Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-18T17:37:02.312Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  31 August 2021

Vadim Gorin
Affiliation:
University of Wisconsin, Madison
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, M., Johansson, K., and van Moerbeke, P. (2018a). Lozenge tilings of hexagons with cuts and asymptotic fluctuations: a new universality class. Mathematical Physics, Analysis and Geometry, 21, 153. arXiv:1706.01055.Google Scholar
Adler, M., Johansson, K., and van Moerbeke, P. (2018b). Tilings of nonconvex polygons, skew-Young tableaux and determinantal processes. Communications in Mathematical Physics, 364, 287342. arXiv:1609.06995.Google Scholar
Affolter, N. C. (2018). Miquel dynamics, Clifford lattices and the dimer model [Preprint]. arXiv:1808.04227.Google Scholar
Aggarwal, A. (2015). Correlation functions of the Schur process through Macdonald difference operators. Journal of Combinatorial Theory, Series A, 131, 88118. arXiv:1401.6979.Google Scholar
Aggarwal, A. (2019). Universality for lozenge tilings local statistics [Preprint]. arXiv:1907.09991.Google Scholar
Aggarwal, A., and Gorin, V. (2021). Gaussian Unitary Ensemble in random lozenge tilings [Preprint]. arXiv:2106.07589.Google Scholar
Ahn, A. (2018). Global universality of Macdonald plane partitions. Annales Institut Henri Poincaré Probability and Statistics, 56(3), 16411705. arXiv:1809.02698.Google Scholar
Aissen, M., Schoenberg, I. J., and Whitney, A. (1952). On the generating functions of totally positive sequences I. Journal d’Analyse Mathématique, 2, 93103.Google Scholar
Akemann, G., Baik, J., and Di Francesco, P., eds. (2011). The Oxford Handbook of Random Matrix Theory. Oxford University Press.Google Scholar
Anderson, G. W., Guionnet, A., and Zeitouni, O. (2010). An Introduction to Random Matrices. Cambridge University Press.Google Scholar
Ardila, F., and Stanley, R. P. (2010). Tilings. The Mathematical Intelligencer, 32, 3243. arXiv:math/0501170.Google Scholar
Astala, E. K., Duse, E., Prause, I., and Zhong, X. (2020). Dimer models and conformal structures [Preprint]. arXiv:2004.02599.Google Scholar
Azuma, K. (1967). Weighted sums of certain dependent random variables. Tohoku Mathematical Journal, Second Series, 19 (3), 357367.Google Scholar
Baik, J., Deift, P., and Suidan, T. (2016). Combinatorics and Random Matrix Theory. Graduate Studies in Mathematics, vol. 172. American Mathematical Society.Google Scholar
Baik, J., Kriecherbauer, T., McLaughlin, K. T. R., and Miller, P. D. (2003). Uniform asymptotics for polynomials orthogonal with respect to a general class of discrete weights and universality results for associated ensembles. International Mathematics Research Notices, 15. arXiv:math/0310278.Google Scholar
Baryshnikov, Y. (2001). GUEs and queues. Probability Theory and Related Fields, 119(2), 256274.Google Scholar
Basok, M., and Chelkak, D. (2018). Tau-functions à la Dubédat and probabilities of cylindrical events for double-dimers and CLE(4) [to appear in Journal of European Mathematical Society]. arXiv:1809.00690.Google Scholar
Baxter, R. (2007). Exactly Solved Models in Statistical Mechanics. Dover.Google Scholar
Beffara, V., Chhita, S., and Johansson, K. (2020). Local geometry of the rough-smooth interface in the two-periodic Aztec diamond [Preprint]. arXiv:2004.14068.Google Scholar
Berestycki, N., Laslier, B., and Ray, G. (2019). The dimer model on Riemann surfaces, I [Preprint]. arXiv:1908.00832.Google Scholar
Berestycki, N., Laslier, B., and Ray, G. (2020). Dimers and imaginary geometry. Annals of Probability, 48(1), 152. arXiv:1603.09740.Google Scholar
Berggren, T., and Duits, M. (2019). Correlation functions for determinantal processes defined by infinite block Toeplitz minors. Advances in Mathematics, 356(2019), paper 106766. arXiv:1901.10877.Google Scholar
Betea, D., Boutillier, C., Bouttier, J., Chapuy, G., Corteel, S., and Vuletić, M. (2018). Perfect sampling algorithm for Schur processes. Markov Processes and Related Fields, 24, 381418. arXiv:1407.3764Google Scholar
Blöte, H. W. J., and Hilhorst, H. J. (1982). Roughening transitions and the zero- temperature triangular Ising antiferromagnet. Journal of Physics A: Mathematical and General, 15, 631637.Google Scholar
Bodineau, T., Schonmann, R. H., and Shlosman, S. (2005). 3D crystal: how flat its flat facets are? Communications in Mathematical Physics, 255, 747766. arXiv:math- ph/0401010.Google Scholar
Bodini, O., Fusy, E., and Pivoteau, C. (2010). Random sampling of plane partitions. Combinatorics, Probability and Computing, 19(2), 201226. arXiv:0712.0111.Google Scholar
Borodin, A. (2011a). Determinantal point processes. In Akermann, G., Baik, J., Di Franceco, P., eds., Oxford Handbook of Random Matrix Theory. Oxford University Press.Google Scholar
Borodin, A. (2011b). Schur dynamics of the Schur processes. Advances in Mathematics, 228(4), 22682291. arXiv:1001.3442.Google Scholar
Borodin, A., and Corwin, I. (2014). Macdonald processes. Probability Theory and Related Fields, 158(1–2), 225400. arXiv:1111.4408.Google Scholar
Borodin, A., Corwin, I., Gorin, V., and Shakirov, S. (2016). Observables of Macdonald processes. Transactions of American Mathematical Society, 368, 15171558. arxiv:1306.0659.Google Scholar
Borodin, A., and Ferrari, P. (2014). Anisotropic growth of random surfaces in 2 + 1 dimensions. Communications in Mathematical Physics, 325(2), 603684. arXiv:0804.3035.Google Scholar
Borodin, A., and Gorin, V. (2009). Shuffling algorithm for boxed plane partitions. Advances in Mathematics, 220(6), 17391770. arXiv:0804.3071.Google Scholar
Borodin, A., and Gorin, V. (2015). General beta Jacobi corners process and the Gaussian free field, Communications on Pure and Applied Mathematics, 68(10), 17741844. arXiv:1305.3627.Google Scholar
Borodin, A., and Gorin, V. (2016). Lectures on integrable probability. In Sidoravicius, V. and Smirnov, S., eds., Probability and Statistical Physics in St. Petersburg, Proceedings of Symposia in Pure Mathematics, vol. 91. American Mathematical Society. arXiv:1212.3351.Google Scholar
Borodin, A., Gorin, V., and Guionnet, A. (2017). Gaussian asymptotics of discrete β-ensembles. Publications mathématiques de l’IHÉS, 125(1), 178. arXiv:1505.03760Google Scholar
Borodin, A., Gorin, V., and Rains, E. M. (2010). q-Distributions on boxed plane partitions. Selecta Mathematica, 16(4), 731789. arXiv:0905.0679Google Scholar
Borodin, A., and Kuan, J. (2008). Asymptotics of Plancherel measures for the infinite-dimensional unitary group. Advances in Mathematics, 219(3), 894931. arXiv:0712.1848Google Scholar
Borodin, A., and Kuan, J. (2010). Random surface growth with a wall and Plancherel measures for O(infinity). Communications on Pure and Applied Mathematics, 63(7), 831894. arXiv:0904.2607Google Scholar
Borodin, A., and Olshanski, G. (2012). The boundary of the Gelfand–Tsetlin graph: a new approach. Advances in Mathematics, 230, 17381779; arXiv:1109.1412.Google Scholar
Borodin, A., and Olshanski, G. (2013). The Young bouquet and its boundary. Moscow Mathematical Journal, 13(2), 193232. arXiv:1110.4458.Google Scholar
Borodin, A., and Olshanski, G. (2016). Representations of the Infinite Symmetric Group. Cambridge University Press.Google Scholar
Borodin, A., and Petrov, L. (2014). Integrable probability: from representation theory to Macdonald processes. Probability Surveys, 11, 158. arXiv:1310.8007.Google Scholar
Borodin, A., and Petrov, L. (2017). Lectures on integrable probability: stochastic vertex models and symmetric functions. In Schehr, G., Altland, A., Fyodorov, Y. V., O’Connell, N., and Cugliandolo, L. F., eds., Stochastic Processes and Random Matrices: Lecture Notes of the Les Houches Summer School, July 2015, vol. 104. Oxford University Press. arXiv:1605.01349.Google Scholar
Borodin, A., and Shlosman, S. (2010). Gibbs ensembles of nonintersecting paths. Communications in Mathematical Physics, 293, 145170. arXiv:0804.0564.Google Scholar
Borodin, A., and Toninelli, F. (2018). Two-dimensional anisotropic KPZ growth and limit shapes. Journal of Statistical Mechanics, (2018), 083205. arXiv:1806.10467.Google Scholar
Borot, G., and Guionnet, A. (2013). Asymptotic expansion of β matrix models in the one- cut regime. Communications in Mathematical Physics, 317, 447. arXiv:1107.1167.Google Scholar
Boutillier, C., and De Tilière, B. (2009). Loop statistics in the toroidal honeycomb dimer model. The Annals of Probability, 37(5), 17471777. arXiv:math/0608600.Google Scholar
Breuer, J., and Duits, M. (2017). Central limit theorems for biorthogonal ensembles and asymptotics of recurrence coefficients. Journal of the American Mathematical Society, 30, 2766. arXiv:1309.6224.Google Scholar
Brézin, E., and Hikami, S. (1996). Correlations of nearby levels induced by a random potential. Nuclear Physics B, 479(3), 697706. arXiv:cond-mat/9605046Google Scholar
Brézin, E., and Hikami, S. (1997). Spectral form factor in a random matrix theory. Physical Review E, 55(4), 4067. arXiv:cond-mat/9608116.Google Scholar
Bufetov, A., and Gorin, V. (2015). Representations of classical Lie groups and quantized free convolution. Geometric and Functional Analysis (GAFA), 25(3), 763814. arXiv:1311.5780.Google Scholar
Bufetov, A., and Gorin, V. (2018). Fluctuations of particle systems determined by Schur generating functions. Advances in Mathematics, 338(7), 702781. arXiv:1604.01110.Google Scholar
Bufetov, A., and Gorin, V. (2019). Fourier transform on high-dimensional unitary groups with applications to random tilings. Duke Mathematical Journal, 168(13), 25592649. arXiv:1712.09925.Google Scholar
Bufetov, A., and Knizel, A. (2018). Asymptotics of random domino tilings of rectangular Aztec diamonds. Annales Institut Henri Poincaré: Probability and Statistics, 54(3), 12501290. arXiv:1604.01491.Google Scholar
Bykhovskaya, A., and Gorin, V. (2020). Cointegration in large VARs [Preprint]. arXiv:2006.14179.Google Scholar
Caputo, P., Martinelli, F., and Toninelli, F. L. (2012). Mixing times of monotone surfaces and SOS interfaces: a mean curvature approach. Communications in Mathematical Physics, 311, 157189. arXiv:1101.4190.Google Scholar
Cerf, R., and Kenyon, R. (2001). The low-temperature expansion of the Wulff crystal in the 3D Ising model. Communications in Mathematical Physics, 222(1), 147179.Google Scholar
Charlier, C. (2020). Doubly periodic lozenge tilings of a hexagon and matrix valued orthogonal polynomials. Studies in Applied Mathematics, 146(1), 380. arXiv:2001.11095.Google Scholar
Charlier, C., Duits, M., Kuijlaars, A. B. J., and Lenells, J. (2020). A periodic hexagon tiling model and non-Hermitian orthogonal polynomials. Communications in Mathematical Physics, 378, 401466. arXiv:1907.02460.Google Scholar
Chelkak, D., Laslier, B., and Russkikh, M. (2020). Dimer model and holomorphic functions on t-embeddings of planar graphs [Preprint]. arXiv:2001.11871.Google Scholar
Chelkak, D., and Ramassamy, S. (2020). Fluctuations in the Aztec diamonds via a Lorentz-minimal surface [Preprint]. arXiv:2002.07540.Google Scholar
Chhita, S., and Johansson, K. (2016). Domino statistics of the two-periodic Aztec diamond. Advances in Mathematics, 294, 37149. arXiv:1410.2385.Google Scholar
Chhita, S., and Young, B. (2014). Coupling functions for domino tilings of Aztec diamonds. Advances in Mathematics, 259, 173251. arXiv:1302.0615.Google Scholar
Cimasoni, D., and Reshetikhin, N. (2007). Dimers on surface graphs and spin structures. I. Communications in Mathematical Physics, 275, 187208. arXiv:math- ph/0608070.Google Scholar
Ciucu, M. (1997). Enumeration of perfect matchings in graphs with reflective symmetry. Journal of Combinatorial Theory, Series A, 77(1), 6797.Google Scholar
Ciucu, M. (2008). Dimer packings with gaps and electrostatics. Proceedings of the National Academy of Sciences of the United States of America, 105(8), 27662772.Google Scholar
Ciucu, M. (2015). A generalization of Kuo condensation. Journal of Combinatorial Theory, Series A, 134, 221241. arXiv:1404.5003.Google Scholar
Ciucu, M. (2018). Symmetries of shamrocks, Part I. Journal of Combinatorial Theory, Series A, 155, 376397.Google Scholar
Ciucu, M., and Fischer, I. (2015). Proof of two conjectures of Ciucu and Krattenthaler on the enumeration of lozenge tilings of hexagons with cut off corners. Journal of Combinatorial Theory, Series A, 133, 228250. arXiv:1309.4640.Google Scholar
Ciucu, M., and Krattenthaler, C. (2002). Enumeration of lozenge tilings of hexagons with cut-off corners. Journal of Combinatorial Theory, Series A, 100(2), 201231. arXiv:math/0104058.Google Scholar
Cohn, H., Elkies, N., and Propp, J. (1996). Local statistics for random domino tilings of the Aztec diamond. Duke Mathematical Journal, 85, 117166.Google Scholar
Cohn, H., Larsen, M., and Propp, J. (1998). The shape of a typical boxed plane partition. New York Journal of Mathematics, 4, 137165. arXiv:math/9801059.Google Scholar
Cohn, J., Kenyon, R., and Propp, J. (2001). A variational principle for domino tilings. Journal of the American Mathematical Society, 14 (2), 297346. arXiv:math/0008220.Google Scholar
Colbourn, C. J., Myrvold, W. J., and Neufeld, E. (1996). Two algorithms for unranking arborescences. Journal of Algorithms, 20, 268281.Google Scholar
Corwin, I. (2012). The Kardar–Parisi–Zhang equation and universality class. Random Matrices: Theory and Applications, 1(1). arXiv:1106.1596.Google Scholar
Corwin, I., and Hammond, A. (2014). Brownian Gibbs property for Airy line ensembles. Inventiones Mathematicae, 195(2), 441508. arXiv:1108.2291.Google Scholar
Corwin, I., and Sun, X. (2014). Ergodicity of the Airy line ensemble. Electronic Communications in Probability, 19, article 49. arXiv:1405.0464.Google Scholar
Daley, D. J., and Vere-Jones, D. (2003). An Introduction to the Theory of Point Processes, vol. 1, 2nd ed. Springer.Google Scholar
De Silva, D., and Savin, O. (2010). Minimizers of convex functionals arising in random surfaces. Duke Mathematical Journal, 151(3), 487532. arXiv:0809.3816.Google Scholar
Deift, P. (2000). Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach. American Mathematical Society.Google Scholar
Destainville, N., Mosseri, R., and Bailly, F. (1997). Configurational entropy of co- dimension one tilings and directed membranes. Journal of Statistical Physics, 87, 697754.Google Scholar
Dimitrov, E. (2020). Six-vertex models and the GUE-corners process. International Mathematics Research Notices, 6, 17941881. arXiv:1610.06893.Google Scholar
Dubedat, J. (2009). SLE and the free field: partition functions and couplings. Journal of the American Mathematical Society, 22(4), 9951054. arXiv:0712.3018.Google Scholar
Dubedat, J. (2015). Dimers and families of Cauchy Riemann operators I. Journal of the American Mathematical Society, 28(4), 10631167. arXiv:1110.2808.Google Scholar
Dubedat, J. (2019). Double dimers, conformal loop ensembles and isomonodromic deformations. Journal of the European Mathematical Society, 21(1), 154. arXiv:1403.6076.Google Scholar
Dubedat, J., and Gheissari, R. (2015). Asymptotics of height change on toroidal Temperleyan dimer models. Journal of Statistical Physics, 159(1), 75100. arXiv:1407.6227.Google Scholar
Duits, M. (2018). On global fluctuations for non-colliding processes. Annals of Probability, 46(3), 12791350. arXiv:1510.08248.Google Scholar
Duits, M., and Kuijlaars, A. B. J. (2019). The two periodic Aztec diamond and matrix orthogonal polynomials [to appear in Journal of European Mathematical Society]. arXiv:1712.05636.Google Scholar
Duse, E., and Metcalfe, A. (2015). Asymptotic geometry of discrete interlaced patterns: Part I. International Journal of Mathematics, 26(11), 1550093. arXiv:1412.6653.Google Scholar
Duse, E., and Metcalfe, A. (2018). Universal edge fluctuations of discrete interlaced particle systems. Annales Mathématiques Blaise Pascal, 25(1), 75197. arXiv:1701.08535.Google Scholar
Duse, K. E., Johansson, K., and Metcalfe, A. (2016). The Cusp–Airy process. Electronic Journal of Probability, 21, article 57. arXiv:1510.02057.Google Scholar
Edrei, A. (1953). On the generating function of a doubly infinite, totally positive sequence. Transactions of American Mathematical Society, 74, 367383.Google Scholar
Elkies, N., Kuperberg, G., Larsen, M., and Propp, J. (1992). Alternating-sign matrices and domino tilings. Journal of Algebraic Combinatorics, 1(2), 111132. arXiv:math/9201305.Google Scholar
Erdos, L., and Yau, H-T. (2017). A Dynamical Approach to Random Matrix Theory. Vol. 28 of Courant Lecture Notes in Mathematics. Courant Institute of Mathematical Sciences, New York; and American Mathematical Society.Google Scholar
Eynard, B., and Mehta, M. L. (1998). Matrices coupled in a chain. I. Eigenvalue correlations. Journal of Physics A: Mathematical and General, 31, 44494456. arXiv:cond-mat/9710230.Google Scholar
Ferrari, P. L., and Spohn, H. (2003). Step fluctuations for a faceted crystal. Journal of Statistical Physics, 113, 146. arXiv:cond-mat/0212456.Google Scholar
Forrester, P. J. (2010). Log-Gases and Random Matrices. Princeton University Press.Google Scholar
Gelfand, I. M., and Naimark, M. A. (1950). Unitary representations of the classical groups. Trudy Matematicheskogo Instituta imeni V. A. Steklova, 36, 3288.Google Scholar
Gelfand, I. M., and Tsetlin, M. L. (1950). Finite-dimensional representations of the group of unimodular matrices. Proceedings of the USSR Academy of Sciences, 71, 825828.Google Scholar
Gessel, I., and Viennot, G. (1985). Binomial determinants, paths, and hook length formulae. Advances in Mathematics, 58(3), 300321.Google Scholar
Gilmore, T. (2017). Holey matrimony: marrying two approaches to a tiling problem. Séminaire Lotharingien de Combinatoire, 78B, article 26.Google Scholar
Golomb, S. W. (1995). Polyominoes: Puzzles, Patterns, Problems, and Packings, 2nd ed. Princeton University Press.Google Scholar
Goncharov, A. B., and Kenyon, R. (2013). Dimers and cluster integrable systems. Annales scientifiques de l’École Normale Supérieure, 46(5), 747813. arXiv:1107.5588.Google Scholar
Gorin, V. (2008). Non-intersecting paths and Hahn orthogonal polynomial ensemble. Functional Analysis and Its Applications, 42(3), 180197. arXiv: 0708.2349.Google Scholar
Gorin, V. (2012). The q-Gelfand-Tsetlin graph, Gibbs measures and q-Toeplitz matrices. Advances in Mathematics, 229(1), 201266. arXiv:1011.1769.Google Scholar
Gorin, V. (2014). From alternating sign matrices to the Gaussian unitary ensemble. Communications in Mathematical Physics, 332(1), 437447, arXiv:1306.6347.Google Scholar
Gorin, V. (2017). Bulk universality for random lozenge tilings near straight boundaries and for tensor products. Communications in Mathematical Physics, 354(1), 317344. arXiv:1603.02707.Google Scholar
Gorin, V., and Olshanski, G. (2016). A quantization of the harmonic analysis on the infinite-dimensional unitary group. Journal of Functional Analysis, 270(1), 375418. arXiv:1504.06832.Google Scholar
Gorin, V., and Panova, G. (2015). Asymptotics of symmetric polynomials with applications to statistical mechanics and representation theory. Annals of Probability, 43(6), 30523132. arXiv:1301.0634.Google Scholar
Gorin, V., and Zhang, L. (2018). Interlacing adjacent levels of β-Jacobi corners processes. Probability Theory and Related Fields, 172(3–4), 915981. arXiv:1612.02321.Google Scholar
Grünbaum, B., and Shephard, G. (2016). Tilings and Patterns, 2nd ed. Dover Books on Mathematics.Google Scholar
Guionnet, A. (2004). First order asymptotics of matrix integrals; a rigorous approach towards the understanding of matrix models. Communications in Mathematical Physics, 244, 527569. arXiv:math/0211131.Google Scholar
Guionnet, A. (2019). Asymptotics of Random Matrices and Related Models: The Uses of Dyson–Schwinger Equations (CBMS Regional Conference Series in Mathematics). American Mathematical Society.Google Scholar
Höffe, M. (1997). Zufallsparkettierungen und Dimermodelle. Unpublished Ph.D. thesis, Institut für Theoretische Physik der Eberhard-Karls-Universität, Tübingen.Google Scholar
Hu, X., Miller, L., and Peres, Y. (2010). Thick points of the Gaussian free field. Annals of Probability, 38(2), 896926. arXiv:0902.3842.Google Scholar
Izergin, A. G. (1987). Partition function of the six-vertex model in a finite volume. Soviet Physics Doklady, 32, 878879.Google Scholar
Jerrum, M. R., Valiant, L. G., and Vazirani, V. V. (1986). Random generation of combinatorial structures from a uniform distribution. Theoretical Computer Science, 43, 169188.Google Scholar
Jockusch, W., Propp, J., and Shor, P. (1995). Random domino tilings and the arctic circle theorem [Preprint]. arXiv:math/9801068.Google Scholar
Johansson, K. (1998). On fluctuations of eigenvalues of random Hermitian matrices. Duke Mathematical Journal, 91(1), 151204.Google Scholar
Johansson, K. (2000). Shape fluctuations and random matrices. Communications in Mathematical Physics, 209, 437476. arXiv:math/9903134.Google Scholar
Johansson, K. (2002). Non-intersecting paths, random tilings and random matrices. Probability Theory and Related Fields, 123, 225280. arXiv:math/0011250.Google Scholar
Johansson, K. (2005). The arctic circle boundary and the Airy process. Annals of Probability, 33, 130. arXiv:math/0306216.Google Scholar
Johansson, K. (2006). Random matrices and determinantal processes. In Bovier, A., Dunlop, F., Van Enter, A., Den Hollander, F., and Dalibard, J., eds., Mathematical Statistical Physics. Elsevier. arXiv:math-ph/0510038.Google Scholar
Johansson, K. (2016). Edge fluctuations of limit shapes. Current Developments in Mathematics 2016. 2016, 47110. arXiv:1704.06035.Google Scholar
Johansson, K., and Nordenstam, E. (2006). Eigenvalues of GUE minors, Electronic Journal of Probabilityxsxs, 11, paper no. 50, 13421371.Google Scholar
Johnstone, I. (2008). Multivariate analysis and Jacobi ensembles: largest eigenvalue, Tracy–Widom limits and rates of convergence. Annals of Statistics, 36(6), 26382716. arXiv:0803.3408.Google Scholar
Karlin, S., and McGregor, J. (1959a). Coincidence probabilities. Pacific Journal of Mathematics, 9(4), 11411164.Google Scholar
Karlin, S., and McGregor, J. (1959b). Coincidence properties of birth and death processes. Pacific Journal of Mathematics, 9(4), 11091140.Google Scholar
Kasteleyn, P. W. (1961). The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice. Physica, 27(12), 12091225.Google Scholar
Kasteleyn, P. W. (1963). Dimer statistics and phase transitions. Journal of Mathematical Physics, 4(2), 287293.Google Scholar
Kasteleyn, P. W. (1967). Graph theory and crystal physics. In Harary, F., ed., Graph Theory and Theoretical Physics. Academic Press.Google Scholar
Kenyon, R. (1997). Local statistics of lattice dimers. Annales de l’Institut Henri Poincaré, Probability and Statistics, 33, 591618. arXiv:math/0105054.Google Scholar
Kenyon, R. (2000). Conformal invariance of domino tiling. Annals of Probability, 28, 759795. arXiv:math-ph/9910002.Google Scholar
Kenyon, R. (2001). Dominoes and the Gaussian free field. Annals of Probability, 29, 11281137. arXiv:math-ph/0002027.Google Scholar
Kenyon, R. (2008). Height fluctuations in the honeycomb dimer model. Communications in Mathematical Physics, 281, 675709. arXiv:math-ph/0405052.Google Scholar
Kenyon, R. (2009). Lectures on dimers. In Statistical Mechanics, IAS/Park City Mathematics Series, vol. 16. American Mathematical Society, 191230. arXiv:0910.3129.Google Scholar
Kenyon, R. (2014). Conformal invariance of loops in the double-dimer model. Communications in Mathematical Physics, 326, 477497. arXiv:1105.4158.Google Scholar
Kenyon, R., Lam, W. J., Ramassamy, S., and Russkikh, M. (2018). Dimers and circle packings [Preprint]. arXiv:1810.05616.Google Scholar
Kenyon, R., and Okounkov, A. (2006). Planar dimers and Harnack curves. Duke Mathematical Journal, 131(3), 499524. arXiv:math/0311062.Google Scholar
Kenyon, R., and Okounkov, A. (2007). Limit shapes and the complex Burgers equation. Acta Mathematica, 199(2), 263302. arXiv:math-ph/0507007.Google Scholar
Kenyon, R., Okounkov, A., and Sheffield, S. (2006). Dimers and amoebae. Annals of Mathematics, 163, 10191056. arXiv:math-ph/0311005.Google Scholar
Kenyon, R., Sun, N., and Wilson, D. B. (2016). On the asymptotics of dimers on tori. Probability Theory and Related Fields, 166, 9711023. arXiv:1310.2603.Google Scholar
Kerov, S. (2003). Asymptotic Representation Theory of the Symmetric Group and Its Applications in Analysis. American Math Society.Google Scholar
Koekoek, R., Lesky, P. A., and Swarttouw, R. F. (2010). Hypergeometric Orthogonal Polynomials and Their q-Analogues. Springer Verlag.Google Scholar
König, W. (2005). Orthogonal polynomial ensembles in probability theory. Probability Surveys, 2, 385447. arXiv:math/0403090.Google Scholar
Korepin, V. E. (1982). Calculation of norms of Bethe wave functions. Communications in Mathematical Physics, 86, 391418.Google Scholar
Krattenthaler, C. (1990). Generating functions for plane partitions of a given shape. Manuscripta Mathematica, 69(1), 173201.Google Scholar
Krattenthaler, C. (1999a). Advanced determinant calculus. In Foata, D. and Han, G. N., eds., The Andrews Festschrift. Springer. arXiv:math/9902004.Google Scholar
Krattenthaler, C. (1999b). Another involution principle-free bijective proof of Stanley’s hook-content formula. Journal of Combinatorial Theory: Series A, 88(1), 6692. arXiv:math/9807068.Google Scholar
Krattenthaler, C. (2002). A (conjectural) 1/3–phenomenon for the number of rhombus tilings of a hexagon which contain a fixed rhombus. In Agarwal, A. K., Berndt, B. C., Krattenthaler, C. F., Mullen, G. L., Ramachandra, K., and Waldschmidt, M., eds., Number Theory and Discrete Mathematics, Trends in Mathematics. Birkhäuser. arXiv:math/0101009.Google Scholar
Krattenthaler, C. (2016). Plane partitions in the work of Richard Stanley and his school. In Hersh, P., Lam, T., Pylyavskyy, P., and Reiner, V., eds., The Mathematical Legacy of Richard P. Stanley. American Math Society. arXiv:1503.05934.Google Scholar
Kuijlaars, A. B. J. (2011). Universality. In Akemann, G J. Baik, , and Di Francesco, P., eds., The Oxford Handbook of Random Matrix Theory. Oxford University Press.Google Scholar
Lai, T. (2017). A q-enumeration of lozenge tilings of a hexagon with three dents. Advances in Applied Mathematics, 82, 2357. arXiv:1502.05780.Google Scholar
Laslier, B., F. L. and Toninelli, F. L. (2015). Lozenge tilings, Glauber dynamics and macroscopic shape. Communications in Mathematical Physics, 338(3), 12871326. arXiv:1310.5844.Google Scholar
Levin, D. A., Peres, Y., and Wilmer, E. L. (2017). Markov Chains and Mixing Times, 2nd ed. American Math Society.Google Scholar
Lindström, B. (1973). On the vector representations of induced matroids. Bulletin of the London Mathematical Society, 5(1), 8590.Google Scholar
Lubinsky, D. S. (2016). An update on local universality limits for correlation functions generated by unitary ensembles. SIGMA (Symmetry, Integrability and Geometry: Methods and Applications), 12, Article 078. arXiv:1604.03133.Google Scholar
Luby, M., Randall, D., and Sinclair, S. (1995). Markov chain algorithms for planar lattice structures. In 36th Annual Symposium on Foundations of Computer Science. IEEE COmputer Society.Google Scholar
Macdonald, I. G. (1995). Symmetric Functions and Hall Polynomials, 2nd ed. Oxford University Press.Google Scholar
MacMahon, P. A. (1896). Memoir on the theory of the partition of numbers. Part I. Philosophical Transactions of the Royal Society of London, Series A, 187, 619673.Google Scholar
MacMahon, P. A. (1960). Combinatory Analysis, vol. 1–2. Chelsea.Google Scholar
Matytsin, A. (1994). On the large N limit of the Itzykson–Zuber integral. Nuclear Physics B, 411(2–3), 805820. arXiv:hep-th/9306077.Google Scholar
McCoy, B. M., and Wu, T. T. (1973). The Two-Dimensional Ising Model. Harvard University Press.Google Scholar
Mehta, M. L. (2004). Random Matrices, 3rd ed. Elsevier/Academic Press.Google Scholar
Metcalfe, A. (2013). Universality properties of Gelfand–Tsetlin patterns. Probability Theory and Related Fields, 155(1–2), 303346. arXiv:1105.1272.Google Scholar
Mkrtchyan, S. (2019). Turning point processes in plane partitions with periodic weights of arbitrary period [Preprint]. arXiv:1908.01246.Google Scholar
Montroll, E. W., Potts, R. B., and Ward, J. C. (1963). Correlations and spontaneous magnetization of the two-dimensional Ising model. Journal of Mathematical Physics, 4, 308322.Google Scholar
Morales, A. H., Pak, I., and Panova, G. (2019). Hook formulas for skew shapes III. Multivariate and product formulas. Algebraic Combinatorics, 2(5), 815861. arXiv:1707.00931.Google Scholar
Nekrasov, N. (2016). BPS/CFT correspondence: non-perturbative Dyson–Schwinger equations and qq-characters. Journal of High Energy Physics, 2016(181), arXiv:1512.05388.Google Scholar
Neretin, Y. A. (2003). Rayleigh triangles and non-matrix interpolation of matrix beta integrals. Sbornik: Mathematics, 194(4), 515540. arXiv:math/0301070.Google Scholar
Nica, A., and Speicher, R. (2006). Lectures on the Combinatorics of Free Probability. Cambridge University Press.Google Scholar
Nienhuis, B., Hilhorst, H. J., and Blöte, H. W. J. (1984). Triangular SOS models and cubic-crystal shapes. Journal of Physics A: Mathematical and General, 17, 35592581.Google Scholar
Nordenstam, E. (2009). Interlaced particles in tilings and random matrices. Unpublished Ph.D. thesis, KTH Royal Institute of Technology.Google Scholar
Nordenstam, E., and Young, B. (2011). Domino shuffling on Novak half-hexagons and Aztec half-diamonds. Electronic Journal of Combinatorics, 18, article P181. arXiv:1103.5054.Google Scholar
Okounkov, A., and Reshetikhin, N. (2003). Correlation function of Schur processes with application to local geometry of a random 3-dimensional Young diagram. Journal of the American Mathematical Society, 16 (3), 581603. arXiv:math/0107056.Google Scholar
Okounkov, A., and Reshetikhin, N. (2006). The birth of a random matrix. Moscow Mathematical Journal, 6(3), 553566.Google Scholar
Okounkov, A., and Reshetikhin, N. (2007). Random skew plane partitions and the Pearcey process. Communications in Mathematical Physics, 269(3), 571–609. arXiv:math/0503508v2.Google Scholar
Olshanski, G., and Vershik, A. (1996). Ergodic unitarily invariant measures on the space of infinite Hermitian matrices. In Dobrushin, R. L., Minlos, R. A., Shubin, M. A., and Vershik, A. M., eds., Contemporary Mathematical Physics. F. A. Berezin’s Memorial Volume, series 2, vol. 17. American Mathematical Society. arXiv:math/9601215.Google Scholar
Pak, I., Sheffer, A., and Tassy, M. (2016). Fast domino tileability. Discrete & Computational Geometry, 56(2), 377394. arXiv:1507.00770.Google Scholar
Petrov, L. (2014a). Asymptotics of random lozenge tilings via Gelfand–Tsetlin schemes. Probability Theory and Related Fields, 160(3–4), 429487. arXiv:1202.3901.Google Scholar
Petrov, L. (2014b). The boundary of the Gelfand–Tsetlin graph: new proof of Borodin– Olshanski’s formula, and its q-Analogue. Moscow Mathematical Journal, 14, 121160. arXiv:1208.3443.Google Scholar
Petrov, L. (2015). Asymptotics of uniformly random lozenge tilings of polygons. Gaussian free field. Annals of Probability, 43(1), 143. arXiv:1206.5123.Google Scholar
Pickrell, D. (1991). Mackey analysis of infinite classical motion groups. Pacific Journal of Mathematics, 150, 139166.Google Scholar
Prähofer, M., and Spohn, H. (2002). Scale invariance of the PNG droplet and the Airy process. Journal of Statistical Physics, 108(5–6), 10711106. arXiv:math/0105240.Google Scholar
Prasolov, V. (1994). Problems and Theorems in Linear Algebra. Vol. 134 of Translations of Mathematical Monographs. American Mathematical Society.Google Scholar
Propp, J. (2003). Generalized domino-shuffling. Theoretical Computer Science, 303, 267301. arXiv:math/0111034.Google Scholar
Propp, J. (2015). Enumeration of Tilings. In Miklos, Bona, ed., Handbook of Enumerative Combinatorics (Discrete Mathematics and Its Applications). CRC Press.Google Scholar
Propp, J., and Wilson, D. (1996). Exact sampling with coupled Markov chains and applications to statistical mechanics. Random Structures and Algorithms, 9(1–2), 223252.Google Scholar
Purbhoo, K. (2008). Puzzles, tableaux, and mosaics. Journal of Algebraic Combinatorics, 28(4), 461480, arXiv:0705.1184.Google Scholar
Quastel, J., and Spohn, H. (2015). The one-dimensional KPZ equation and its universality class. Journal of Statistical Physics, 160(4), 965984. arXiv:1503.06185.Google Scholar
Randall, D., and Tetali, P. (2000). Analyzing Glauber dynamics by comparison of Markov chains. Journal of Mathematical Physics, 41, 1598.Google Scholar
Romik, D. (2015). The Surprising Mathematics of Longest Increasing Subsequences. Cambridge University Press.Google Scholar
Rosengren, H. (2016). Selberg integrals, Askey–Wilson polynomials and lozenge tilings of a hexagon with a triangular hole. Journal of Combinatorial Theory, Series A, 138, 2959 1503.00971Google Scholar
Russkikh, M. (2018). Dimers in piecewise Temperleyan domains. Communications in Mathematical Physics, 359(1), 189222. arXiv:1611.07884.Google Scholar
Russkikh, M. (2019). Dominoes in hedgehog domains. Annales de l’Institut Henir Poincare D, 8(1), 133. arXiv:1803.10012.Google Scholar
Sagan, B. E. (2001). The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, 2nd ed. Springer.Google Scholar
Sato, R. (2019). Inductive limits of compact quantum groups and their unitary representations [Preprint]. arXiv:1908.03988.Google Scholar
Sheffield, S. (2005). Random surfaces. AstÃľrisque, 304, 181. arXiv:math/0304049.Google Scholar
Sheffield, S. (2007). Gaussian free fields for mathematicians. Probability Theory and Related Fields, 139, 521541. arXiv:math/0312099.Google Scholar
Shiryaev, A. N. (2016). Probability 1, 3rd ed. Vol. 95 of Graduate Texts in Mathematics. Springer-Verlag.Google Scholar
Shlosman, S. (2001). Wulff construction in statistical mechanics and in combinatorics. Russian Mathematical Surveys, 56(4), 709738. arXiv:math-ph/0010039.Google Scholar
Tao, T., and Vu, V. (2012). Random matrices: the universality phenomenon for Wigner ensembles. In Proceedings of Symposia in Applied Mathematics, 2014(72). arXiv:1202.0068.Google Scholar
Temperley, H. N. V., and Fisher, M. E. (1961). Dimer problem in statistical mechanics— an exact result. Philosophical Magazine, 6(68), 10611063.Google Scholar
Thiant, N. (2003). An O (n log n)-algorithm for finding a domino tiling of a plane picture whose number of holes is bounded. Theoretical Computer Science, 303(2– 3), 353374.Google Scholar
Thurston, W. P. (1990). Conway’s tiling groups. The American Mathematical Monthly, 97(8), 757773.Google Scholar
Toninelli, F. L. (2019). Lecture notes on the dimer model. http://math.univ-lyon1.fr/homes-www/toninelli/noteDimeri_latest.pdf.Google Scholar
Vershik, A. (1997). Talk at the 1997 conference on Formal Power Series and Algebraic Combinatorics, Vienna.Google Scholar
Vershik, A. M., and Kerov, S. V. (1982). Characters and factor representations of the infinite unitary group. Soviet Mathematics Doklady, 26, 570574.Google Scholar
Voiculescu, D. (1976). Représentations factorielles de type I I1 de U ( ). Journal de Mathématiques Pures et Appliquées, 55, 120.Google Scholar
Voiculescu, D. (1991). Limit laws for random matrices and free products. Inventiones Mathematicae, 104, 201220.Google Scholar
Voiculescu, D., Dykema, K., and Nica, A. (1992). Free random variables. Vol. 1 of CRM Monograph Series l. American Mathematical Society.Google Scholar
Werner, W., and Powell, E. (2020). Lecture notes on the Gaussian Free Field [Preprint]. arXiv:2004.04720.Google Scholar
Weyl, H. (1939). The Classical Groups: Their Invariants and Representations. Princeton University Press.Google Scholar
Wilson, D. (1997). Determinant algorithms for random planar structures. In Saks, M., ed., Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics.Google Scholar
Wilson, D. (2004). Mixing times of Lozenge tiling and card shuffling Markov chains. Annals of Applied Probability, 14(1), 274325. arXiv:math/0102193.Google Scholar
Young, B. (2010). Generating functions for colored 3D Young diagrams and the Donaldson–Thomas invariants of orbifolds (with appendix by Jim Bryan). Duke Mathematical Journal, 152(1), 115153.Google Scholar
Zeilberger, D. (1996). Reverend Charles to the aid of Major Percy and Fields- Medalist Enrico. The American Mathematical Monthly, 103(6), 501502. arXiv:math/9507220.Google Scholar
Zinn-Justin, P. (2009). Littlewood–Richardson coefficients and integrable tilings. Electronic Journal of Combinatorics, 16, article R12. arXiv:0809.2392.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Vadim Gorin, University of Wisconsin, Madison
  • Book: Lectures on Random Lozenge Tilings
  • Online publication: 31 August 2021
  • Chapter DOI: https://doi.org/10.1017/9781108921183.027
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Vadim Gorin, University of Wisconsin, Madison
  • Book: Lectures on Random Lozenge Tilings
  • Online publication: 31 August 2021
  • Chapter DOI: https://doi.org/10.1017/9781108921183.027
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Vadim Gorin, University of Wisconsin, Madison
  • Book: Lectures on Random Lozenge Tilings
  • Online publication: 31 August 2021
  • Chapter DOI: https://doi.org/10.1017/9781108921183.027
Available formats
×