Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-wbk2r Total loading time: 0 Render date: 2024-08-14T03:17:44.034Z Has data issue: false hasContentIssue false

3 - Measuring hydroclimate atmospheric components

Published online by Cambridge University Press:  06 July 2010

Marlyn L. Shelton
Affiliation:
University of California, Davis
Get access

Summary

An atmospheric focus

The relationship between climate of the first kind and the atmospheric branch of the hydrologic cycle presented in Chapter 1 emphasizes atmospheric transport and mobility as central characteristics of these concepts. The atmosphere's radiative properties are important in determining energy exchanges within the atmosphere and between the Earth's surface and the atmosphere. Resulting radiation variations account for the gradient of radiant energy that provides the potential energy for horizontal and vertical atmospheric motion. Vast quantities of water are continuously in motion in the climate system conditioned by water vapor sources and sinks in the atmosphere (Peixoto, 1995). The dynamics of global atmospheric circulation revealed by its state variables are a logical starting point for observing the transport of energy and moisture inherent to climate of the first kind and the atmospheric branch of the hydrologic cycle.

It is convenient to portray the general condition of the atmosphere as a thermodynamic-hydrodynamic system. It can be characterized by its composition, its thermodynamic state as specified by the three thermodynamic variables, pressure, temperature, and humidity, and its three-dimensional motion field. Precipitation, evaporation, and runoff are fluxes and not state variables even though they are intimately connected with the state of the atmosphere (Peixoto and Oort, 1992). These flux variables that couple the atmospheric and terrestrial phases of climate and the hydrologic cycle are discussed in Chapter 4 in the context of climate of the second kind and the terrestrial branch of the hydrologic cycle.

Type
Chapter
Information
Hydroclimatology
Perspectives and Applications
, pp. 55 - 73
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×