and Dym, H. (2018). Multivariate Prediction, de Branges Spaces, and Related Extension and Inverse Problems, volume 266 of Operator Theory: Advances and Applications. Cham: Birkhäuser/Springer. https://doi.org/10.1007/978-3-319-70262-9.CrossRefGoogle Scholar
Arov, D. Z. and Nudelman, M. A. (1996). Passive linear stationary dynamical scattering systems with continuous time. Integral Equ. Oper. Theory, 24, 145.CrossRefGoogle Scholar
Arov, D. Z. and Staffans, O. J. (2004a). Passive and conservative infinite-dimensional linear state/signal systems. In Proceedings of MTNS2004.Google Scholar
Arov, D. Z. and Staffans, O. J. (2004b). Reciprocal passive linear time-invariant systems. In Proceedings of MTNS2004.Google Scholar
Arov, D. Z. and Staffans, O. J. (2005). State/signal linear time-invariant systems theory. Part I: Discrete time systems. In The State Space Method, Generalizations and Applications, volume 161 of Operator Theory: Advances and Applications, pp. 115177. Basel, Boston, Berlin: Birkhäuser-Verlag.Google Scholar
Arov, D. Z. and Staffans, O. J. (2006a). The infinite-dimensional continuous time Kalman– Yakubovich–Popov inequality. In Proceedings of CDC-ECC05.Google Scholar
Arov, D. Z. and Staffans, O. J. (2006b). Affine input/state/output representations of state/signal systems. In Proceedings of MTNS2006.Google Scholar
Arov, D. Z. and Staffans, O. J. (2007a). The infinite-dimensional continuous time Kalman– Yakubovich–Popov inequality. In The Extended Field of Operator Theory, volume 171 of Operator Theory: Advances and Applications, pp. 3772.CrossRefGoogle Scholar
Arov, D. Z. and Staffans, O. J. (2007b). State/signal linear time-invariant systems theory: Passive discrete time systems. Internat. J. Robust Nonlinear Control, 17, 497548.CrossRefGoogle Scholar
Arov, D. Z. and Staffans, O. J. (2007c). State/signal linear time-invariant systems theory. Part III: Transmission and impedance representations of discrete time systems. In Operator Theory, Structured Matrices, and Dilations, Tiberiu Constantinescu Memorial Volume, pp. 101140. Theta Foundation. Available from American Mathematical Society.Google Scholar
Arov, D. Z. and Staffans, O. J. (2007d). State/signal linear time-invariant systems theory. Part IV: Affine representations of discrete time systems. Complex Anal. Oper. Theory, 1, 457521.CrossRefGoogle Scholar
Arov, D. Z. and Staffans, O. J. (2008). Bi-inner dilations and bi-stable passive scattering realizations of Schur class operator-valued functions. Integral Equ. Oper. Theory, 62, 2942.CrossRefGoogle Scholar
Arov, D. Z. and Staffans, O. J. (2009a). Two canonical passive state/signal shift realizations of passive discrete time behaviors. J. Funct. Anal., 257, 25732634.CrossRefGoogle Scholar
Arov, D. Z. and Staffans, O. J. (2009b). A Kreĭn space coordinate free version of the de Branges complementary space. J. Funct. Anal., 256, 38923915.CrossRefGoogle Scholar
Arov, D. Z. and Staffans, O. J. (2010). Canonical conservative state/signal shift realizations of passive discrete time behaviors. J. Funct. Anal., 259, 32653327.CrossRefGoogle Scholar
Arov, D. Z. and Staffans, O. J. (2012). Symmetries in special classes of passive state/signal systems. J. Funct. Anal., 262, 50215097.CrossRefGoogle Scholar
Arov, D. Z., Kurula, M., and Staffans, O. J. (2011). Canonical state/signal shift realizations of passive continuous time behaviors. Complex Anal. Oper. Theory, 5, 331402.CrossRefGoogle Scholar
Arov, D. Z., Kurula, M., and Staffans, O. J. (2012a). Boundary control state/signal systems and boundary triplets. In Operator Methods for Boundary Value Problems, pp. 7385. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Arov, D. Z., Kurula, M., and Staffans, O. J. (2012b). Passive state/signal systems and conservative boundary relations. In Operator Methods for Boundary Value Problems, pp. 87119. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Azizov, T. Y. and Iokhvidov, I. S. (1989). Linear Operators in Spaces with an Indefinite Metric. Pure and Applied Mathematics. New York: Wiley, translation from the Russian by E. R. Dawson, A Wiley-Interscience Publication.Google Scholar
Balakrishnan, A. V. (1978). Boundary control of parabolic equations: L-Q-R theory. In Theory of Nonlinear Operators (Proc. Fifth Internat. Summer School, Central Inst. Math. Mech. Acad. Sci. GDR, Berlin, 1977), volume 6 of Abh. Akad. Wiss. DDR, Abt. Math. Naturwiss. Tech., 1978, pp. 1123. Berlin: Akademie-Verlag.Google Scholar
Ball, J. A. and Staffans, O. J. (2006). Conservative state-space realizations of dissipative system behaviors. Integral Equ. Oper. Theory, 54, 151213.CrossRefGoogle Scholar
Ball, J. A., Kurula, M., Staffans, O. J., and Zwart, H. (2015). De Branges–Rovnyak realizations of operator-valued Schur functions on the complex right half-plane. Complex Anal. Oper. Theory, 9(4), 723792. https://doi.org/10.1007/s11785-014-0358-2.CrossRefGoogle Scholar
Ball, J. A., Kurula, M., and Staffans, O. J. (2018). A conservative de Branges–Rovnyak functional model for operator Schur functions on C+. Complex Anal. Oper. Theory, 12(4), 877915. https://doi.org/10.1007/s11785-017-0746-5.CrossRefGoogle Scholar
Behrndt, J., Hassi, S., and de Snoo, H. (2009). Boundary relations, unitary colligations, and functional models. Complex Anal. Oper. Theory, 3(1), 5798. http://dx.doi.org/10.1007/s11785-008-0064-z.CrossRefGoogle Scholar
Behrndt, J., Hassi, S., and de Snoo, H. (2020). Boundary Value Problems, Weyl Functions, and Differential Operators, volume 108 of Monographs in Mathematics. Basel, Boston, Berlin: Birkhauser-Verlag.CrossRefGoogle Scholar
Belevitch, V. (1968). Classical Network Theory. San Francisco, Calif.-CambridgeAmsterdam: Holden-Day.Google Scholar
Bensoussan, A., Da Prato, G., Delfour, M. C., and Mitter, S. K. (1992). Representation and Control of Infinite Dimensional Systems, volumes 1 and 2. Boston, Basel, Berlin: Birkhauser.Google Scholar
Bognár, J. (1974). Indefinite Inner Product Spaces. New York: Springer-Verlag. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 78.CrossRefGoogle Scholar
Byrnes, C. I., Gilliam, D. S., Shubov, V. I., and Weiss, G. (2002). Regular linear systems governed by a boundary controlled heat equation. J. Dynam. Control Systems, 8(3), 341370. ISSN 1079-2724.CrossRefGoogle Scholar
Callier, F. M. and Winkin, J. (1992). LQ-optimal control of infinite-dimensional systems by spectral factorization. Automatica, 28, 757770.CrossRefGoogle Scholar
Callier, F. M. and Winkin, J. (1999). The spectral factorization problem for multivariable distributed parameter systems. Integral Equ. Oper. Theory, 34, 270292.CrossRefGoogle Scholar
Cervera, J., van der Schaft, A. J., and Baños, A. (2003). On composition of Dirac structures and its implications for control by interconnection. In Nonlinear and Adaptive Control (Sheffield, 2001), volume 281 of Lecture Notes in Control and Information Sciences, pp. 5563. Berlin: Springer. https://doi.org/10.1007/3-540-45802-6_5.CrossRefGoogle Scholar
Cervera, J., van der Schaft, A. J., and Baños, A. (2007). Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica J. IFAC, 43(2), 212225. https://doi.org/10.1016/j.automatica.2006.08.014.CrossRefGoogle Scholar
Curtain, R. F. and Opmeer, M. R. (2005). The suboptimal Nehari problem for wellposed linear systems. SIAM J. Control Optim., 44(3), 9911018 (electronic). http://dx.doi.org/10.1137/S036301290444318X.CrossRefGoogle Scholar
Curtain, R. F. and Opmeer, M. R. (2006). Normalized doubly coprime factorizations for infinite-dimensional linear systems. Math. Control Signals Systems, 18(1), 131. http://dx.doi.org/10.1007/s00498-005-0158-3.CrossRefGoogle Scholar
Curtain, R. F. and Pritchard, A. J. (1978). Infinite Dimensional Linear Systems Theory, volume 8 of Lecture Notes in Control and Information Sciences. New York and Berlin: Springer-Verlag.CrossRefGoogle Scholar
Curtain, R. F. and Weiss, G. (1989). Well posedness of triples of operators (in the sense of linear systems theory). In Control and Optimization of Distributed Parameter Systems, volume 91 of International Series of Numerical Mathematics, pp. 4159. Basel, Boston, Berlin: Birkhäuser-Verlag.Google Scholar
Curtain, R. F. and Zwart, H. (1995). An Introduction to Infinite-Dimensional Linear Systems Theory. New York: Springer-Verlag.CrossRefGoogle Scholar
Curtain, R. F. and Zwart, H. (2020). Introduction to Infinite-Dimensional Linear Systems Theory: A State Space Approach. New York: Springer-Verlag.CrossRefGoogle Scholar
Curtain, R. F., Weiss, G., and Weiss, M. (1996). Coprime factorization for regular linear systems. Automatica, 32, 15191531.CrossRefGoogle Scholar
Davies, E. B. (1980). One-Parameter Semigroups. London, New York, etc: Academic Press.Google Scholar
Derkach, V., Hassi, S., Malamud, M., and de Snoo, H. (2006). Boundary relations and their Weyl families. Trans. Amer. Math. Soc., 358(12), 53515400 (electronic). http://dx.doi.org/10.1090/S0002-9947-06-04033-5.CrossRefGoogle Scholar
Derkach, V. A., Hassi, S., Malamud, M. M., and de Snoo, H. (2009). Boundary relations and generalized resolvents of symmetric operators. Russ. J. Math. Phys., 16(1), 1760. ISSN 1061-9208.CrossRefGoogle Scholar
Desch, W., Lasiecka, I., and Schappacher, W. (1985). Feedback boundary control problems for linear semigroups. Israel J. Math., 51, 177207.CrossRefGoogle Scholar
Dijksma, A. and de Snoo, H. S. V. (1987). Symmetric and selfadjoint relations in Kre˘ın spaces. I. In Operators in Indefinite Metric Spaces, Scattering Theory and Other Topics (Bucharest, 1985), volume 24 of Operator Theory: Advances and Applications, pp. 145166. Basel: Birkhäuser.Google Scholar
Dritschel, M. A. and Rovnyak, J. (1990). Extension theorems for contraction operators on Kre˘ın spaces. In Extension and Interpolation of Linear Operators and Matrix Functions, volume 47 of Operator Theory: Advances and Applications, pp. 221305. Basel: Birkhäuser.CrossRefGoogle Scholar
Dritschel, M. A. and Rovnyak, J. (1996). Operators on indefinite inner product spaces. In Lancaster, P., editor, Lectures on Operator Theory and Its Applications (Waterloo, ON, 1994), volume 3 of Fields Institute Monographs, pp. 141232. Providence, RI: American Mathematical Society.Google Scholar
Efimov, A. V. and Potapov, V. P. (1973). J-expanding matrix-valued functions, and their role in the analytic theory of electrical circuits. Uspehi Mat. Nauk, 28(1[169]), 65130. ISSN 0042-1316.Google Scholar
Engel, K.-J. and Nagel, R. (2000). One-Parameter Semigroups for Linear Evolution Equations, volume 194 of Graduate Texts in Mathematics. New York: Springer-Verlag. ISBN 0-387-98463-1. With contributions by Brendle, S., Campiti, M., Hahn, T., Metafune, G., Nickel, G., Pallara, D., Perazzoli, C., Rhandi, A., Romanelli, S. and Schnaubelt, R.Google Scholar
Fattorini, H. O. (1968). Boundary control systems. SIAM J. Control, 6, 349385.CrossRefGoogle Scholar
Fattorini, H. O. (1999). Infinite Dimensional Optimization and Control Theory, volume 62 of Encyclopedia of Mathematics and Its Applications. Cambridge and New York: Cambridge University Press.CrossRefGoogle Scholar
Flandoli, F., Lasiecka, I. and Triggiani, R. (1988). Algebraic Riccati equations with nonsmoothing observation arising in hyperbolic and Euler–Bernoulli boundary control problems. Ann. Mat. Pura Appl. (4), 153: 307382.CrossRefGoogle Scholar
Fuhrmann, P. A. (1981). Linear Systems and Operators in Hilbert Space. New York: McGraw-Hill.Google Scholar
Fuhrmann, P. A. and Helmke, U. (2015). The Mathematics of Networks of Linear Systems. Cham: Universitext. Springer.CrossRefGoogle Scholar
Ginzburg, Y. P. (1957). On J-contractive operator functions. Dokl. Akad. Nauk SSSR (N.S.), 117, 171173. ISSN 0002-3264.Google Scholar
Gorbachuk, V. I. and Gorbachuk, M. L. (1991). Boundary Value Problems for Operator Differential Equations, volume 48 of Mathematics and Its Applications (Soviet Series). Dordrecht: Kluwer Academic Publishers Group. ISBN 0-7923-0381-4. translation and revised from the 1984 Russian original.CrossRefGoogle Scholar
Grabowski, P. (1989). Evaluation of quadratic cost functionals for neutral systems: The frequency-domain approach. Internat. J. Control, 49(3), 10331053. https://doi.org/10.1080/00207178908547380.CrossRefGoogle Scholar
Grabowski, P. (1991). On the spectral-Lyapunov approach to parametric optimization of distributed-parameter systems. IMA J. Math. Control Inform., 7, 317338.CrossRefGoogle Scholar
Grabowski, P. and Callier, F. M. (2001a). Boundary control systems in factor form: Transfer functions and input-output maps’, Integral Equ. Oper. Theory, 41, 137.CrossRefGoogle Scholar
Grabowski, P. and Callier, F. M. (2001b). Circle criterion and boundary control systems in factor form: Input-output approach. Internat. J. Appl. Math. Comput. Sci., 11, 13871403.Google Scholar
Gripenberg, G., Londen, S.-O. and Staffans, O. (1990). Volterra Integral and Functional Equations, volume 34 of Encyclopedia of Mathematics and Its Applications. Cambridge and New York: Cambridge University Press.CrossRefGoogle Scholar
Hassi, S., Malamud M. and Mogilevskii, V. (2005). Generalized resolvents and boundary triplets for dual pairs of linear relations. Methods Funct. Anal. Topology, 11(2), 170187. ISSN 1029-3531.Google Scholar
Helton, J. W. (1976). Systems with infinite-dimensional state space: The Hilbert space approach. Proceedings of the IEEE, 64, 145160.CrossRefGoogle Scholar
Hille, E. and Phillips, R. S. (1957). Functional Analysis and Semi-Groups. Providence, RI: American Mathematical Society, revised edition.Google Scholar
Iohvidov, I. S., Kre˘ın, M. G. and Langer, H. (1982). Introduction to the Spectral Theory of Operators in Spaces with an Indefinite Metric, volume 9 of Mathematical Research. Berlin: Akademie-Verlag.Google Scholar
Ionescu, V. and Weiss, M. (1993). Continuous and discrete-time Riccati theory: A Popovfunction approach. Linear Algebra Appl., 193, 173209.CrossRefGoogle Scholar
Jacob, B. and Zwart, H. J. (2012). Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces, volume 223 of Operator Theory: Advances and Applications. Basel: Birkhäuser/Springer Basel AG. Linear Operators and Linear Systems.CrossRefGoogle Scholar
Kalman, R. E. (1963a). Mathematical description of linear dynamical systems. SIAM J. Control, 1, 152192.Google Scholar
Kalman, R. E. (1963b). Lyapunov functions for the problem of Lur×e in automatic control. Proc. Nat. Acad. Sci. U.S.A., 49, 201205.CrossRefGoogle ScholarPubMed
Kalman, R. E. (1965). Irreducible realizations and the degree of a rational matrix. J. Soc. Indust. Appl. Math., 13, 520544.CrossRefGoogle Scholar
Kalman, R. E., Falb, P. L. and Arbib, M. A. (1969). Topics in Mathematical System Theory. New York: McGraw-Hill.Google Scholar
Kato, T. (1980). Perturbation Theory for Linear Operators. Berlin, Heidelberg and New York: Springer-Verlag.Google Scholar
Kuh, E. and Rohrer, R. A. (1967). Theory of Linear Active Networks. San Francisco: HoldenDay, Inc.Google Scholar
Kurula, M. (2010). On passive and conservative state/signal systems in continuous time. Integral Equ. Oper. Theory, 67, 377424, 449.CrossRefGoogle Scholar
Kurula, M. and Staffans, O. J. (2008). Well-posed state/signal systems in continuous time. In Proceedings of MTNS2008.Google Scholar
Kurula, M. and Staffans, O. J. (2010). Well-posed state/signal systems in continuous time. Complex Anal. Oper. Theory, 4, 319390.CrossRefGoogle Scholar
Kurula, M. and Staffans, O. J. (2011). Connections between smooth and generalized trajectories of a state/signal system. Complex Anal. Oper. Theory, 5, 403422.CrossRefGoogle Scholar
Kurula, M. and Zwart, H. (2015). Linear wave systems on n-D spatial domains. Internat. J. Control, 88(5), 10631077. https://doi.org/10.1080/00207179.2014.993337.Google Scholar
Kurula, M., Zwart, H., van der Schaft, A., and Behrndt, J. (2010). Dirac structures and their composition on Hilbert spaces. J. Math. Anal. Appl., 372, 402422. https://doi.org/10.1016/j.jmaa.2010.07.004.CrossRefGoogle Scholar
Lagnese, J. E. (1989). Boundary Stabilization of Thin Plates, volume 10 of SIAM Studies in Applied Mathematics. Philadelphia: Society for Industrial and Applied Mathematics.CrossRefGoogle Scholar
Lasiecka, I. and Triggiani, R. (1986). Riccati equations for hyperbolic partial differential equations with L2(0, T L2(Г))-Dirichlet boundary terms. SIAM J. Control Optim., 24, 884925.CrossRefGoogle Scholar
Lasiecka, I. and Triggiani, R. (1991). Differential and Algebraic Riccati Equations with Applications to Boundary/Point Control Problems: Continuous Theory and Approximation Theory, volume 164 of Lecture Notes in Control and Information Sciences. Berlin: Springer-Verlag.Google Scholar
Lasiecka, I. and Triggiani, R. (2000a). Control Theory for Partial Differential Equations: Continuous and Approximation Theories. I, volume 74 of Encyclopedia of Mathematics and Its Applications. Cambridge: Cambridge University Press.Google Scholar
Lasiecka, I. and Triggiani, R. (2000b). Control Theory for Partial Differential Equations: Continuous and Approximation Theories. II, volume 75 of Encyclopedia of Mathematics and Its Applications. Cambridge: Cambridge University Press. ISBN 0-52158401-9.Google Scholar
Lax, P. D. and Phillips, R. S. (1967). Scattering Theory. New York: Academic Press.Google Scholar
Le Gorrec, Y., Zwart, H., and Maschke, B. (2005). Dirac structures and boundary control systems associated with skew-symmetric differential operators. SIAM J. Control Optim., 44(5), 18641892. https://doi.org/10.1137/040611677.CrossRefGoogle Scholar
Leis, R. (1986). Initial-Boundary Value Problems in Mathematical Physics. Stuttgart: B. G. Teubner. ISBN 3-519-02102-1.CrossRefGoogle Scholar
Lions, J. L. (1971). Optimal Control of Systems Governed by Partial Differential Equations, volume 170 of Die Grundlehren der mathematishen Wissenschaften in Einzeldarstellungen. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Lions, J.-L. and Magenes, E. (1972a). Non-homogeneous Boundary Value Problems and Applications. Vol. I. New York: Springer-Verlag, translation from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181.Google Scholar
Lions, J.-L. and Magenes, E. (1972b). Non-homogeneous Boundary Value Problems and Applications. Vol. II. New York: Springer-Verlag, translation from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 182.Google Scholar
Lions, J.-L. and Magenes, E. (1973). Non-homogeneous Boundary Value Problems and Applications. Vol. III. New York: Springer-Verlag, translation from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 183.CrossRefGoogle Scholar
Livšic, M. S. (1963a). Open systems as linear automata. Izv. Akad. Nauk SSSR Ser. Mat., 27, 12151228. ISSN 0373-2436.Google Scholar
Livšic, M. S. (1963b). On linear physical systems connected with the external world by coupling channels. Izv. Akad. Nauk SSSR Ser. Mat., 27, 9931030.Google Scholar
Livšic, M. S. (1973). Operators, oscillations, waves (open systems). Providence, R.I.: American Mathematical Society, translation from the Russian by Scripta Technica, Ltd. English translation edited by R. Herden, Translations of Mathematical Monographs, Vol. 34.Google Scholar
Lunardi, A. (1995). Analytic Semigroups and Optimal Regularity in Parabolic Equations. Basel Boston Berlin: Birkhäuser-Verlag.Google Scholar
Luo, Z.-H., Guo, B.-Z., and Morgul, O. (1999). Stability and Stabilization of Infinite Dimensional Systems with Applications. Communications and Control Engineering Series. London: Springer-Verlag London, Ltd. https://doi.org/10.1007/978-1-4471-0419-3.CrossRefGoogle Scholar
Malinen, J. and Havu, V. (2007). The Cayley transform as a time discretization scheme. Numer. Funct. Anal. Optim., 28, 825851. https://doi.org/10.1080/01630560701493321. ISSN 0163-0563.Google Scholar
Malinen, J. and Staffans, O. J. (2006). Conservative boundary control systems. J. Differential Equations, 231, 290312.CrossRefGoogle Scholar
Malinen, J. and Staffans, O. J. (2007). Impedance passive and conservative boundary control systems. Complex Anal. Oper. Theory, 1, 27930.CrossRefGoogle Scholar
Malinen, J., Staffans, O. J., and Weiss, G. (2006). When is a linear system conservative? Quart. Appl. Math., 64, 6191.CrossRefGoogle Scholar
Maschke, B. and van der Schaft, A. (2005). Compositional modelling of distributedparameter systems. In Advanced Topics in Control Systems Theory, volume 311 of Lecture Notes in Control and Information Sciences, pp. 115154. London: Springer. https://doi.org/10.1007/11334774_4.CrossRefGoogle Scholar
Megawati, N. Y. and van der Schaft, A. (2017). Abstraction and control by interconnection of linear systems: A geometric approach. Systems Control Lett., 105, 2733. https://doi.org/10.1016/j.sysconle.2017.04.010.CrossRefGoogle Scholar
Mikkola, K. (2002). Infinite-dimensional linear systems, optimal control and algebraic Riccati equations. Doctoral dissertation, Helsinki University of Technology.Google Scholar
Mikkola, K. (2006a). State-feedback stabilization of well-posed linear systems. Integral Equations Operator Theory. Published electronically in 2005.CrossRefGoogle Scholar
Mikkola, K. (2006b). Characterization of transfer functions of Pritchard–Salamon or other realizations with a bounded input or output operator. Integral Equations Operator Theory. Published electronically in 2005.CrossRefGoogle Scholar
Mikkola, K. M. (2007). Coprime factorization and dynamic stabilization of transfer functions. SIAM J. Control Optim., 45(6), 19882010 (electronic). ISSN 0363-0129.CrossRefGoogle Scholar
Nagel, R., (ed.), (1986). One-Parameter Semigroups of Positive Operators, volume 1184 of Lecture Notes in Mathematics. Berlin etc.: Springer-Verlag.Google Scholar
Nikolski, N. K. (2002a). Operators, Functions, and Systems: An Easy Reading. Vol. 1, volume 92 of Mathematical Surveys and Monographs. Providence, RI: American Mathematical Society. ISBN 0-8218-1083-9. Hardy, Hankel, and Toeplitz, Translated from the French by Andreas Hartmann.Google Scholar
Nikolski, N. K. (2002b). Operators, Functions, and Systems: An Easy Reading. Vol. 2, volume 93 of Mathematical Surveys and Monographs. Providence, RI: American Mathematical Society. ISBN 0-8218-2876-2. Model operators and systems, Translated from the French by Andreas Hartmann and revised by the author.Google Scholar
Opmeer, M. R. (2005). Infinite-dimensional linear systems: A distributional approach. Proc. London Math. Soc., 91, 738760.CrossRefGoogle Scholar
Opmeer, M. R. (2006). Distribution semigroups and control systems. J. Evol. Equ., 6, 145159.CrossRefGoogle Scholar
Opmeer, M. R. and Curtain, R. F. (2004). New Riccati equations for well-posed linear systems. Systems Control Lett., 52(5), 339347. https://doi.org/10.1016/j.sysconle.2004.02.010.CrossRefGoogle Scholar
Opmeer, M. R. and Curtain, R. F. (2004/05). Linear quadratic Gaussian balancing for discrete-time infinite-dimensional linear systems. SIAM J. Control Optim., 43(4), 11961221. https://doi.org/10.1137/S0363012903431189.CrossRefGoogle Scholar
Opmeer, M. R. and Staffans, O. J. (2008). Optimal state feedback stabilization of an infinitedimensional discrete time-invariant linear system. Complex Anal. Oper. Theory, 2, 479510.CrossRefGoogle Scholar
Opmeer, M. R. and Staffans, O. J. (2010). Optimal input-output stabilization of infinitedimensional discrete time-invariant linear system by output injection. SIAM J. Control Optim., 48, 50845107.CrossRefGoogle Scholar
Opmeer, M. R. and Staffans, O. J. (2012). Coprime factorizations and optimal control on the doubly infinite discrete time axis. SIAM J. Control Optim., 50, 266285.CrossRefGoogle Scholar
Opmeer, M. R. and Staffans, O. J. (2014). Optimal control on the doubly infinite continuous time axis and coprime factorizations. SIAM J. Control Optim., 52(3), 19582007. http://dx.doi.org/10.1137/110831726.CrossRefGoogle Scholar
Opmeer, M. R. and Staffans, O. J. (2019). Optimal control on the doubly infinite time axis for well-posed linear systems. SIAM J. Control Optim., 57(3), 19852015. https://doi.org/10.1137/18M1181304.CrossRefGoogle Scholar
Ortega, R., van der Schaft, A., Maschke, B., and Escobar, G. (2002). Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica J. IFAC, 38(4), 585596. https://doi.org/10.1016/S00051098(01)00278-3.CrossRefGoogle Scholar
Pazy, A. (1983). Semi-Groups of Linear Operators and Applications to Partial Differential Equations. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Phillips, R. S. (1959). Dissipative operators and hyperbolic systems of partial differential equations. Trans. Amer. Math. Soc., 90, 193254.CrossRefGoogle Scholar
Polderman, J. W. and Willems, J. C. (1998). Introduction to Mathematical Systems Theory: A Behavioral Approach. New York: Springer-Verlag.CrossRefGoogle Scholar
Popov, V.-M. (1973). Hyperstability of Control Systems. Bucharest: Editura Academiei, translation from the Romanian by Radu Georgescu, Die Grundlehren der mathematischen Wissenschaften, Band 204.CrossRefGoogle Scholar
Potapov, V. P. (1960). The multiplicative structure of J-contractive matrix functions. Amer. Math. Soc. Transl. 15(2), 131243. ISSN 0065-9290.Google Scholar
Redheffer, R. M. (1962). On the relation of transmission-line theory to scattering and transfer. J. Math. and Phys., 41, 141. ISSN 0097-1421.CrossRefGoogle Scholar
Redheffer, R. M. (1960). On a certain linear fractional transformation. J. Math. and Phys., 39, 269286. ISSN 0097-1421.CrossRefGoogle Scholar
Reis, T. and Selig, T. (2014). Balancing transformations for infinite-dimensional systems with nuclear Hankel operator. Integral Equ. Oper. Theory, 79(1), 67105. https://doi.org/10.1007/s00020-013-2105-x.CrossRefGoogle Scholar
Rudin, W. (1973). Functional Analysis. New York: McGraw-Hill.Google Scholar
Salamon, D. (1984). Control and Observation of Neutral Systems. London: Pitman Publishing Ltd.Google Scholar
Salamon, D. (1987). Infinite dimensional linear systems with unbounded control and observation: a functional analytic approach. Trans. Amer. Math. Soc., 300, 383431.Google Scholar
Salamon, D. (1989). Realization theory in Hilbert space. Math. Systems Theory, 21 147164.CrossRefGoogle Scholar
Seshu, S. and Reed, M. B. (1961). Linear Graphs and Electrical Networks. AddisonWesley Series in Engineering Sciences. Reading, MA: Addison-Wesley. A WileyInterscience Publication.Google Scholar
Šmuljan, Y. L. (1986). Invariant subspaces of semigroups and the Lax–Phillips scheme. Deposited in VINITI, No. 8009-B86, Odessa, p. 49.Google Scholar
Staffans, O. J. (1995). Quadratic optimal control of stable systems through spectral factorization. Math. Control Signals Systems, 8, 167197.CrossRefGoogle Scholar
Staffans, O. J. (1996). On the discrete and continuous time infinite-dimensional algebraic Riccati equations’, Systems Control Lett., 29, 131138.CrossRefGoogle Scholar
Staffans, O. J. (1997). Quadratic optimal control of stable well-posed linear systems. Trans. Amer. Math. Soc., 349, 36793715.CrossRefGoogle Scholar
Staffans, O. J. (1998a). Quadratic optimal control of well-posed linear systems. SIAM J. Control Optim., 37, 131164.CrossRefGoogle Scholar
Staffans, O. J. (1998b). Coprime factorizations and well-posed linear systems. SIAM J. Control Optim., 36, 12681292.CrossRefGoogle Scholar
Staffans, O. J. (1998c). Feedback representations of critical controls for well-posed linear systems. Internat. J. Robust Nonlinear Control, 8, 11891217.3.0.CO;2-4>CrossRefGoogle Scholar
Staffans, O. J. (1998d). On the distributed stable full information H minimax problem. Internat. J. Robust Nonlinear Control, 8, 12551305.3.0.CO;2-P>CrossRefGoogle Scholar
Staffans, O. J. (1999a). Admissible factorizations of Hankel operators induce well-posed linear systems. Systems Control Lett., 37, 301307.CrossRefGoogle Scholar
Staffans, O. J. (1999b). Quadratic optimal control through coprime and spectral factorisation. European J. Control, 5, 167179.CrossRefGoogle Scholar
Staffans, O. J. (2001). J-energy preserving well-posed linear systems. Internat. J. Appl. Math. Comput. Sci., 11, 13611378.Google Scholar
Staffans, O. J. (2002a). Passive and conservative infinite-dimensional impedance and scattering systems (from a personal point of view). In Mathematical Systems Theory in Biology, Communication, Computation, and Finance, volume 134 of IMA Volumes in Mathematics and its Applications, pp. 375414, New York: Springer-Verlag.Google Scholar
Staffans, O. J. (2002b). Passive and conservative continuous-time impedance and scattering systems. Part I: Well-posed systems. Math. Control Signals Systems, 15, 291315.CrossRefGoogle Scholar
Staffans, O. J. (2005). Well-Posed Linear Systems. Cambridge and New York: Cambridge University Press.CrossRefGoogle Scholar
Staffans, O. J. (2012). On scattering passive system nodes and maximal scattering dissipative operators. Proc. Amer. Math. Soc., p. 7. published electronically in Sept, http://dx.doi.org/10.1090/S0002-9939-2012-11887-8.CrossRefGoogle Scholar
Staffans, O. J. and Weiss, G. (2002). Transfer functions of regular linear systems. Part II: the system operator and the Lax-Phillips semigroup. Trans. Amer. Math. Soc., 354, 32293262.CrossRefGoogle Scholar
Staffans, O. J. and Weiss, G. (2012). A physically motivated class of scattering passive linear systems. SIAM J. Control Optim., 50, 30833112.CrossRefGoogle Scholar
Sz.-Nagy, B. and Foias¸, C. (1970). Harmonic Analysis of Operators on Hilbert Space. Amsterdam London: North-Holland.Google Scholar
Trentelman, H. L. and Willems, J. C. (1991). The dissipation inequality and the algebraic Riccati equation. In Bittanti, S., Laub, A. J., and Willems, J. C., (eds.), The Riccati Equation, pp. 197242, Berlin: Springer-Verlag.CrossRefGoogle Scholar
Tucsnak, M. and Weiss, G. (2003). How to get a conservative well-posed linear system out of thin air. II. Controllability and stability. SIAM J. Control Optim., 42(3), 907935. https://doi.org/10.1137/S0363012901399295.CrossRefGoogle Scholar
Tucsnak, M. and Weiss, G. (2009). Observation and Control for Operator Semigroups. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Basel: Birkhäuser Verlag. https://doi.org/10.1007/978-3-7643-8994-9.CrossRefGoogle Scholar
van der Schaft, A. (2000). L2-Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering Series. London: Springer-Verlag London, Ltd., second edition. https://doi.org/10.1007/978-1-4471-0507-7.CrossRefGoogle Scholar
van der Schaft, A. (2006). Port-Hamiltonian systems: an introductory survey. In International Congress of Mathematicians, Vol. III, pp. 13391365. Eur. Math. Soc., Zürich.Google Scholar
van der Schaft, A. and Jeltsema, D. (2014). Port-Hamiltonian Systems Theory: An Introductory Overview. Now Foundations and Trends. https://doi.org/10.1561/2600000002.CrossRefGoogle Scholar
van der Schaft, A. J. and Maschke, B. M. (1994). On the Hamiltonian formulation of nonholonomic mechanical systems. Rep. Math. Phys., 34(2), 225233. https://doi.org/10.1016/0034-4877(94)90038-8.CrossRefGoogle Scholar
van der Schaft, A. J. and Maschke, B. M. (2002). Hamiltonian formulation of distributedparameter systems with boundary energy flow. J. Geom. Phys., 42(1-2), 166194. https://doi.org/10.1016/S0393-0440(01)00083-3.CrossRefGoogle Scholar
van der Schaft, A. J. and Maschke, B. M. (2018). Generalized port-Hamiltonian DAE systems. Systems Control Lett., 121, 3137. https://doi.org/10.1016/j.sysconle.2018.09.008.CrossRefGoogle Scholar
Weiland, S. and Willems, J. C. (1991). Dissipative dynamical systems in a behavioral context. Math. Models Methods Appl. Sci., 1, 125.CrossRefGoogle Scholar
Weiss, G. (1988). Admissibility of input elements for diagonal semigroups on l2. Systems Control Lett., 10, 7982.CrossRefGoogle Scholar
Weiss, G. (1989a). Admissibility of unbounded control operators. SIAM J. Control Optim., 27, 527545.CrossRefGoogle Scholar
Weiss, G. (1989b). Admissible observation operators for linear semigroups. Israel J. Math., 65, 1743.CrossRefGoogle Scholar
Weiss, G. (1989c). The representation of regular linear systems on Hilbert spaces. In Control and Optimization of Distributed Parameter Systems, volume 91 of International Series of Numerical Mathematics, pp. 401416, Basel Boston Berlin: BirkhäuserVerlag.Google Scholar
Weiss, G. (1994a). Transfer functions of regular linear systems. Part I: characterizations of regularity. Trans. Amer. Math. Soc., 342, 827854.Google Scholar
Weiss, G. (2003). Optimal control of systems with a unitary semigroup and with colocated control and observation. Systems Control Lett., 48(3-4), 329340. https://doi.org/10.1016/S0167-6911(02)00276-1. Optimization and control of distributed systems.CrossRefGoogle Scholar
Weiss, G. and Rebarber, R. (2000). Optimizability and estimatability for infinitedimensional linear systems. SIAM J. Control Optim., 39, 12041232.CrossRefGoogle Scholar
Weiss, G. and Staffans, O. J. (2013). Maxwell’s equations as a scattering passive linear system. SIAM J. Control Optim., 51, 37223756.CrossRefGoogle Scholar
Weiss, G. and Tucsnak, M. (2003). How to get a conservative well-posed linear system out of thin air. I. Well-posedness and energy balance. ESAIM Control Optim. Calc. Var., 9, 247274. https://doi.org/10.1051/cocv:2003012.CrossRefGoogle Scholar
Weiss, G. and Zwart, H. (1998). An example in linear quadratic optimal control. Systems Control Lett., 33, 339349.CrossRefGoogle Scholar
Weiss, M. (1994). Riccati equations in Hilbert space: A Popov function approach. Doctoral dissertation, Rijksuniversiteit Gronigen.Google Scholar
Weiss, M. (1997). Riccati equation theory for Pritchard–Salamon systems: A Popov function approach. IMA J. Math. Control Inform., 14, 137.CrossRefGoogle Scholar
Weiss, M. and Weiss, G. (1995). The spectral factorization approach to the LQ problem for regular linear systems. In Proceedings of the 3rd European Control Conference, vol. 3, pp. 22472250, Rome, Italy, September.Google Scholar
Weiss, M. and Weiss, G. (1997). Optimal control of stable weakly regular linear systems. Math. Control Signals Systems, 10, 287330.CrossRefGoogle Scholar
Willems, J. C. (1972a). Dissipative dynamical systems Part I: General theory. Arch. Rational Mech. Anal., 45, 321351.CrossRefGoogle Scholar
Willems, J. C. (1972b). Dissipative dynamical systems Part II: Linear systems with quadratic supply rates. Arch. Rational Mech. Anal., 45, 352393.CrossRefGoogle Scholar
Willems, J. C. (1983). Input-output and state-space representations of finite-dimensional linear time-invariant systems. Linear Algebra Appl., 50, 581608. https://doi.org/ 10.1016/0024-3795(83)90070-8.CrossRefGoogle Scholar
Willems, J. C. (1991). Paradigms and puzzles in the theory of dynamical systems. IEEE Trans. Automat. Control, 36(3), 259294. https://doi.org/10.1109/9.73561.CrossRefGoogle Scholar
Willems, J. C. (2007). The behavioral approach to open and interconnected systems: modeling by tearing, zooming, and linking. IEEE Control Syst. Mag., 27(6), 4699. https://doi.org/10.1109/MCS.2007.906923.CrossRefGoogle Scholar
Willems, J. C. and Trentelman, H. L. (1998). On quadratic differential forms. SIAM J. Control Optim., 36(5), 17031749 (electronic).CrossRefGoogle Scholar
Willems, J. C. and Trentelman, H. L. (2002). Synthesis of dissipative systems using quadratic differential forms: Parts I–II. IEEE Trans. Autom. Control, 47, 5369, 7086.CrossRefGoogle Scholar
Willems, J. C. and Yamamoto, Y. (2007). Behaviors defined by rational functions. Linear Algebra Appl., 425(2-3), 226241. https://doi.org/10.1016/j.laa.2006.12.020.CrossRefGoogle Scholar
Wohlers, M. R. (1969). Lumped and Distributed Passive Networks. New York and London: Academic Press.Google Scholar
Wu, Y., Hamroun, B., Le Gorrec, Y., and Maschke, B. (2018). Reduced order LQG control design for port Hamiltonian systems. Automatica J. IFAC, 95, 8692. https://doi.org/10.1016/j.automatica.2018.05.003.CrossRefGoogle Scholar
Yosida, K. (1974). Functional Analysys. Berlin Heidelberg New York: Springer-Verlag.CrossRefGoogle Scholar
Zwart, H. (1996). Linear quadratic optimal control for abstract linear systems. In Modelling and Optimization of Distributed Parameter Systems with Applications to Engineering, pp. 175182, New York: Chapman & Hall.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×