Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-11T06:30:24.607Z Has data issue: false hasContentIssue false

17 - Implications of Neurotechnology: Brain Recording and Intervention

from IV - Evidence

Published online by Cambridge University Press:  21 April 2021

Bartosz Brożek
Affiliation:
Jagiellonian University, Krakow
Jaap Hage
Affiliation:
Universiteit Maastricht, Netherlands
Nicole Vincent
Affiliation:
Macquarie University, Sydney
Get access

Summary

Progress in cognitive neuroscience has led to the development of a variety of neurotechnologies that enable the recording and/or stimulation of brain processes. In this chapter the author examines various examples of neurotechnology, and indicates some of their potential effects on a user’s sense, and on society’s attribution, of agency, identity and responsibility. He focuses on neurotechnology that: (1) measures brain activity to drive applications in order to perform actions; (2) stimulates brains in order to change, restore or improve aspects of cognition; or (3) combines recording and stimulation to enable informational loops within or between brains.

Type
Chapter
Information
Law and Mind
A Survey of Law and the Cognitive Sciences
, pp. 353 - 369
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abiri, R., Borhani, S., Sellers, E.W., Jiang, Y., & Zhao, X. (2019). A Comprehensive Review of EEG-Based Brain-Computer Interface Paradigms. Journal of Neural Engineering 16(1). DOI: https://doi.org/10.1088/1741-2552/aaf12eGoogle Scholar
Amon, A., & Alesch, F. (2017). Systems for Deep Brain Stimulation: Review of Technical Features. Journal of Neural Transmission 124(9), 1083–91. DOI: https://doi.org/10.1007/s00702-017-1751-6Google Scholar
Borders, C., Hsu, F., Sweidan, A. J., Matei, E. S., & Bota, R. G. (2018). Deep Brain Stimulation for Obsessive Compulsive Disorder: A Review of Results by Anatomical Target. Mental Illness 10(2), 40–4. DOI: https://doi.org/10.1108/mi.2018.7900CrossRefGoogle ScholarPubMed
Bouthour, W., Mégevand, P., Donoghue, J., Lüscher, C., Birbaumer, N., & Krack, P. (2019). Biomarkers for Closed-Loop Deep Brain Stimulation in Parkinson’s Disease and Beyond. Nature Reviews Neurology. DOI: https://doi.org/10.1038/s41582-019-0166-4Google Scholar
Clark, A. (2008). Supersizing the Mind: Embodiment, Action, and Cognitive Extension. Oxford and New York: Oxford University Press.CrossRefGoogle Scholar
Clark, A., & Chalmers, D. J. (1998). The Extended Mind. Analysis 58, 719.CrossRefGoogle Scholar
Chen, R., Romero, G., Christiansen, M. G. Mohr, A., & Anikeeva, P. (2015). Wireless Magnetothermal Deep Brain Stimulation. Science 347(6229), 1477–80. DOI: https://doi.org/10.1126/science.1261821CrossRefGoogle ScholarPubMed
Dutch Health Law. (2009). Wet Bijzondere Opname in Psychiatrische Ziekenhuizen (Law on Special Admission to Psychiatric Hospitals). http://wetten.overheid.nl/BWBR0005700/geldigheidsdatum_18–11-2009.Google Scholar
Frith, C. D. (1987). The Positive and Negative Symptoms of schizophrenia Reflect Impairments in the Perception and Initiation of Action. Psychological Medicine 17(3), 631–48.Google Scholar
Frith, C. D. (2012). Explaining Delusions of Control: The Comparator Model 20 Years On. Consciousness and Cognition 21, 52–4. DOI: https://doi.org/10.1016/j.concog.2011.06.010Google Scholar
Gallagher, S. (2000). Philosophical Conceptions of the Self: Implications For Cognitive Science. Trends in Cognitive Sciences 4(1), 1421.Google Scholar
Gallagher, S. (2007). The Natural Philosophy of Agency. Philosophy Compass 2(2), 347–57.Google Scholar
Gallagher, S. (2012). Multiple Aspects in the Sense of Agency. New Ideas in Psychology 30(1), 1531. DOI: https://doi.org/10.1016/j.newideapsych.2010.03.003CrossRefGoogle Scholar
Gilbert, F., Viaña, J. N. M., & Ineichen, C. (2018). Deflating the ‘DBS Causes Personality Changes’ Bubble. Neuroethics, 117.https://doi.org/10.1038/s41582-019-0166-4Google Scholar
Grau, C., Ginhoux, R., Riera, A., et al. (2014). Conscious Brain-to-Brain Communication in Humans Using Non-Invasive Technologies. PLoS ONE 9(8). https://doi.org/10.1371/journal.pone.0105225Google Scholar
Haselager, W. F. G. (2013). Did I Do That? Brain–Computer Interfacing and the Sense of Agency. Minds and Machines. DOI: https://doi.org/10.1007/s11023-012-9298-7Google Scholar
Haselager, W. F. G., Leoné, F., & van Toor, D. (2013). Data en interpretaties in de cognitieve neurowetenschap (Data and interpretations in cognitive neuroscience. Text in Dutch). Justitiële Verkenningen 39(1), 7889.Google Scholar
Hildt, E. (2015). What Will This Do to Me and My Brain? Ethical Issues in Brain-to-brain Interfacing. Frontiers in Systems Neuroscience 9(17), 14. https://doi.org/10.3389/fnsys.2015.00017CrossRefGoogle ScholarPubMed
Humpston, C. S., & Broome, M. R. (2016). The Spectra of Soundless Voices and Audible Thoughts: Towards an Integrative Model of Auditory Verbal Hallucinations and Thought Insertion. Review of Philosophy and Psychology 7(3), 611–29. https://doi.org/10.1007/s13164-015-0232-9Google Scholar
Ienca, M., Haselager, W. F. G., & Emanuel, E. (2018). Brain Leaks and Consumer Neurotechnology. Nature: Biotechnology 36(9), 805–10. https://doi.org/10.1038/nbt.4240Google Scholar
Jog, M. V., Wang, D. J. J., & Narr, K. L. (2019). A Review of Transcranial Direct Current Stimulation (tDCS) for the Individualized Treatment of Depressive Symptoms. Personalized Medicine in Psychiatry 1. https://doi.org/10.1016/j.pmip.2019.03.001Google Scholar
Kassiri, H., Tonekaboni, S., Salam, M. T., et al. (2017). Closed-Loop Neurostimulators: A Survey and a Seizure-Predicting Design Example for Intractable Epilepsy Treatment. IEEE Transactions on Biomedical Circuits and Systems 11(5), 1026–40. https://doi.org/10.1109/TBCAS.2017.2694638Google Scholar
Kekic, M., Boysen, E., Campbell, I. C., & Schmidt, U. (2016). A Systematic Review of the Clinical Efficacy of Transcranial Direct Current Stimulation (tDCS) in Psychiatric Disorders. Journal of Psychiatric Research 74, 7086. https://doi.org/10.1016/j.jpsychires.2015.12.018Google Scholar
Klaming, L., & Haselager, W. F. G. (2013). Did My Brain Implant Make Me Do It? Questions Raised by DBS Regarding Psychological Continuity, Responsibility for Action and Mental Competence. Neuroethics 6(3), 527–39. https://doi.org/10.1007/s12152-010-9093-1Google Scholar
Klein, E., Brown, T., Sample, M., Truitt, A. R., & Goering, S. (2015). Engineering the Brain: Ethical Issues and the Introduction of Neural Devices. Hastings Center Report, 45(6), 2635.Google Scholar
Kokkinos, V., Sisterson, N. D., Wozny, T. A., & Richardson, R. M. (2019). Association of Closed-Loop Brain Stimulation Neurophysiological Features with Seizure Control among Patients with Focal Epilepsy. JAMA Neurology 76(7), 800–8. https://doi.org/10.1001/jamaneurol.2019.0658CrossRefGoogle ScholarPubMed
Leentjens, A. F. G., Visser-Vandewalle, V., Temel, Y., & Verhey, F. R. J. (2004). Manipuleerbare wilsbekwaamheid: een ethisch probleem bij elektrostimulatie van de nucleaus subthalamicus voor ernstige ziekte van Parkinson. Nederlands Tijdschrift voor Geneeskunde 148, 1394–7.Google Scholar
Legon, W., Sato, T. F., Opitz, A., et al. (2014). Transcranial Focused Ultrasound Modulates the Activity of Primary Somatosensory Cortex in Humans. Nature: Neuroscience 17, 3229, https://doi.org/10.1038/nn.3620Google ScholarPubMed
Leoné, F., Van Toor, D., & Haselager, W. F. G. (2016). Neurowetenschap en recht [Neuroscience and law. Text in Dutch]. In Boone, M., Brants, C., & Kool, R. (eds.), Criminologie en Strafrecht, 2nd ed.Amsterdam: Boom, pp. 163–85.Google Scholar
Lewis, C. J., Maier, F., Horstkötter, N., et al. (2015). Subjectively Perceived Personality and Mood Changes Associated with Subthalamic Stimulation in Patients with Parkinson’s Disease. Psychological Medicine 45(1), 7385. https://doi.org/10.1017/S0033291714001081Google Scholar
Limousin, P., & Foltynie, T. (2019). Long-Term Outcomes of Deep Brain Stimulation in Parkinson’s Disease. Nature Reviews Neurology 15(4), 234–42. https://doi.org/10.1038/s41582-019-0145-9Google Scholar
Lo, M. C., & Widge, A. S. (2017). Closed-Loop Neuromodulation Systems: Next-Generation Treatments for Psychiatric Illness. International Review of Psychiatry 29(2), 191204. https://doi.org/10.1080/09540261.2017.1282438Google Scholar
Luigjes, J., Segrave, R., de Joode, N., Figee, M., & Denys, D. (2019). Efficacy of Invasive and Non-Invasive Brain Modulation Interventions for Addiction. Neuropsychology Review 29(1), 116–38. https://doi.org/10.1007/s11065-018-9393-5Google Scholar
Lynn, M. T., Berger, C. C., Riddle, T. A., & Morsella, E. (2010). Mind Control? Creating Illusory Intentions Through a Phony Brain-Computer Interface. Consciousness and Cognition 19, 1007–12. https://doi.org/10.1016/j.concog.2010.05.007.Google Scholar
Neuropace Responsive Neurostimulator. (n.d.). www.neuropace.com/Google Scholar
Pais-Vieira, M., Chiuffa, G., Lebedev, M., Yadav, A., & Nicolelis, M. (2015). Building an Organic Computing Device with Multiple Interconnected Brains. Scientific Reports 5, 115. https://doi.org/10.1038/srep11869Google ScholarPubMed
Pais-Vieira, M., Lebedev, M., Kunicki, C., Wang, J., & Nicolelis, M. (2013). A Brain-to-Brain Interface for Real-Time Sharing of Sensorimotor Information. Scientific Reports 3, 1319, 110. https://doi.org/10.1038/srep01319Google Scholar
Parfit, D. (1971). Personal Identity. Philosophical Review 80, 327.Google Scholar
Polanía, R., Nitsche, M. A., & Ruff, C. C. (2018). Studying and Modifying Brain Function with Non-Invasive Brain Stimulation. Nature Neuroscience 21(2), 174–87. https://dx.doi.org/10.1136/jnnp-2020-323870Google Scholar
Ramakrishnan, A., Ifft, P.J., Pais-Vieira, M., et al. (2015). Computing Arm Movements with a Monkey Brainet. Scientific Reports 5, 115. https://doi.org/10.1038/srep10767Google Scholar
Ramasubbu, R., Lang, S., & Kiss, Z. H. T. (2018). Dosing of Electrical Parameters in Deep Brain Stimulation for Intractable Depression: A Review of Clinical Studies. Frontiers in Psychiatry 9. https://doi.org/10.3389/fpsyt.2018.00302Google Scholar
Stevenson, R. L. (1886). Strange Case of Dr. Jekyll and Mr. Hyde. London: Longmans, Green & Co. www.gutenberg.org/ebooks/42Google Scholar
Synofzik, M., Vosgerau, G., & Newen, A. (2008). Beyond the Comparator Model: A Multifactorial Two-Step Account of Agency. Consciousness and Cognition 17(1), 219–39. DOI: https://doi.org/10.1016/j.concog.2007.03.010Google Scholar
Synofzik, M., Vosgerau, G., & Voss, M. (2013). The Experience of Agency: An Interplay Between Prediction and Postdiction. Frontiers in Psychology 4, 18. https://doi.org/10.3389/fpsyg.2013.00127Google Scholar
Systems and Methods for Closed-Loop Pain Management. (n.d.) Patent US20180085584A1. https://patents.google.com/patent/US20180085584A1/enGoogle Scholar
Taylor, R., Galvez, V., & Loo, C. (2018). Transcranial Magnetic Stimulation Safety: A Practical Guide for psychiatrists. Australasian Psychiatry 26(2), 189–92. https://doi.org/10.1177/1039856217748249Google Scholar
Trimper, J. B., Wolpe, P. R., & Rommelfanger, K. S. (2014). When ‘I’ Becomes ‘We’: Ethical Implications of Emerging Brain-to-Brain Interfacing Technologies. Frontiers in Neuroengineering 7, 4. https://doi.org/10.3389/fneng.2014.00004Google Scholar
Van Gerven, M., Farquhar, J., Schaefer, R., et al. (2009). The Brain-Computer Interface Cycle. Journal of Neural Engineering 6(4), 041001. DOI: https://doi.org/10.1088/1741-2560/6/4/041001Google Scholar
Vlek, R., van Acken, J., Beurskens, E., Roijendijk, L., & Haselager, W. F. G. (2014). BCI and a User’s Judgment of Agency. In Mueller, G. & Hildt, E. (eds.), Brain-Computer Interfaces in Their Ethical, Social and Cultural Contexts. Dordrecht: Springer, 193–202.Google Scholar
Wegner, D. M. (2003a). The Illusion of Conscious Will. Cambridge, MA: MIT Press.Google Scholar
Wegner, D. M. (2003b). The Mind’s Best Trick: How We Experience Conscious Will. Trends in Cognitive Sciences 7, 65–9. DOI: https://doi.org/10.1016/s1364-6613(03)00002-0CrossRefGoogle ScholarPubMed
Wegner, D. M., & Wheatley, T. (1999). Apparent Mental Causation. American Psychologist 54(7), 480–92.Google Scholar
Wegner, D. M., Fuller, V. A., & Sparrow, B. (2003). Clever Hands: Uncontrolled Intelligence in Facilitated Communication. Journal of Personality and Social Psychology 85, 519. DOI: https://doi.org/10.1037/0022-3514.85.1.5Google Scholar
Wegner, D. M., Sparrow, B., & Winerman, L. (2004). Vicarious Agency: Experiencing Control Over the Movements of Others. Journal of Personality and Social Psychology 86, 838–48. DOI: https://doi.org/10.1037/0022-3514.86.6.838Google Scholar
Wierzgała, P., Zapała, D., Wojcik, G. M., & Masiak, J. (2018). Most Popular Signal Processing Methods in Motor-Imagery BCI: A Review and Meta-Analysis. Frontiers in Neuroinformatics 12, 110. DOI: https://doi.org/10.3389/fninf.2018.00078Google Scholar
Woods, A. J., Antal, A., & Bikson, M. (2016). A Technical Guide to tDCS, and Related Non-Invasive Brain Stimulation Tools. Clinical Neurophysiology 127(2), 1031–48. DOI: https://doi.org/10.1016/j.clinph.2015.11.012Google Scholar
Yoo, S. S., Kim, H., Filandrianos, E., Taghados, S. J., & Park, S. (2013). Non-Invasive Brain-to-Brain Interface (BBI): Establishing Functional Links between Two Brains. PLoS ONE 8(4), 29. DOI: https://doi.org/10.1371/journal.pone.0060410CrossRefGoogle ScholarPubMed
Yu, Y., Pan, G., Gong, Y., et al. (2016). Intelligence-Augmented Rat Cyborgs in Maze Solving. PLoS ONE 11(2), 118. DOI: https://doi.org/10.1371/journal.pone.0147754Google Scholar
Zhang, S., Yuan, S., Huang, L., et al. (2019). Human Mind Control of Rat Cyborg’s Continuous Locomotion with Wireless Brain-to-Brain Interface. Scientific Reports 9(1), 112. DOI: https://doi.org/10.1038/s41598-018-36885-0Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×