Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-swqlm Total loading time: 9.219 Render date: 2021-12-01T13:53:36.084Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Section 3 - Late Prenatal – Fetal Problems

Published online by Cambridge University Press:  15 November 2017

David James
Affiliation:
University of Nottingham
Philip Steer
Affiliation:
Imperial College London
Carl Weiner
Affiliation:
University of Kansas
Bernard Gonik
Affiliation:
Wayne State University, Detroit
Stephen Robson
Affiliation:
University of Newcastle
Get access

Summary

Modern antenatal care aims to optimize both maternal and fetal outcomes. The various methods of prenatal fetal surveillance are directed towards early detection and, sometimes, prevention of chronic fetal hypoxia. The fetal response to acute or chronic hypoxia varies and is modified by the preceding fetal condition. Prenatal fetal surveillance tools are useful in pregnancies that are at high risk of developing chronic fetal hypoxia, but less so for acute events (e.g., placental abruption). There is evidence that fetal surveillance in unselected low-risk population is not cost-effective and leads to unnecessary interventions. Therefore routine prenatal fetal surveillance techniques or tests are not universally adopted in this group.

Type
Chapter
Information
High-Risk Pregnancy
Management Options
, pp. 207 - 578
Publisher: Cambridge University Press
First published in: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Department of Health. Maternity Matters: Choice, Access and Continuity of Care in a Safe Service. London: Department of Health, 2007.Google Scholar
Expert Maternity Group. Woman centred care. In Department of Health. Changing Childbirth. Report of the Expert Maternity Group. London: HMSO, 1993, pp. 58.Google Scholar
Lau, TK. Prenatal fetal surveillance. In James, D, Steer, PJ, Weiner, CP, Gonik, B (eds), High Risk Pregnancy: Management Options, 4th edn. St. Louis, MO: Elsevier Saunders, 2011, pp. 163–72.Google Scholar
Manning, FA, Snijders, R, Harman, CR, et al. Fetal biophysical profile score. VI. Correlation with antepartum umbilical venous fetal pH. Am J Obstet Gynecol 1993; 169: 755–63.Google ScholarPubMed
Practice bulletin no. 145: antepartum fetal surveillance. Obstet Gynecol 2014; 124: 182–92.CrossRefGoogle Scholar
Pay, AS, Wiik, J, Backe, B, et al. Symphysis–fundus height measurement to predict small-for-gestational-age status at birth: a systematic review. BMC Pregnancy Childbirth 2015; 15: 22.CrossRefGoogle ScholarPubMed
Persson, B, Stangenberg, M, Lunell, NO, et al. Prediction of size of infants at birth by measurement of symphysis fundus height. Br J Obstet Gynaecol 1986; 93: 206–11.CrossRefGoogle ScholarPubMed
Neilson, JP. Symphysis–fundal height measurement in pregnancy. Cochrane Database Syst Rev 2000; (2): CD000944.Google Scholar
Gardosi, J, Francis, A. Controlled trial of fundal height measurement plotted on customised antenatal growth charts. Br J Obstet Gynaecol 1999; 106: 309–17.CrossRefGoogle ScholarPubMed
Schmidt, W, Cseh, I, Hara, K, Kubli, F. Maternal perception of fetal movements and real-time ultrasound findings. J Perinat Med 1984; 12: 313–18.CrossRefGoogle ScholarPubMed
Tuffnell, DJ, Cartmill, RS, Lilford, RJ. Fetal movements: factors affecting their perception. Eur J Obstet Gynecol Reprod Biol 1991; 39: 165–7.CrossRefGoogle ScholarPubMed
Smith, CV, Davis, SA, Rayburn, WF. Patients’ acceptance of monitoring fetal movement: a randomized comparison of charting techniques. J Reprod Med 1992; 37: 144–6.Google ScholarPubMed
Mangesi, L, Hofmeyr, GJ, Smith, V, Smyth, RM. Fetal movement counting for assessment of fetal wellbeing. Cochrane Database Syst Rev 2015; (10): CD004909.CrossRefGoogle Scholar
Melendez, TD1, Rayburn, WF, Smith, CV. Characterization of fetal body movement recorded by the Hewlett-Packard M-1350-A fetal monitor. Am J Obstet Gynecol 1992; 167: 700–2.CrossRefGoogle ScholarPubMed
Royal College of Obstetricians and Gynaecologists. Reduced Fetal Movements. Green-top Guideline No. 57. London: RCOG, 2011. https://www.rcog.org.uk/globalassets/documents/guidelines/gtg_57.pdf (accessed March 2017).Google Scholar
Saastad, E, Tveit, JV, Flenady, V, et al. Implementation of uniform information on fetal movement in a Norwegian population reduced delayed reporting of decreased fetal movement and stillbirths in primiparous women: a clinical quality improvement. BMC Res Notes 2010; 3: 2.CrossRefGoogle Scholar
Heazell, AE, Bernatavicius, G, Roberts, SA, et al. A randomised controlled trial comparing standard or intensive management of reduced fetal movements after 36 weeks gestation–a feasibility study. BMC Pregnancy Childbirth 2013; 13: 95.CrossRefGoogle ScholarPubMed
AFFIRM. Can promoting awareness of fetal movements and focussing interventions reduce fetal mortality? A stepped wedge cluster randomised trial. http://www.crh.ed.ac.uk/affirm (accessed March 2017).Google Scholar
Beattie, RB, Dornan, JC. Antenatal screening for intrauterine growth retardation with umbilical artery Doppler ultrasonography. BMJ 1989; 298: 631–5.Google ScholarPubMed
Nelson, TR, Pretorius, DH. The Doppler signal: where does it come from and what does it mean? AJR Am J Roentgenol 1988; 151: 439–47.CrossRefGoogle ScholarPubMed
Giles, W, Bisits, A, O’Callaghan, S, Gil, A; DAMP Study Group. The Doppler assessment in multiple pregnancy randomised controlled trial of ultrasound biometry versus umbilical artery Doppler ultrasound and biometry in twin pregnancy. BJOG 2003; 110: 593–7.CrossRefGoogle ScholarPubMed
Eik-Nes, SH, Brubaak, AO, Ulstein, MK. Measurement of human fetal blood flow. BMJ 1980; 280: 283–4.Google Scholar
Mires, GJ, Patel, NB, Dempster, J. The value of fetal umbilical artery flow velocity waveforms in the prediction of adverse fetal outcome in high-risk pregnancies. J Obstet Gynecol 1990; 10: 261–70.CrossRefGoogle Scholar
Burns, PN. Principles of Doppler and color flow. Radiology in Medicine 1993; 85 (5 Suppl 1): 316.Google ScholarPubMed
GRIT Study Group. A randomised trial of timed delivery for the compromised preterm fetus: short term outcomes and Bayesian interpretation. BJOG 2003; 110: 2732.CrossRefGoogle Scholar
Lees, C, Marlow, N, Arabin, B, et al. Perinatal morbidity and mortality in early-onset fetal growth restriction: cohort outcomes of the trial of randomized umbilical and fetal flow in Europe (TRUFFLE). Ultrasound Obstet Gynecol 2013; 42: 400–8.CrossRefGoogle Scholar
Baschat, AA, Gembruch, U. Evaluation of the fetal coronary circulation. Ultrasound Obstet Gynecol 2002; 20: 405–12.CrossRefGoogle ScholarPubMed
Cheema, R, Dubiel, M, Breborowicz, G, Gudmundsson, S. Fetal cerebral venous Doppler velocimetry in normal and high-risk pregnancy. Ultrasound Obstet Gynecol 2004; 24: 147–53.CrossRefGoogle ScholarPubMed
Bhide, A, Acharya, G, Bilardo, CM, et al. ISUOG practice guidelines: use of Doppler ultrasonography in obstetrics. Ultrasound Obstet Gynecol 2013; 41: 233–39.Google Scholar
Thompson, RS, Trudinger, BJ. Doppler waveform pulsatility index and resistance, pressure and flow in the umbilical placental circulation: an investigation using a mathematical model. Ultrasound Med Biol 1990; 16: 449–58.CrossRefGoogle ScholarPubMed
Gilbert, WM, Nicolaides, KH, Sel, T, Campbell, S. Comparison of umbilical artery flow velocity waveform indices as measured by continuous wave Doppler ultrasound. J Ultrasound Med 1988; 7: 549–51.CrossRefGoogle ScholarPubMed
Alfirevic, Z, Stampalija, T, Gyte, GM. Fetal and umbilical Doppler ultrasound in high-risk pregnancies. Cochrane Database Syst Rev 2013; (11): CD007529.CrossRefGoogle Scholar
Hecher, K, Bilardo, CM, Stigter, RH, et al. Monitoring of fetuses with intrauterine growth restriction: a longitudinal study. Ultrasound Obstet Gynecol 2001; 18: 564–70.CrossRefGoogle ScholarPubMed
Ferrazzi, E, Bozzo, M, Rigano, S, et al. Temporal sequence of abnormal Doppler changes in the peripheral and central circulatory systems of the severely growth-restricted fetus. Ultrasound Obstet Gynecol 2002; 19: 140–6.CrossRefGoogle ScholarPubMed
DeVore, GR. The importance of the cerebroplacental ratio in the evaluation of fetal well-being in SGA and AGA fetuses. Am J Obstet Gynecol 2015; 213: 515.CrossRefGoogle ScholarPubMed
Khalil, AA, Morales-Rosello, J, Morlando, M, et al. Is fetal cerebroplacental ratio an independent predictor of intrapartum fetal compromise and neonatal unit admission? Am J Obstet Gynecol 2015; 213: 54.e1–10.CrossRefGoogle ScholarPubMed
Acharya, G, Tronnes, A, Rasanen, J. Aortic isthmus and cardiac monitoring of the growth-restricted fetus. Clin Perinatol 2011; 38: 113–25, vi–vii.CrossRefGoogle ScholarPubMed
Bilardo, CM, Nicolaides, KH, Campbell, S. Doppler measurements of fetal and uteroplacental circulations: relationship with umbilical venous blood gases measured at cordocentesis. Am J Obstet Gynecol 1990; 162: 115–20.CrossRefGoogle ScholarPubMed
Baschat, AA, Gembruch, U, Weiner, CP, Harman, CR. Qualitative venous Doppler waveform analysis improves prediction of critical perinatal outcomes in premature growth-restricted foetuses. Ultrasound Obstet Gynecol 2003; 22: 240–5.Google Scholar
Lees, CC, Marlow, N, van Wassenaer-Leemhuis, A, et al. 2 year neurodevelopmental and intermediate perinatal outcomes in infants with very preterm fetal growth restriction (TRUFFLE): a randomised trial. Lancet 2015; 385: 2162–72.CrossRefGoogle ScholarPubMed
Rizzo, G, Capponi, A, Talone, PE, Arduini, D, Romanini, C. Doppler indices from inferior vena cava and ductus venosus in predicting pH and oxygen tension in umbilical blood at cordocentesis in growth-retarded foetuses. Ultrasound Obstet Gynecol 1996; 7: 401–10.CrossRefGoogle Scholar
Alfirevic, Z, Stampalija, T, Medley, N. Fetal and umbilical Doppler ultrasound in normal pregnancy. Cochrane Database Syst Rev 2015; (4): CD001450.CrossRefGoogle Scholar
Harrington, KF, Campbell, S, Bewley, S, Bower, S. Doppler velocimetry studies of the uterine artery in the early prediction of pre-eclampsia and intra-uterine growth retardation. Eur J Obstet Gynecol Reprod Biol 1991; 42: S14–20.Google ScholarPubMed
Velauthar, L, Plana, MN, Kalidindi, M, et al. First-trimester uterine artery Doppler and adverse pregnancy outcome: a meta-analysis involving 55,974 women. Ultrasound Obstet Gynecol 2014; 43: 500–7.CrossRefGoogle ScholarPubMed
Allen, RE, Morlando, M, Thilaganathan, B, et al. Predictive accuracy of second trimester uterine artery Doppler indices for stillbirth: a systematic review and meta-analysis. Ultrasound Obstet Gynecol 2016; 47: 22–7. doi: 10.1002/uog.14914.CrossRefGoogle ScholarPubMed
Royal College of Obstetricians and Gynaecologists. The Investigation and Management of the Small-for-Gestational-Age Fetus 2014. Green-top Guideline No. 31. London: RCOG, 2014. https://www.rcog.org.uk/globalassets/documents/guidelines/gtg_31.pdf (accessed March 2017).Google Scholar
Boyle, M. Antenatal investigations. In Henderson, C, Macdonald, S (eds), Mayes’ Midwifery: a Textbook for Midwives. Edinburgh: Bailliere Tindall, 2004.Google Scholar
Owen, P. Fetal assessment in the third trimester: fetal growth and biophysical methods. In Chamberlain, G, Steer, P (eds), Turnbull’s Obstetrics. Edinburgh: Churchill Livingstone, 2001.Google Scholar
Dawes, GS, Lobb, M, Moulden, M, Redman, CWG, Wheeler, T. Antenatal cardiotocogram quality and interpretation using computers. Br J Obstet Gynaecol 1992; 99: 791–7.CrossRefGoogle ScholarPubMed
Valensise, H, Facchinetti, F, Vasapollo, B, et al. The computerized fetal heart rate analysis in post-term pregnancy identifies patients at risk for fetal distress in labour. Eur J Obstet Gynecol Reprod Biol 2006; 125: 185–92.CrossRefGoogle ScholarPubMed
NHS Litigation Authority. Ten Years of Maternity Claims: An Analysis of NHS Litigation Authority Data. London: NHS, 2012. http://www.nhsla.com/Pages/Publications.aspx?library=safety%7clearningfromclaims%7cmaternityclaimsdataproject (accessed March 2017).Google Scholar
National Institute for Health and Care Excellence. Intrapartum Care for Healthy Women and Babies. Clinical Guidance CG190. London. NICE, 2014. https://www.nice.org.uk/guidance/cg190 (accessed March 2017).Google Scholar
Dawes, GS, Moulden, M, Redman, CW. Short-term fetal heart rate variation, decelerations, and umbilical flow velocity waveforms before labor. Obstet Gynecol 1992; 80: 673–8.Google ScholarPubMed
Dawes, GS, Moulden, M, Redman, CW. Improvements in computerized fetal heart rate analysis antepartum. J Perinat Med 1996; 24: 2536.CrossRefGoogle ScholarPubMed
Dawes, GS, Lobb, M, Moulden, M, Redman, CW, Wheeler, T. Antenatal cardiotocogram quality and interpretation using computers. BJOG 2014; 121 (Suppl 7): 28.CrossRefGoogle ScholarPubMed
Serra, V, Bellver, J, Moulden, M, Redman, CW. Computerized analysis of normal fetal heart rate pattern throughout gestation. Ultrasound Obstet Gynecol 2009; 34: 74–9.CrossRefGoogle ScholarPubMed
Royal Australian and New Zealand College of Obstetricians and Gynaecologists. Intrapartum Fetal Surveillance: Clinical Guideline, 3rd edn. Melbourne: RANZCOG, 2014. https://www.ranzcog.edu.au/RANZCOG_SITE/media/RANZCOG-MEDIA/Women%27s%20Health/Statement%20and%20guidelines/Clinical-Obstetrics/Intrapartum-Fetal-Surveillance-Guideline-Third-edition-Aug-2014.pdf?ext=.pdf (accessed March 2017).Google Scholar
Bellver, J, Perales, A, Maiques, V, Serra, V. Can antepartum computerized cardiotocography predict the evolution of intrapartum acid-base status in normal fetuses? Acta Obstet Gynecol Scand 2004; 83: 267–71.CrossRefGoogle ScholarPubMed
Buscicchio, G, Giannubilo, SR, Bezzeccheri, V, et al. Computerized analysis of the fetal heart rate in pregnancies complicated by preterm premature rupture of membranes (pPROM). J Matern Fetal Neonatal Med 2006; 19: 3942.CrossRefGoogle Scholar
Guzman, ER, Vintzileos, AM, Martins, M, et al. The efficacy of individual computer heart rate indices in detecting acidemia at birth in growth-restricted fetuses. Obstet Gynecol 1996; 87: 969–74.CrossRefGoogle ScholarPubMed
Soncini, E, Ronzoni, E, Macovei, D, Grignaffini, A. Integrated monitoring of fetal growth restriction by computerized cardiotocography and Doppler flow velocimetry. Eur J Obstet Gynecol Reprod Biol 2006; 128: 222–30.CrossRefGoogle ScholarPubMed
Lalor, JG, Fawole, B, Alfirevic, Z, Devane, D. Biophysical profile for fetal assessment in high risk pregnancies. Cochrane Database Syst Rev 2008; (1): CD000038.CrossRefGoogle Scholar
Grivell, RM, Alfirevic, Z, Gyte, GML, Devane, D. Antenatal cardiotocography for fetal assessment. Cochrane Database Syst Rev 2015; (9): CD007863.CrossRefGoogle Scholar
Manning, FA. Dynamic ultrasound-based fetal assessment: the fetal biophysical profile score. Clin Obstet Gynecol 1995; 38: 2644.CrossRefGoogle ScholarPubMed
Archibong, EI. Biophysical profile score in late pregnancy and timing of delivery. Int J Gynaecol Obstet 1999; 64: 129–33.CrossRefGoogle ScholarPubMed
Alfirevic, Z, Walkinshaw, SA. A randomised controlled trial of simple compared with complex antenatal fetal monitoring after 42 weeks of gestation. Br J Obstet Gynaecol 1995; 102: 638–43.CrossRefGoogle ScholarPubMed
Lalor, JG, Fawole, B, Alfirevic, Z, Devane, D. Biophysical profile for fetal assessment in high risk pregnancies. Cochrane Database Syst Rev 2012; (4): CD000038.Google Scholar
Bricker, L, Neilson, JP, Dowswell, T. Routine ultrasound in late pregnancy (after 24 weeks’ gestation). Cochrane Database Syst Rev 2008; (4): CD001451.CrossRefGoogle Scholar
Bakalis, S, Peeva, G, Gonzalez, R, Poon, LC, Nicolaides, KH. Prediction of small-for-gestational-age neonates: screening by biophysical and biochemical markers at 30–34 weeks. Ultrasound Obstet Gynecol 2015; 46: 446–51.Google ScholarPubMed
Kean, LH, Liu, DTY. Antenatal care as a screening tool for the detection of small for gestational age babies in the low risk population. J Obstet Gynecol 1996; 16: 7782.CrossRefGoogle Scholar
Chauhan, SP, Magann, EF. Screening for fetal growth restriction. Clin Obstet Gynecol 2006; 49: 284–94.CrossRefGoogle ScholarPubMed
Hadlock, FP, Harrist, RB, Sharman, RS, Deter, RL, Park, SK. Estimation of fetal weight with the use of head, body and femur measurements: a prospective study. Am J Obstet Gynecol 1985; 151: 333–7.CrossRefGoogle ScholarPubMed
Chang, TC, Robson, SC, Boys, RJ, Spencer, JA. Prediction of the small for gestational age infant: which ultrasonic measurement is best? Obstet Gynecol 1992; 80: 1030–8.Google ScholarPubMed
Robson, SC, Chang, TC. Intrauterine growth retardation. In Reed, G, Claireaux, A, Cockburn, F (eds), Diseases of the Fetus and the Newborn, 2nd edn. London: Chapman & Hall, 1994, pp. 277–86.Google Scholar
Gardosi, J, Chang, A, Kalyan, B, Sahota, D, Symonds, EM. Customised antenatal growth charts. Lancet 1992; 339: 283–7.CrossRefGoogle ScholarPubMed
Gardosi, J. Customised assessment of fetal growth potential: implications for perinatal care. Arch Dis Child Fetal Neonatal Ed 2012; 97: F314–7.CrossRefGoogle ScholarPubMed
Pang, MW, Leung, TN, Sahota, DS, Lau, TK, Chang, AM. Customizing fetal biometric charts. Ultrasound Obstet Gynecol 2003; 22: 271–6.CrossRefGoogle ScholarPubMed
Gestation Network. GROW growth charts. http://www.gestation.net/growthcharts.htm (accessed March 2017).Google Scholar
Papageorghiou, AT, Ohuma, EO, Altman, DG, et al. International standards for fetal growth based on serial ultrasound measurements: the Fetal Growth Longitudinal Study of the INTERGROWTH-21st Project. Lancet 2014; 384: 869–79. doi: 10.1016/S0140-6736(14)61490-2.CrossRefGoogle ScholarPubMed
Nabhan, AF, Abdelmoula, YA. Amniotic fluid index versus single deepest vertical pocket as a screening test for preventing adverse pregnancy outcome. Cochrane Database Syst Rev 2008; (3): CD006593.CrossRefGoogle Scholar
Proud, J, Grant, AM. Third trimester placental grading by ultrasonography as a test of fetal wellbeing. Br Med J 1987; 294: 1641–4.CrossRefGoogle ScholarPubMed
Chen, KH, Seow, KM, Chen, LR. The role of preterm placental calcification on assessing risks of stillbirth. Placenta 2015; 36: 1039–44.CrossRefGoogle ScholarPubMed
Forest, JC, Massé, J, Moutquin, JM. Screening for Down syndrome during first trimester: a prospective study using free beta-human chorionic gonadotropin and pregnancy-associated plasma protein A. Clin Biochem 1997; 30: 333–8.CrossRefGoogle ScholarPubMed
Wise, J. Quadruple test is available for Down’s syndrome. BMJ 1996; 313: 380.CrossRefGoogle ScholarPubMed
Lakhi, N, Govind, A, Moretti, M, Jones, J. Maternal serum analytes as markers of adverse obstetric outcome. Obstetrician Gynaecologist 2012; 14: 267273.CrossRefGoogle Scholar
Spencer, K, Cowans, NJ, Molina, F, Kagan, KO, Nicolaides, KH. First trimester ultrasound and biochemical markers of aneuploidy and the prediction of preterm or early preterm delivery. Ultrasound Obstet Gynecol 2008; 31: 147–52.Google ScholarPubMed
Spencer, K, Cowans, NJ, Avgidou, K, Molina, F, Nicolaides, KH. First trimester biochemical markers of aneuploidy and the prediction of small-for-gestational age fetuses. Ultrasound Obstet Gynecol 2008; 31: 1519.CrossRefGoogle ScholarPubMed
Spencer, K, Cowans, NJ, Nicolaides, KH. Low levels of maternal serum PAPP-A in the first trimester and the risk of pre-eclampsia. Prenat Diagn 2008; 28: 710.CrossRefGoogle ScholarPubMed
Spencer, K, Cowans, NJ, Avgidou, K, Nicolaides, KH. First-trimester ultrasound and biochemical markers of aneuploidy and the prediction of impending fetal death. Ultrasound Obstet Gynecol 2006; 28: 637–43.CrossRefGoogle ScholarPubMed
Chappell, LC, Duckworth, S, Seed, PT, et al. Diagnostic accuracy of placental growth factor in women with suspected preeclampsia: a prospective multicenter study. Circulation 2013; 128: 2121–31.CrossRefGoogle ScholarPubMed
Griffin, M, Seed, PT, Webster, L, et al. Diagnostic accuracy of placental growth factor and ultrasound parameters to predict the small-for-gestational-age infant in women presenting with reduced symphysis–fundus height. Ultrasound Obstet Gynecol 2015; 46: 182–90.CrossRefGoogle ScholarPubMed
Powers, RW, Jeyabalan, A, Clifton, RG, et al. Soluble fms-like tyrosine kinase 1 (sFlt1), endoglin and placental growth factor (PlGF) in preeclampsia among high risk pregnancies. PLoS One 2010; 5: e13263.CrossRefGoogle ScholarPubMed
Akolekar, R, Syngelaki, A, Sarquis, R, Zvanca, M, Nicolaides, KH. Prediction of early, intermediate and late pre-eclampsia from maternal factors, biophysical and biochemical markers at 11–13 weeks. Prenat Diag 2011; 31: 6674.CrossRefGoogle ScholarPubMed
Nanda, S, Savvidou, M, Syngelaki, A, Akolekar, R, Nicolaides, KH. Prediction of gestational diabetes mellitus by maternal factors and biomarkers at 11 to 13 weeks. Prenat Diagn 2011; 31: 135–41.Google ScholarPubMed
Gagnon, A, Wilson, RD, Audibert, F, et al; Society of Obstetricians and Gynaecologists of Canada Genetics Committee. Obstetrical complications associated with abnormal maternal serum markers analytes. J Obstet Gynaecol Can 2008; 30: 918–49.CrossRefGoogle ScholarPubMed
D’Alton, M, Cleary-Goldman, J. First and second trimester evaluation of risk for fetal aneuploidy: the secondary outcomes of the FASTER trial. Semin Perinatol 2005; 29: 240–6.CrossRefGoogle ScholarPubMed
Dugoff, L, Hobbins, JC, Malone, FD, et al. First-trimester maternal serum PAPP-A and free-beta subunit human chorionic gonadotropin concentrations and nuchal translucency are associated with obstetric complications: a population-based screening study (the FASTER trial). Am J Obstet Gynecol 2004; 191: 1446–51.CrossRefGoogle Scholar
Morris, RK, Cnossen, JS, Langejans, M, et al. Serum screening with Down’s syndrome markers to predict pre-eclampsia and small for gestational age: systematic review and meta-analysis. BMC Pregnancy Childbirth 2008; 8: 33.CrossRefGoogle ScholarPubMed
Blumenfeld, YJ, Baer, RJ, Druzin, ML, et al. Association between maternal characteristics, abnormal serum aneuploidy analytes, and placental abruption. Am J Obstet Gynecol 2014; 211: 144.e1–9.CrossRefGoogle ScholarPubMed
Salafia, CM, Silberman, L, Herrera, NE, Mahoney, MJ. Placental pathology at term associated with elevated midtrimester maternal serum alpha-fetoprotein concentration. Am J Obstet Gynecol 1988; 158: 1064–6.CrossRefGoogle ScholarPubMed
Baschat, AA, Neurodevelopment after fetal growth restriction. Fetal Diagn Ther 2014; 36: 136–42.CrossRefGoogle ScholarPubMed
Baschat, AA, Cosmi, E, Bilardo, CM, et al. Predictors of neonatal outcome in early-onset placental dysfunction. Obstet Gynecol 2007; 109: 253–61.CrossRefGoogle ScholarPubMed
Baschat, AA, Gembruch, U, Harman, CR: The sequence of changes in Doppler and biophysical parameters as severe fetal growth restriction worsens. Ultrasound Obstet Gynecol 2001; 18: 571–7.CrossRefGoogle ScholarPubMed
Baschat, AA, Viscardi, RM, Hussey-Gardner, B, et al. Infant neurodevelopment following fetal growth restriction: Relationship with antepartum surveillance parameters. Ultrasound Obstet Gynecol 2009; 33: 4450.CrossRefGoogle ScholarPubMed
Frøen, JF, Gardosi, JO, Thurmann, A, Francis, A, Stray-Pedersen, B. Restricted fetal growth in sudden intrauterine unexplained death. Acta Obstet Gynecol Scand 2004; 83: 801–7.Google ScholarPubMed
GRIT Study Group. A randomised trial of timed delivery for the compromised preterm fetus: short term outcomes and Bayesian interpretation. BJOG 2003; 110: 2732.CrossRefGoogle Scholar
Lees, CC, Marlow, N, van Wassenaer-Leemhuis, A, et al. 2 year neurodevelopmental and intermediate perinatal outcomes in infants with very preterm fetal growth restriction (TRUFFLE): a randomised trial. Lancet 2015; 385: 2162–72.CrossRefGoogle ScholarPubMed
Metzger, BE, Lowe, LP, Dyer, AR, et al.; HAPO Study Cooperative Research Group. Hyperglycemia and adverse pregnancy outcome. N Engl J Med 2008; 358: 19912002.Google Scholar
Poon, L, Kametas, NA, Maiz, A, et al. First trimester prediction of hypertensive disorders in pregnancy. Hypertension 2009; 53: 812–18.CrossRefGoogle ScholarPubMed
Thornton, JG, Hornbuckle, J, Vail, A, et al.; GRIT Study Group. Infant wellbeing at 2 years of age in the Growth Restriction Intervention Trial (GRIT): multicentred randomised controlled trial. Lancet 2004; 364: 513–20.Google ScholarPubMed
Vainio, M, Kujansuu, E, Iso-Mustajarvi, M, Maenpaa, J. Low dose acetylsalicylic acid in prevention of pregnancy-induced hypertension and intrauterine growth retardation in women with bilateral uterine artery notches. BJOG 2002; 109: 161–7.CrossRefGoogle ScholarPubMed
Vintzileos, AM, Fleming, AD, Scorza, WE, et al. Relationship between fetal biophysical activities and umbilical cord blood gas values. Am J Obstet Gynecol 1991; 165: 707–13.CrossRefGoogle ScholarPubMed
Lubchenco, LO, Hansman, C, Boyd, E. Intrauterine growth as estimated from live born birth-weight data at 24–42 weeks of gestation. Pediatrics 1963; 32: 793.Google Scholar
Battaglia, FC, Lubchenco, LO. A practical classification of newborn infants by weight and gestational age. J Pediatr 1967; 71: 159–63.CrossRefGoogle ScholarPubMed
Bernstein, IM, Horbar, JD, Badger, GJ, Ohlsson, A, Golan, A. Morbidity and mortality among very-low-birth-weight neonates with intrauterine growth restriction. The Vermont Oxford Network. Am J Obstet Gynecol 2000; 182: 198206.CrossRefGoogle ScholarPubMed
Barker, DJ. Fetal growth and adult disease. Br J Obstet Gynaecol 1992; 99: 275–6.CrossRefGoogle ScholarPubMed
Hoffman, HJ, Stark, CR, Lundin, FE, Ashbrook, JD. Analysis of birth weight, gestational age, and fetal viability, U. S. births, 1968. Obstet Gynecol Surv 1974; 29: 651–81.CrossRefGoogle ScholarPubMed
Gardosi, J, Chang, A, Kalyan, B, Sahota, D, Symonds, EM. Customised antenatal growth charts. Lancet 1992; 339: 283–7.CrossRefGoogle ScholarPubMed
Clausson, B, Gardosi, J, Francis, A, Cnattingius, S. Perinatal outcome in SGA births defined by customised versus population-based birthweight standards. Br J Obstet Gynaecol 2001; 108: 830–4.Google ScholarPubMed
Bukowski, R, Burgett, AD, Gei, A, Saade, GR, Hankins, GD V. Impairment of fetal growth potential and neonatal encephalopathy. Am J Obstet Gynecol 2003; 188: 1011–15.CrossRefGoogle ScholarPubMed
Miller, HC. Fetal growth and neonatal mortality. Pediatrics 1972; 49: 392–9.Google ScholarPubMed
Weiner, CP, Robinson, D. Sonographic diagnosis of intrauterine growth retardation using the postnatal ponderal index and the crown-heel length as standards of diagnosis. Am J Perinatol 1989; 6: 380–3.CrossRefGoogle ScholarPubMed
Walther, FJ, Ramaekers, LH. The ponderal index as a measure of the nutritional status at birth and its relation to some aspects of neonatal morbidity. J Perinat Med 1982; 10: 42–7.CrossRefGoogle ScholarPubMed
Dashe, JS, McIntire, DD, Lucas, MJ, Leveno, KJ. Effects of symmetric and asymmetric fetal growth on pregnancy outcomes. Obstet Gynecol 2000; 96: 321–7.Google ScholarPubMed
Seval, Y, Sati, L, Celik-Ozenci, C, Taskin, O, Demir, R. The distribution of angiopoietin-1, angiopoietin-2 and their receptors Tie-1 and Tie-2 in the very early human placenta. Placenta 2008; 29: 809–15.CrossRefGoogle ScholarPubMed
Ahmed, A, Dunk, C, Ahmad, S, Khaliq, A. Regulation of placental vascular endothelial growth factor (VEGF) and placenta growth factor (PlGF) and soluble Flt-1 by oxygen: a review. Placenta 2000; 21 (Suppl 1): S16–24.CrossRefGoogle ScholarPubMed
Baumann, MU, Bersinger, NA, Surbek, D V. Serum markers for predicting pre-eclampsia. Mol Aspects Med 2007; 28: 227–44.CrossRefGoogle ScholarPubMed
Pijnenborg, R, Bland, JM, Robertson, WB, Brosens, I. Uteroplacental arterial changes related to interstitial trophoblast migration in early human pregnancy. Placenta 1983; 4: 397413.CrossRefGoogle ScholarPubMed
Aplin, J. Maternal influences on placental development. Semin Cell Dev Biol 2000; 11: 115–25.CrossRefGoogle ScholarPubMed
Kingdom, JC, Burrell, SJ, Kaufmann, P. Pathology and clinical implications of abnormal umbilical artery Doppler waveforms. Ultrasound Obstet Gynecol 1997; 9: 271–86.CrossRefGoogle ScholarPubMed
Castellucci, M, Kosanke, G, Verdenelli, F, Huppertz, B, Kaufmann, P. Villous sprouting: fundamental mechanisms of human placental development. Hum Reprod Update 2000; 6: 485–94.CrossRefGoogle ScholarPubMed
Kaufmann, P, Scheffen, I. Placental development. In Polin, RA, Fox, WW (eds), Fetal and Neonatal Physiology. Philadelphia, PA: Saunders; 1998, pp. 5970.Google Scholar
Pardi, G, Marconi, AM, Cetin, I. Placental–fetal interrelationship in IUGR fetuses: a review. Placenta 2002; 23 (Suppl A): S136–41.CrossRefGoogle ScholarPubMed
Battaglia, FC, Regnault, TRH. Placental transport and metabolism of amino acids. Placenta 2001; 22: 145–61.CrossRefGoogle ScholarPubMed
Haggarty, P. Placental regulation of fatty acid delivery and its effect on fetal growth: a review. Placenta 2002; 23: S28–38.CrossRefGoogle ScholarPubMed
Illsley, NP. Glucose transporters in the human placenta. Placenta 2000; 21: 1422.CrossRefGoogle ScholarPubMed
Sibley, CP, Glazier, JD, Greenwood, SL, et al. Regulation of placental transfer: the Na(+)/H(+) exchanger: a review. Placenta 2002; 23 (Suppl A): S39–46.CrossRefGoogle ScholarPubMed
Meschia, G. Placenta respiratory gas exchange and fetal oxygenation. In Creasy, RK, Resnik, R (eds), Maternal–Fetal Medicine: Principles and Practice. Philadelphia, PA: Saunders, 1987, pp. 274–85.Google Scholar
Carter, AM. Placental oxygen consumption. Part I: in vivo studies – a review. Placenta 2000; 21 (Suppl A): S31–7.CrossRefGoogle ScholarPubMed
Lederman, SA, Paxton, A, Heymsfield, SB, et al. Maternal body fat and water during pregnancy: Do they raise infant birth weight? Am J Obstet Gynecol 1999; 180: 235–40.CrossRefGoogle ScholarPubMed
Reece, EA, Wiznitzer, A, Le, E, et al. The relation between human fetal growth and fetal blood levels of insulin-like growth factors I and II, their binding proteins, and receptors. Obstet Gynecol 1994; 84: 8895.Google ScholarPubMed
Hoggard, N, Haggarty, P, Thomas, L, Lea, RG. Leptin expression in placental and fetal tissues: does leptin have a functional role? Biochem Soc Trans 2001; 29: 5763.CrossRefGoogle ScholarPubMed
Jansson, N, Greenwood, SL, Johansson, BR, Powell, TL, Jansson, T. Leptin stimulates the activity of the system A amino acid transporter in human placental villous fragments. J Clin Endocrinol Metab 2003; 88: 1205–11.CrossRefGoogle ScholarPubMed
Rudolph, AM. Distribution and regulation of blood flow in the fetal and neonatal lamb. Circ Res 1985; 57: 811–21.CrossRefGoogle ScholarPubMed
Baschat, AA. The fetal circulation and essential organs: a new twist to an old tale. Ultrasound Obstet Gynecol 2006; 27: 349–54.CrossRefGoogle Scholar
Guyton, AC, Cowley, AW, Young, DB, et al. Integration and control of circulatory function. Int Rev Physiol 1976; 9: 341–85.Google ScholarPubMed
Winick, M, Noble, A. Quantitative changes in DNA, RNA, and protein during prenatal and postnatal growth in the rat. Dev Biol 1965; 12: 451–66.CrossRefGoogle ScholarPubMed
Snijders, RJ, Sherrod, C, Gosden, CM, Nicolaides, KH. Fetal growth retardation: associated malformations and chromosomal abnormalities. Am J Obstet Gynecol 1993; 168: 547–55.CrossRefGoogle ScholarPubMed
Khoury, MJ, Erickson, JD, Cordero, JF, McCarthy, BJ. Congenital malformations and intrauterine growth retardation: a population study. Pediatrics 1988; 82: 8390.Google ScholarPubMed
Sickler, GK, Nyberg, DA, Sohaey, R, Luthy, DA. Polyhydramnios and fetal intrauterine growth restriction: ominous combination. J Ultrasound Med 1997; 16: 609–14.CrossRefGoogle ScholarPubMed
Ødegård, RA, Vatten, LJ, Nilsen, ST, Salvesen, , Austgulen, R. Preeclampsia and fetal growth. Obstet Gynecol 2000; 96: 950–5.Google ScholarPubMed
Kupferminc, MJ, Peri, H, Zwang, E, et al. High prevalence of the prothrombin gene mutation in women with intrauterine growth retardation, abruptio placentae and second trimester loss. Acta Obstet Gynecol Scand 2000; 79: 963–7.Google ScholarPubMed
Weiner, CP. Pathogenesis, evaluation, and potential treatments for severe, early onset growth retardation. Semin Perinatol 1989; 13: 320–7.Google Scholar
Cliver, SP, Goldenberg, RL, Cutter, GR, et al. The effect of cigarette smoking on neonatal anthropometric measurements. Obstet Gynecol 1995; 85: 625–30.CrossRefGoogle ScholarPubMed
Goldenberg, RL, Cliver, SP, Cutter, GR, et al. Blood pressure, growth retardation, and preterm delivery. Int J Technol Assess Health Care 1992; 8 (Suppl 1): 8290.CrossRefGoogle ScholarPubMed
Ferrazzi, E, Bulfamante, G, Mezzopane, R, et al. Uterine Doppler velocimetry and placental hypoxic-ischemic lesion in pregnancies with fetal intrauterine growth restriction. Placenta 1999; 20: 389–94.CrossRefGoogle ScholarPubMed
Harrington, K, Carpenter, RG, Goldfrad, C, Campbell, S. Transvaginal Doppler ultrasound of the uteroplacental circulation in the early prediction of pre-eclampsia and intrauterine growth retardation. Br J Obstet Gynaecol 1997; 104: 674–81.CrossRefGoogle ScholarPubMed
Bower, S, Kingdom, J, Campbell, S. Objective and subjective assessment of abnormal uterine artery Doppler flow velocity waveforms. Ultrasound Obstet Gynecol 1998; 12: 260–4.CrossRefGoogle ScholarPubMed
Rigano, S, Bozzo, M, Ferrazzi, E, et al. Early and persistent reduction in umbilical vein blood flow in the growth-restricted fetus: a longitudinal study. Am J Obstet Gynecol 2001; 185: 834–8.CrossRefGoogle ScholarPubMed
Morrow, RJ, Adamson, SL, Bull, SB, Ritchie, JW. Effect of placental embolization on the umbilical arterial velocity waveform in fetal sheep. Am J Obstet Gynecol 1989; 161: 1055–60.CrossRefGoogle ScholarPubMed
Wilcox, GR, Trudinger, BJ, Cook, CM, Wilcox, WR, Connelly, AJ. Reduced fetal platelet counts in pregnancies with abnormal Doppler umbilical flow waveforms. Obstet Gynecol 1989; 73: 639–43.Google ScholarPubMed
Papageorghiou, AT, Yu, CKH, Cicero, S, Bower, S, Nicolaides, KH. Second-trimester uterine artery Doppler screening in unselected populations: a review. J Matern Fetal Neonatal Med 2002; 12: 7888.CrossRefGoogle ScholarPubMed
Weiner, CP. The relationship between the umbilical artery systolic/diastolic ratio and umbilical blood gas measurements in specimens obtained by cordocentesis. Am J Obstet Gynecol 1990; 162: 1198–202.CrossRefGoogle ScholarPubMed
Bilardo, CM, Nicolaides, KH, Campbell, S. Doppler measurements of fetal and uteroplacental circulations: relationship with umbilical venous blood gases measured at cordocentesis. Am J Obstet Gynecol 1990; 162: 115–20.CrossRefGoogle ScholarPubMed
Hecher, K, Spernol, R, Stettner, H, Szalay, S. Potential for diagnosing imminent risk to appropriate- and small-for-gestational-age fetuses by Doppler sonographic examination of umbilical and cerebral arterial blood flow. Ultrasound Obstet Gynecol 1992; 2: 266–71.CrossRefGoogle ScholarPubMed
Crimmins, S, Desai, A, Block-Abraham, D, et al. A comparison of Doppler and biophysical findings between liveborn and stillborn growth-restricted fetuses. Am J Obstet Gynecol 2014; 211: 669.e1–10.CrossRefGoogle ScholarPubMed
Jones, CT, Ritchie, JW, Walker, D. The effects of hypoxia on glucose turnover in the fetal sheep. J Dev Physiol 1983; 5: 223–35.Google ScholarPubMed
Nicolini, U, Hubinont, C, Santolaya, J, et al. Maternal–fetal glucose gradient in normal pregnancies and in pregnancies complicated by alloimmunization and fetal growth retardation. Am J Obstet Gynecol 1989; 161: 924–7.CrossRefGoogle ScholarPubMed
Economides, DL, Nicolaides, KH. Blood glucose and oxygen tension levels in small-for-gestational-age fetuses. Am J Obstet Gynecol 1989; 160: 385–9.CrossRefGoogle ScholarPubMed
Hubinont, C, Nicolini, U, Fisk, NM, Tannirandorn, Y, Rodeck, CH. Endocrine pancreatic function in growth-retarded fetuses. Obstet Gynecol 1991; 77: 541–4.Google ScholarPubMed
Van Assche, FA, Aerts, L, De Prins, FA. The fetal endocrine pancreas. Eur J Obstet Gynecol Reprod Biol 1984; 18: 267–72.CrossRefGoogle ScholarPubMed
Soothill, PW, Nicolaides, KH, Campbell, S. Prenatal asphyxia, hyperlacticaemia, hypoglycaemia, and erythroblastosis in growth retarded fetuses. Br Med J 1987; 294: 1051–3.CrossRefGoogle ScholarPubMed
Owens, JA, Falconer, J, Robinson, JS. Effect of restriction of placental growth on fetal and utero-placental metabolism. J Dev Physiol 1987; 9: 225–38.Google ScholarPubMed
Paolini, CL, Marconi, AM, Ronzoni, S, et al. Placental transport of leucine, phenylalanine, glycine, and proline in intrauterine growth-restricted pregnancies. J Clin Endocrinol Metab 2001; 86: 5427–32.CrossRefGoogle ScholarPubMed
Economides, DL, Nicolaides, KH, Gahl, WA, Bernardini, I, Evans, MI. Plasma amino acids in appropriate- and small-for-gestational-age fetuses. Am J Obstet Gynecol 1989; 161: 1219–27.CrossRefGoogle ScholarPubMed
Bernstein, IM, Silver, R, Nair, KS, Stirewalt, WS. Amniotic fluid glycine-valine ratio and neonatal morbidity in fetal growth restriction. Obstet Gynecol 1997; 90: 933–7.CrossRefGoogle ScholarPubMed
Vannucci, RC, Vannucci, SJ. Glucose metabolism in the developing brain. Semin Perinatol 2000; 24: 107–15.CrossRefGoogle ScholarPubMed
Fisher, DJ, Heymann, MA, Rudolph, AM. Fetal myocardial oxygen and carbohydrate consumption during acutely induced hypoxemia. Am J Physiol 1982; 242: H657–61.Google ScholarPubMed
Spahr, R, Probst, I, Piper, HM. Substrate utilization of adult cardiac myocytes. Basic Res Cardiol 1985; 80 (Suppl 1): 53–6.Google ScholarPubMed
Fant, ME, Weisoly, D. Insulin and insulin-like growth factors in human development: implications for the perinatal period. Semin Perinatol 2001; 25: 426–35.CrossRefGoogle ScholarPubMed
Rizzo, G, Arduini, D. Fetal cardiac function in intrauterine growth retardation. Am J Obstet Gynecol 1991; 165: 876–82.CrossRefGoogle ScholarPubMed
Baschat, AA, Gembruch, U, Gortner, L, et al. Coronary artery blood flow visualization signifies hemodynamic deterioration in growth-restricted fetuses. Ultrasound Obstet Gynecol 2000; 16: 425–31.CrossRefGoogle ScholarPubMed
Reed, KL, Anderson, CF, Shenker, L. Changes in intracardiac Doppler blood flow velocities in fetuses with absent umbilical artery diastolic flow. Am J Obstet Gynecol 1987; 157: 774–9.CrossRefGoogle ScholarPubMed
al-Ghazali, W, Chita, SK, Chapman, MG, Allan, LD. Evidence of redistribution of cardiac output in asymmetrical growth retardation. Br J Obstet Gynaecol 1989; 96: 697704.CrossRefGoogle ScholarPubMed
Griffin, D, Bilardo, K, Masini, L, et al. Doppler blood flow waveforms in the descending thoracic aorta of the human fetus. Br J Obstet Gynaecol 1984; 91: 9971006.CrossRefGoogle ScholarPubMed
Akalin-Sel, T, Nicolaides, KH, Peacock, J, Campbell, S. Doppler dynamics and their complex interrelation with fetal oxygen pressure, carbon dioxide pressure, and pH in growth-retarded fetuses. Obstet Gynecol 1994; 84: 439–44.Google ScholarPubMed
Wladimiroff, JW, Tonge, HM, Stewart, PA. Doppler ultrasound assessment of cerebral blood flow in the human fetus. Br J Obstet Gynaecol 1986; 93: 471–5.CrossRefGoogle ScholarPubMed
Arbeille, P, Maulik, D, Fignon, A, Stale, H, Berson, M, Bodard, S, et al. Assessment of the fetal PO2 changes by cerebral and umbilical Doppler on lamb fetuses during acute hypoxia. Ultrasound Med Biol 1995; 21: 861–70.CrossRefGoogle ScholarPubMed
Fouron, JC, Skoll, A, Sonesson, SE, et al. Relationship between flow through the fetal aortic isthmus and cerebral oxygenation during acute placental circulatory insufficiency in ovine fetuses. Am J Obstet Gynecol 1999; 181: 1102–7.CrossRefGoogle ScholarPubMed
Boito, S, Struijk, PC, Ursem, NTC, Fedele, L, Wladimiroff, JW. Fetal brain/liver volume ratio and umbilical volume flow parameters relative to normal and abnormal human development. Ultrasound Obstet Gynecol 2003; 21: 256–61.CrossRefGoogle ScholarPubMed
Manning, FA. Fetal biophysical profile. Obstet Gynecol Clin North Am 1999; 26: 557–77.CrossRefGoogle ScholarPubMed
Arduini, D, Rizzo, G, Romanini, C, Mancuso, S. Computerized analysis of behavioural states in asymmetrical growth retarded fetuses. J Perinat Med 1988; 16: 357–63.CrossRefGoogle ScholarPubMed
Arduini, D, Rizzo, G, Caforio, L, et al. Behavioural state transitions in healthy and growth retarded fetuses. Early Hum Dev 1989; 19: 155–65.CrossRefGoogle ScholarPubMed
Nijhuis, IJM, Ten Hof, J, Nijhuis, JG, et al. Temporal organization of fetal behavior from 24-weeks gestation onwards in normal and complicated pregnancies. Dev Psychobiol 1999; 34: 257–68.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Vindla, S, James, D, Sahota, D. Computerised analysis of unstimulated and stimulated behaviour in fetuses with intrauterine growth restriction. Eur J Obstet Gynecol Reprod Biol 1999; 83: 3745.CrossRefGoogle ScholarPubMed
Yum, MK, Park, EY, Kim, CR, Hwang, JH. Alterations in irregular and fractal heart rate behavior in growth restricted fetuses. Eur J Obstet Gynecol Reprod Biol 2001; 94: 51–8.CrossRefGoogle ScholarPubMed
Ribbert, LS, Nicolaides, KH, Visser, GH. Prediction of fetal acidaemia in intrauterine growth retardation: comparison of quantified fetal activity with biophysical profile score. Br J Obstet Gynaecol 1993; 100: 653–6.CrossRefGoogle ScholarPubMed
Nijhuis, IJM, Ten Hof, J, Mulder, EJH, et al. Fetal heart rate in relation to its variation in normal and growth retarded fetuses. Eur J Obstet Gynecol Reprod Biol 2000; 89: 2733.CrossRefGoogle ScholarPubMed
Henson, G, Dawes, GS, Redman, CW. Characterization of the reduced heart rate variation in growth-retarded fetuses. Br J Obstet Gynaecol 1984; 91: 751–5.CrossRefGoogle ScholarPubMed
Ribbert, LS, Snijders, RJ, Nicolaides, KH, Visser, GH. Relation of fetal blood gases and data from computer-assisted analysis of fetal heart rate patterns in small for gestation fetuses. Br J Obstet Gynaecol 1991; 98: 820–3.CrossRefGoogle ScholarPubMed
Smith, JH, Anand, KJ, Cotes, PM, et al. Antenatal fetal heart rate variation in relation to the respiratory and metabolic status of the compromised human fetus. Br J Obstet Gynaecol 1988; 95: 980–9.CrossRefGoogle ScholarPubMed
Ribbert, LSM, Visser, GHA, Mulder, EJH, Zonneveld, MF, Morssink, LP. Changes with time in fetal heart rate variation, movement incidences and haemodynamics in intrauterine growth retarded fetuses: A longitudinal approach to the assessment of fetal well being. Early Hum Dev 1993; 31: 195208.CrossRefGoogle ScholarPubMed
Pillai, M, James, D. Continuation of normal neurobehavioural development in fetuses with absent umbilical arterial end diastolic velocities. Br J Obstet Gynaecol 1991; 98: 277–81.CrossRefGoogle ScholarPubMed
Rizzo, G, Arduini, D, Pennestri, F, Romanini, C, Mancuso, S. Fetal behaviour in growth retardation: its relationship to fetal blood flow. Prenat Diagn 1987; 7: 229–38.CrossRefGoogle ScholarPubMed
Arduini, D, Rizzo, G, Capponi, A, Rinaldo, D, Romanini, C. Fetal pH value determined by cordocentesis: an independent predictor of the development of antepartum fetal heart rate decelerations in growth retarded fetuses with absent end-diastolic velocity in umbilical artery. J Perinat Med 1996; 24: 601–7.CrossRefGoogle ScholarPubMed
Baschat, AA. Integrated fetal testing in growth restriction: combining multivessel Doppler and biophysical parameters. Ultrasound Obstet Gynecol 2003; 21: 18.CrossRefGoogle ScholarPubMed
Weiner, CP, Williamson, RA. Evaluation of severe growth retardation using cordocentesis–hematologic and metabolic alterations by etiology. Obstet Gynecol 1989; 73: 225–9.Google ScholarPubMed
Thilaganathan, B, Athanasiou, S, Ozmen, S, et al. Umbilical cord blood erythroblast count as an index of intrauterine hypoxia. Arch Dis Child Fetal Neonatal Ed 1994; 70: F192–4.CrossRefGoogle ScholarPubMed
Maier, RF, Günther, A, Vogel, M, Dudenhausen, JW, Obladen, M. Umbilical venous erythropoietin and umbilical arterial pH in relation to morphologic placental abnormalities. Obstet Gynecol 1994; 84: 81–7.Google ScholarPubMed
Baschat, AA, Gembruch, U, Reiss, I, et al. Neonatal nucleated red blood cell counts in growth-restricted fetuses: Relationship to arterial and venous Doppler studies. Am J Obstet Gynecol 1999; 181: 190–5.CrossRefGoogle ScholarPubMed
Bernstein, PS, Minior, VK, Divon, MY. Neonatal nucleated red blood cell counts in small-for-gestational age fetuses with abnormal umbilical artery Doppler studies. Am J Obstet Gynecol 1997; 177: 1079–84.CrossRefGoogle ScholarPubMed
Trudinger, B, Song, JZ, Wu, ZH, Wang, J. Placental insufficiency is characterized by platelet activation in the fetus. Obstet Gynecol 2003; 101: 975–81.Google ScholarPubMed
Baschat, AA, Gembruch, U, Reiss, I, et al. Absent umbilical artery end-diastolic velocity in growth-restricted fetuses: a risk factor for neonatal thrombocytopenia. Obstet Gynecol 2000; 96: 162–6.Google ScholarPubMed
Rizzo, G, Capponi, A, Rinaldo, D, Arduini, D, Romanini, C. Ventricular ejection force in growth-retarded fetuses. Ultrasound Obstet Gynecol 1995; 5: 247–55.CrossRefGoogle ScholarPubMed
Hecher, K, Campbell, S, Doyle, P, Harrington, K, Nicolaides, K. Assessment of fetal compromise by Doppler ultrasound investigation of the fetal circulation. Arterial, intracardiac, and venous blood flow velocity studies. Circulation 1995; 91: 129–38.CrossRefGoogle ScholarPubMed
Kiserud, T, Eik-Nes, SH, Blaas, HG, Hellevik, LR, Simensen, B. Ductus venosus blood velocity and the umbilical circulation in the seriously growth-retarded fetus. Ultrasound Obstet Gynecol 1994; 4: 109–14.CrossRefGoogle ScholarPubMed
Rizzo, G, Capponi, A, Talone, PE, Arduini, D, Romanini, C. Doppler indices from inferior vena cava and ductus venosus in predicting pH and oxygen tension in umbilical blood at cordocentesis in growth-retarded fetuses. Ultrasound Obstet Gynecol 1996; 7: 401–10.CrossRefGoogle ScholarPubMed
Gudmundsson, S, Tulzer, G, Huhta, JC, Marsal, K. Venous Doppler in the fetus with absent end-diastolic flow in the umbilical artery. Ultrasound Obstet Gynecol 1996; 7: 262–7.CrossRefGoogle ScholarPubMed
Vintzileos, AM, Fleming, AD, Scorza, WE, et al. Relationship between fetal biophysical activities and umbilical cord blood gas values. Am J Obstet Gynecol 1991; 165: 707–13.CrossRefGoogle ScholarPubMed
Manning, FA, Snijders, R, Harman, CR, et al. Fetal biophysical profile score. VI. Correlation with antepartum umbilical venous fetal pH. Am J Obstet Gynecol 1993; 169: 755–63.Google ScholarPubMed
Guzman, ER, Vintzileos, AM, Martins, M, et al. The efficacy of individual computer heart rate indices in detecting acidemia at birth in growth-restricted fetuses. Obstet Gynecol 1996; 87: 969–74.CrossRefGoogle ScholarPubMed
Rizzo, G, Capponi, A, Pietropolli, A, et al. Fetal cardiac and extracardiac flows preceding intrauterine death. Ultrasound Obstet Gynecol 1994; 4: 139–42.CrossRefGoogle ScholarPubMed
Baschat, AA, Gembruch, U, Harman, CR. The sequence of changes in Doppler and biophysical parameters as severe fetal growth restriction worsens. Ultrasound Obstet Gynecol 2001; 18: 571–7.CrossRefGoogle ScholarPubMed
James, DK, Parker, MJ, Smoleniec, JS. Comprehensive fetal assessment with three ultrasonographic characteristics. Am J Obstet Gynecol 1992; 166: 1486–95.CrossRefGoogle ScholarPubMed
Harrington, K, Thompson, MO, Carpenter, RG, Nguyen, M, Campbell, S. Doppler fetal circulation in pregnancies complicated by pre-eclampsia or delivery of a small for gestational age baby: 2. Longitudinal analysis. Br J Obstet Gynaecol 1999; 106: 453–66.CrossRefGoogle ScholarPubMed
Ferrazzi, E, Bozzo, M, Rigano, S, et al. Temporal sequence of abnormal Doppler changes in the peripheral and central circulatory systems of the severely growth-restricted fetus. Ultrasound Obstet Gynecol 2002; 19: 140–6.CrossRefGoogle ScholarPubMed
Hecher, K, Bilardo, CM, Stigter, RH, et al. Monitoring of fetuses with intrauterine growth restriction: a longitudinal study. Ultrasound Obstet Gynecol 2001; 18: 564–70.CrossRefGoogle ScholarPubMed
Baschat, AA, Gembruch, U, Reiss, I, et al. Relationship between arterial and venous Doppler and perinatal outcome in fetal growth restriction. Ultrasound Obstet Gynecol 2000; 16: 407–13.CrossRefGoogle ScholarPubMed
Hershkovitz, R, Kingdom, JCP, Geary, M, Rodeck, CH. Fetal cerebral blood flow redistribution in late gestation: Identification of compromise in small fetuses with normal umbilical artery Doppler. Ultrasound Obstet Gynecol 2000; 15: 209–12.CrossRefGoogle ScholarPubMed
Vainio, M, Kujansuu, E, Iso-Mustajarvi, M, Maenpaa, J. Low dose acetylsalicylic acid in prevention of pregnancy-induced hypertension and intrauterine growth retardation in women with bilateral uterine artery notches. BJOG 2002; 109: 161–7.CrossRefGoogle ScholarPubMed
Poon, LC, Nicolaides, KH. First-trimester maternal factors and biomarker screening for preeclampsia. Prenat Diagn 2014; 34: 618–27.CrossRefGoogle ScholarPubMed
Seravalli, V, Block-Abraham, DM, Turan, OM, et al. First-trimester prediction of small-for-gestational age neonates incorporating fetal Doppler parameters and maternal characteristics. Am J Obstet Gynecol 2014; 211: 261.CrossRefGoogle ScholarPubMed
Odibo, AO, Zhong, Y, Goetzinger, KR, et al. First-trimester placental protein 13, PAPP-A, uterine artery Doppler and maternal characteristics in the prediction of pre-eclampsia. Placenta 2011; 32: 598602.CrossRefGoogle ScholarPubMed
Schneuer, FJ, Nassar, N, Khambalia, AZ, et al. First trimester screening of maternal placental protein 13 for predicting preeclampsia and small for gestational age: In-house study and systematic review. Placenta 2012; 33: 735–40.Google ScholarPubMed
Soregaroli, M, Valcamonico, A, Scalvi, L, Danti, L, Frusca, T. Late normalisation of uterine artery velocimetry in high risk pregnancy. Eur J Obstet Gynecol Reprod Biol 2001; 95: 42–5.CrossRefGoogle ScholarPubMed
Coleman, MAG, McCowan, LME, North, RA. Mid-trimester uterine artery Doppler screening as a predictor of adverse pregnancy outcome in high-risk women. Ultrasound Obstet Gynecol 2000; 15: 712.CrossRefGoogle ScholarPubMed
Yu, CKH, Papageorghiou, AT, Parra, M, Palma, Dias R, Nicolaides, KH. Randomized controlled trial using low-dose aspirin in the prevention of pre-eclampsia in women with abnormal uterine artery Doppler at 23 weeks’ gestation. Ultrasound Obstet Gynecol 2003; 22: 233–9.CrossRefGoogle Scholar
Seravalli, V, Block-Abraham, DM, Turan, OM, et al. Second-trimester prediction of delivery of a small-for-gestational-age neonate: integrating sequential Doppler information, fetal biometry, and maternal characteristics. Prenat Diagn 2014; 34: 1037–43.CrossRefGoogle ScholarPubMed
Warsof, SL, Cooper, DJ, Little, D, Campbell, S. Routine ultrasound screening for antenatal detection of intrauterine growth retardation. Obstet Gynecol 1986; 67: 33–9.Google ScholarPubMed
Bakketeig, LS, Eik-Nes, SH, Jacobsen, G. Randomised controlled trial of ultrasonographic screening in pregnancy. Lancet 1984; 2: 207–11.Google ScholarPubMed
Hadlock, FP, Deter, RL, Carpenter, RJ, Park, SK. Estimating fetal age: effect of head shape on BPD. AJR Am J Roentgenol 1981; 137: 83–5.CrossRefGoogle ScholarPubMed
Papageorghiou, AT, Ohuma, EO, Altman, DG, et al. International standards for fetal growth based on serial ultrasound measurements: the Fetal Growth Longitudinal Study of the INTERGROWTH-21st Project. Lancet 2014; 384: 869–79. https://doi.org/10.1016/S0140-6736(14)61490-2.CrossRefGoogle ScholarPubMed
Tamura, RK, Sabbagha, RE, Pan, WH, Vaisrub, N. Ultrasonic fetal abdominal circumference: comparison of direct versus calculated measurement. Obstet Gynecol 1986; 67: 833–5.CrossRefGoogle ScholarPubMed
Smith, PA, Johansson, D, Tzannatos, C, Campbell, S. Prenatal measurement of the fetal cerebellum and cisterna cerebellomedullaris by ultrasound. Prenat Diagn 1986; 6: 133–41.CrossRefGoogle ScholarPubMed
Campbell, S, Thoms, A. Ultrasound measurement of the fetal head to abdomen circumference ratio in the assessment of growth retardation. Br J Obstet Gynaecol 1977; 84: 165–74.Google ScholarPubMed
Gray, DL, Songster, GS, Parvin, CA, Crane, JP. Cephalic index: a gestational age-dependent biometric parameter. Obstet Gynecol 1989; 74: 600–3.CrossRefGoogle ScholarPubMed
Hadlock, FP, Harrist, RB, Shah, Y, Park, SK. The femur length/head circumference relation in obstetric sonography. J Ultrasound Med 1984; 3: 439–42.CrossRefGoogle Scholar
Sarmandal, P, Grant, JM. Effectiveness of ultrasound determination of fetal abdominal circumference and fetal ponderal index in the diagnosis of asymmetrical growth retardation. Br J Obstet Gynaecol 1990; 97: 118–23.CrossRefGoogle ScholarPubMed
Hadlock, FP, Deter, RL, Harrist, RB, Roecker, E, Park, SK. A date-independent predictor of intrauterine growth retardation: Femur length/abdominal circumference ratio. AJR Am J Roentgenol 1983; 141: 979–84.CrossRefGoogle ScholarPubMed
Shepard, MJ, Richards, VA, Berkowitz, RL, Warsof, SL, Hobbins, JC. An evaluation of two equations for predicting fetal weight by ultrasound. Am J Obstet Gynecol 1982; 142: 4754.CrossRefGoogle ScholarPubMed
Hadlock, FP, Harrist, RB, Sharman, RS, Deter, RL, Park, SK. Estimation of fetal weight with the use of head, body, and femur measurements: a prospective study. Am J Obstet Gynecol 1985; 151: 333–7. https://doi.org/10.1016/0002-9378(85)90298-4.Google ScholarPubMed
Weiner, CP, Sabbagha, RE, Vaisrub, N, Socol, ML. Ultrasonic fetal weight prediction: role of head circumference and femur length. Obstet Gynecol 1985; 65: 812–17.Google ScholarPubMed
Stirnemann, J, Villar, J, Salomon, LJ, et al. International estimated fetal weight standards of the INTERGROWTH-21st project. Ultrasound Obstet Gynecol 2017; 49: 478–86. https://doi.org/10.1002/uog.17347.CrossRefGoogle ScholarPubMed
Salomon, LJ, Alfirevic, Z, Da Silva Costa, F, et al. ISUOG Practice Guidelines: ultrasound assessment of fetal biometry and growth. Ultrasound Obstet Gynecol 2019; 53: 715–23. https://doi.org/10.1002/uog.20272.CrossRefGoogle ScholarPubMed
Chamberlain, PF, Manning, FA, Morrison, I, Harman, CR, Lange, IR. Ultrasound evaluation of amniotic fluid volume. II. The relationship of increased amniotic fluid volume to perinatal outcome. Am J Obstet Gynecol 1984; 150: 250–4.CrossRefGoogle ScholarPubMed
Manning, FA, Hill, LM, Platt, LD. Qualitative amniotic fluid volume determination by ultrasound: antepartum detection of intrauterine growth retardation. Am J Obstet Gynecol 1981; 139: 254–8.CrossRefGoogle ScholarPubMed
Baschat, AA, Gembruch, U. The cerebroplacental Doppler ratio revisited. Ultrasound Obstet Gynecol 2003; 21: 124–7.CrossRefGoogle ScholarPubMed
Reed, KL, Appleton, CP, Anderson, CF, Shenker, L, Sahn, DJ. Doppler studies of vena cava flows in human fetuses. Insights into normal and abnormal cardiac physiology. Circulation 1990; 81: 498505.CrossRefGoogle ScholarPubMed
Hecher, K, Campbell, S, Snijders, R, Nicolaides, K. Reference ranges for fetal venous and atrioventricular blood flow parameters. Ultrasound Obstet Gynecol 1994; 4: 381–90.CrossRefGoogle ScholarPubMed
Kanzaki, T, Chiba, Y. Evaluation of the preload condition of the fetus by inferior vena caval blood flow pattern. Fetal Diagn Ther 1990; 5: 168–74.CrossRefGoogle ScholarPubMed
DeVore, GR, Horenstein, J. Ductus venosus index: a method for evaluating right ventricular preload in the second-trimester fetus. Ultrasound Obstet Gynecol 1993; 3: 338–42.CrossRefGoogle ScholarPubMed
Baschat, AA, Güclü, S, Kush, ML, et al. Venous Doppler in the prediction of acid-base status of growth-restricted fetuses with elevated placental blood flow resistance. Am J Obstet Gynecol 2004; 191: 277–84.CrossRefGoogle ScholarPubMed
Ott, WJ. Intrauterine growth restriction and Doppler ultrasonography. J Ultrasound Med 2000; 19: 661–5.CrossRefGoogle ScholarPubMed
Strigini, FAL, De Luca, G, Lencioni, G, et al. Middle cerebral artery velocimetry: Different clinical relevance depending on umbilical velocimetry. Obstet Gynecol 1997; 90: 953–7.CrossRefGoogle ScholarPubMed
Severi, FM, Bocchi, C, Visentin, A, et al. Uterine and fetal cerebral Doppler predict the outcome of third-trimester small-for-gestational age fetuses with normal umbilical artery Doppler. Ultrasound Obstet Gynecol 2002; 19: 225–8.CrossRefGoogle ScholarPubMed
McCowan, LM, Harding, JE, Roberts, AB, et al. A pilot randomized controlled trial of two regimens of fetal surveillance for small-for-gestational-age fetuses with normal results of umbilical artery Doppler velocimetry. Am J Obstet Gynecol 2000; 182: 81–6.CrossRefGoogle ScholarPubMed
Westergaard, HB, Langhoff-Roos, J, Lingman, G, Marsál, K, Kreiner, S. A critical appraisal of the use of umbilical artery Doppler ultrasound in high-risk pregnancies: Use of meta-analyses in evidence-based obstetrics. Ultrasound Obstet Gynecol 2001; 17: 466–76.CrossRefGoogle ScholarPubMed
Flood, K, Unterscheider, J, Daly, S, et al. The role of brain sparing in the prediction of adverse outcomes in intrauterine growth restriction: Results of the multicenter PORTO Study. American Journal of Obstetrics and Gynecology 2014; 211: 288.e1–5.Google ScholarPubMed
Bahado-Singh, RO, Kovanci, E, Jeffres, A, et al. The Doppler cerebroplacental ratio and perinatal outcome in intrauterine growth restriction. Am J Obstet Gynecol 1999; 180: 750–6.Google ScholarPubMed
Ribbert, LS, Snijders, RJ, Nicolaides, KH, Visser, GH. Relationship of fetal biophysical profile and blood gas values at cordocentesis in severely growth-retarded fetuses. Am J Obstet Gynecol 1990; 163: 569–71.CrossRefGoogle ScholarPubMed
Clausson, B, Cnattingius, S, Axelsson, O. Outcomes of post-term births: the role of fetal growth restriction and malformations. Obstet Gynecol 1999; 94: 758–62.CrossRefGoogle Scholar
Frøen, JF, Gardosi, JO, Thurmann, A, Francis, A, Stray-Pedersen, B. Restricted fetal growth in sudden intrauterine unexplained death. Acta Obstet Gynecol Scand 2004; 83: 801–7.CrossRefGoogle ScholarPubMed
Kupferminc, MJ, Many, A, Bar-Am, A, Lessing, JB, Ascher-Landsberg, J. Mid-trimester severe intrauterine growth restriction is associated with a high prevalence of thrombophilia. BJOG 2002; 109: 1373–6.CrossRefGoogle ScholarPubMed
Doubilet, PM, Benson, CB, Wilkins-Haug, L, Ringer, S. Fetuses subsequently born premature are smaller than gestational age-matched fetuses not born premature. J Ultrasound Med 2003; 22: 359–63.CrossRefGoogle ScholarPubMed
Gordijn, SJ, Beune, IM, Thilaganathan, B, et al. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet Gynecol 2016; 48: 333–9. https://doi.org/10.1002/uog.15884.CrossRefGoogle ScholarPubMed
Van den Veyver, IB, Ni, J, Bowles, N, et al. Detection of intrauterine viral infection using the polymerase chain reaction. Mol Genet Metab 1998; 63: 8595.CrossRefGoogle ScholarPubMed
Baschat, AA, Towbin, J, Bowles, NE, Harman, CR, Weiner, CP. Is adenovirus a fetal pathogen? Am J Obstet Gynecol 2003; 189: 758–63.CrossRefGoogle ScholarPubMed
Gudmundsson, S, Lindblad, A, Marsál, K. Cord blood gases and absence of end-diastolic blood velocities in the umbilical artery. Early Hum Dev 1990; 24: 231–7.CrossRefGoogle ScholarPubMed
Yoon, BH, Romero, R, Roh, CR, et al. Relationship between the fetal biophysical profile score, umbilical artery Doppler velocimetry, and fetal blood acid-base status determined by cordocentesis. Am J Obstet Gynecol 1993; 169: 1586–94.Google ScholarPubMed
Nicolini, U, Nicolaidis, P, Fisk, NM, et al. Limited role of fetal blood sampling in prediction of outcome in intrauterine growth retardation. Lancet 1990; 336: 768–72.Google ScholarPubMed
Hecher, K, Snijders, R, Campbell, S, Nicolaides, K. Fetal venous, intracardiac, and arterial blood flow measurements in intrauterine growth retardation: Relationship with fetal blood gases. Am J Obstet Gynecol 1995; 173: 1015.CrossRefGoogle ScholarPubMed
Rizzo, G, Capponi, A, Arduini, D, Romanini, C. The value of fetal arterial, cardiac and venous flows in predicting pH and blood gases measured in umbilical blood at cordocentesis in growth retarded fetuses. Br J Obstet Gynaecol 1995; 102: 963–9.CrossRefGoogle ScholarPubMed
Baschat, AA, Gembruch, U, Weiner, CP, Harman, CR. Qualitative venous Doppler waveform analysis improves prediction of critical perinatal outcomes in premature growth-restricted fetuses. Ultrasound Obstet Gynecol 2003; 22: 240–5.Google ScholarPubMed
Ley, D, Tideman, E, Laurin, J, Bjerre, I, Marsal, K. Abnormal fetal aortic velocity waveform and intellectual function at 7 years of age. Ultrasound Obstet Gynecol 1996; 8: 160–5.CrossRefGoogle ScholarPubMed
Škrablin, S, Kalafatić, D, Banović, I, et al. Antenatal predictors of the neurologic sequelae at 3 years of age: a multivariate analysis. Eur J Obstet Gynecol Reprod Biol 2000; 93: 173–80.CrossRefGoogle ScholarPubMed
Fouron, JC, Gosselin, J, Raboisson, MJ, et al. The relationship between an aortic isthmus blood flow velocity index and the postnatal neurodevelopmental status of fetuses with placental circulatory insufficiency. Am J Obstet Gynecol 2005; 192: 497503.CrossRefGoogle ScholarPubMed
Thornton, JG, Hornbuckle, J, Vail, A, Spiegelhalter, DJ, Levene, M.; GRIT Study Group. Infant wellbeing at 2 years of age in the Growth Restriction Intervention Trial (GRIT): multicentred randomised controlled trial. Lancet 2004; 364: 513–20.CrossRefGoogle ScholarPubMed
Baschat, AA, Viscardi, RM, Hussey-Gardner, B, Hashmi, N, Harman, C. Infant neurodevelopment following fetal growth restriction: Relationship with antepartum surveillance parameters. Ultrasound Obstet Gynecol 2009; 33: 4450.Google Scholar
Schreuder, AM, McDonnell, M, Gaffney, G, Johnson, A, Hope, PL. Outcome at school age following antenatal detection of absent or reversed end diastolic flow velocity in the umbilical artery. Arch Dis Child Fetal Neonatal Ed 2002; 86: F108–14.CrossRefGoogle ScholarPubMed
Eixarch, E, Meler, E, Iraola, A, et al. Neurodevelopmental outcome in 2-year-old infants who were small-for-gestational age term fetuses with cerebral blood flow redistribution. Ultrasound Obstet Gynecol 2008; 32: 894–9.CrossRefGoogle ScholarPubMed
Scherjon, S, Briët, J, Oosting, H, Kok, J. The discrepancy between maturation of visual-evoked potentials and cognitive outcome at five years in very preterm infants with and without hemodynamic signs of fetal brain-sparing. Pediatrics 2000; 105: 385–91.Google ScholarPubMed
Manning, FA. Fetal biophysical profile: a critical appraisal. Clin Obstet Gynecol 2002; 5: 975–85.CrossRefGoogle ScholarPubMed
Arabin, B, Becker, R, Mohnhaupt, A, Entezami, M, Weitzel, HK. Prediction of fetal distress and poor outcome in intrauterine growth retardation: a comparison of fetal heart rate monitoring combined with stress tests and Doppler ultrasound. Fetal Diagn Ther 1993; 8: 234–40.CrossRefGoogle ScholarPubMed
Ott, WJ, Mora, G, Arias, F, Sunderji, S, Sheldon, G. Comparison of the modified biophysical profile to a “new” biophysical profile incorporating the middle cerebral artery to umbilical artery velocity flow systolic/diastolic ratio. Am J Obstet Gynecol 1998; 178: 1346–53.CrossRefGoogle ScholarPubMed
Weiner, Z, Farmakides, G, Schulman, H, Lopresti, S, Schneider, E. Surveillance of growth-retarded fetuses with computerized fetal heart rate monitoring combined with Doppler velocimetry of the umbilical and uterine arteries. J Reprod Med 1996; 41: 112–18.CrossRefGoogle ScholarPubMed
Arabin, B, Snyjders, R, Mohnhaupt, A, Ragosch, V, Nicolaides, K. Evaluation of the fetal assessment score in pregnancies at risk for intrauterine hypoxia. Am J Obstet Gynecol 1993; 169: 549–54.CrossRefGoogle Scholar
Turan, S, Turan, OM, Berg, C, et al. Computerized fetal heart rate analysis, Doppler ultrasound and biophysical profile score in the prediction of acid-base status of growth-restricted fetuses. Ultrasound Obstet Gynecol 2007; 30: 750–6.CrossRefGoogle ScholarPubMed
Turan, OM, Turan, S, Gungor, S, et al. Progression of Doppler abnormalities in intrauterine growth restriction. Ultrasound Obstet Gynecol 2008; 32: 160–7.CrossRefGoogle ScholarPubMed
Wapner, RJ, Martin, CL, Levy, B, et al. Chromosomal microarray versus karyotyping for prenatal diagnosis. N Engl J Med 2012; 367: 2175–84.Google Scholar
GRIT Study Group. A randomised trial of timed delivery for the compromised preterm fetus: short term outcomes and Bayesian interpretation. BJOG 2003; 110: 2732.CrossRefGoogle ScholarPubMed
Trudinger, BJ, Cook, CM, Thompson, RS, Giles, WB, Connelly, A. Low-dose aspirin therapy improves fetal weight in umbilical placental insufficiency. Am J Obstet Gynecol 1988; 159: 681–5.Google ScholarPubMed
Newnham, JP, Godfrey, M, Walters, BJ, Phillips, J, Evans, SF. Low dose aspirin for the treatment of fetal growth restriction: a randomized controlled trial. Aust N Z J Obstet Gynaecol 1995; 35: 370–4.CrossRefGoogle ScholarPubMed
CLASP (Collaborative Low-dose Aspirin Study in Pregnancy) Collaborative Group. CLASP: a randomised trial of low-dose aspirin for the prevention and treatment of pre-eclampsia among 9364 pregnant women. Lancet 1994; 343: 619–29.Google ScholarPubMed
Kozer, E, Nikfar, S, Costei, A, et al. Aspirin consumption during the first trimester of pregnancy and congenital anomalies: A meta-analysis. Am J Obstet Gynecol 2002; 187: 1623–30.CrossRefGoogle ScholarPubMed
Nicolaides, KH, Campbell, S, Bradley, RJ, et al. Maternal oxygen therapy for intrauterine growth retardation. Lancet 1987; 1: 942–5.CrossRefGoogle ScholarPubMed
Battaglia, C, Artini, PG, D’Ambrogio, G, et al. Maternal hyperoxygenation in the treatment of intrauterine growth retardation. Am J Obstet Gynecol 1992; 167: 430–5.CrossRefGoogle ScholarPubMed
Karsdorp, VH, van Vugt, JM, Dekker, GA, van Geijn, HP. Reappearance of end-diastolic velocities in the umbilical artery following maternal volume expansion: a preliminary study. Obstet Gynecol 1992; 80: 679–83.CrossRefGoogle Scholar
Ronzoni, S, Marconi, AM, Paolini, CL, et al. The effect of a maternal infusion of amino acids on umbilical uptake in pregnancies complicated by intrauterine growth restriction. Am J Obstet Gynecol 2002; 187: 741–6.Google ScholarPubMed
Ley, D, Wide-Swensson, D, Lindroth, M, Svenningsen, N, Marsal, K. Respiratory distress syndrome in infants with impaired intrauterine growth. Acta Paediatr 1997; 86: 1090–6.CrossRefGoogle ScholarPubMed
Unterscheider, J, O’Donoghue, K, Daly, S, et al. Fetal growth restriction and the risk of perinatal mortality-case studies from the multicentre PORTO study. BMC Pregnancy Childbirth 2014; 14: 63.CrossRefGoogle ScholarPubMed
Lees, C, Marlow, N, Arabin, B, et al. Perinatal morbidity and mortality in early-onset fetal growth restriction: cohort outcomes of the trial of randomized umbilical and fetal flow in Europe (TRUFFLE). Ultrasound Obstet Gynecol 2013; 42: 400–8.CrossRefGoogle ScholarPubMed
Unterscheider, J, Daly, S, Geary, MP, et al. Optimizing the definition of intrauterine growth restriction: the multicenter prospective PORTO study. Am J Obstet Gynecol 2013; 208: 290.e1–6.CrossRefGoogle ScholarPubMed
Divon, MY, Girz, BA, Lieblich, R, Langer, O. Clinical management of the fetus with markedly diminished umbilical artery end-diastolic flow. Am J Obstet Gynecol 1989; 161: 1523–7.CrossRefGoogle ScholarPubMed
Baschat, AA, Gembruch, U, Harman, CR. The sequence of changes in Doppler and biophysical parameters as severe fetal growth restriction worsens. Ultrasound Obstet Gynecol 2001; 18: 571–7.CrossRefGoogle ScholarPubMed
Cosmi, E, Ambrosini, G, D’Antona, D, Saccardi, C, Mari, G. Doppler, cardiotocography, and biophysical profile changes in growth-restricted fetuses. Obstet Gynecol 2005; 106: 1240–5.CrossRefGoogle ScholarPubMed
Hernandez-Andrade, E, Stampalija, T, Figueras, F. Cerebral blood flow studies in the diagnosis and management of intrauterine growth restriction. Curr Opin Obstet Gynecol 2013; 25: 138–44.Google ScholarPubMed
Cruz-Martínez, R, Figueras, F, Hernandez-Andrade, E, Oros, D, Gratacos, E. Fetal brain Doppler to predict cesarean delivery for nonreassuring fetal status in term small-for-gestational-age fetuses. Obstet Gynecol 2011; 117: 618–26.CrossRefGoogle ScholarPubMed
Baschat, AA, Cosmi, E, Bilardo, CM, et al. Predictors of neonatal outcome in early-onset placental dysfunction. Obstet Gynecol 2007; 109: 253–61.Google ScholarPubMed
Soothill, PW, Ajayi, RA, Campbell, S, Ross, EM, Nicolaides, KH. Fetal oxygenation at cordocentesis, maternal smoking and childhood neuro-development. Eur J Obstet Gynecol Reprod Biol 1995; 59: 21–4.CrossRefGoogle ScholarPubMed
Kahn, B, Lumey, LH, Zybert, PA, et al. Prospective risk of fetal death in singleton, twin, and triplet gestations: implications for practice. Obstet Gynecol 2003; 102: 685–92.CrossRefGoogle ScholarPubMed
Baschat, AA. Planning management and delivery of the growth-restricted fetus. Best Pract Res Clin Obstet Gynaecol 2018; 49: 5365. doi: 10.1016/j.bpobgyn.2018.02.009.CrossRefGoogle ScholarPubMed
Lees, CC, Marlow, N, van Wassenaer-Leemhuis, A, et al. 2 year neurodevelopmental and intermediate perinatal outcomes in infants with very preterm fetal growth restriction (TRUFFLE): a randomised trial. Lancet 2015; 385: 2162–72.CrossRefGoogle ScholarPubMed
Trudell, AS, Cahill, AG, Tuuli, MG, Macones, GA, Odibo, AO. Risk of stillbirth after 37 weeks in pregnancies complicated by small-for-gestational-age fetuses. Am J Obstet Gynecol 2013; 208: 376.e1–7.CrossRefGoogle ScholarPubMed
Boers, KE, van Wyk, L, van der Post, JAM, et al. Neonatal morbidity after induction vs expectant monitoring in intrauterine growth restriction at term: a subanalysis of the DIGITAT RCT. Am J Obstet Gynecol 2012; 206: 344.e1–7.CrossRefGoogle ScholarPubMed
Sotiriadis, A, Tsiami, A, Papatheodorou, S, et al. Neurodevelopmental outcome after a single course of antenatal steroids in preterm infants: a systematic review and meta-analysis. Obstet Gynecol 2015; 125: 1385–96.CrossRefGoogle ScholarPubMed
Baschat, AA. Neurodevelopment after fetal growth restriction. Fetal Diagn Ther 2014; 36: 136–42.CrossRefGoogle ScholarPubMed
Arcangeli, T, Thilaganathan, B, Hooper, R, Khan, KS, Bhide, A. Neurodevelopmental delay in small babies at term: a systematic review. Ultrasound Obstet Gynecol 2012; 40: 267–75.CrossRefGoogle ScholarPubMed
Figueras, F, Oros, D, Cruz-Martinez, R, et al. Neurobehavior in term, small-for-gestational age infants with normal placental function. Pediatrics 2009; 124: e934–41.Google ScholarPubMed
Figueras, F, Eixarch, E, Meler, E, et al. Small-for-gestational-age fetuses with normal umbilical artery Doppler have suboptimal perinatal and neurodevelopmental outcome. Eur J Obstet Gynecol Reprod Biol 2008; 136: 34–8.CrossRefGoogle ScholarPubMed
Figueras, F, Cruz-Martinez, R, Sanz-Cortes, M, et al. Neurobehavioral outcomes in preterm, growth-restricted infants with and without prenatal advanced signs of brain-sparing. Ultrasound Obstet Gynecol 2011; 38: 288–94.Google ScholarPubMed
Llurba, E, Baschat, AA, Turan, OM, Harding, J, McCowan, LM. Childhood cognitive development after fetal growth restriction. Ultrasound Obstet Gynecol 2013; 41: 383–9.CrossRefGoogle ScholarPubMed
Savchev, S, Sanz-Cortes, M, Cruz-Martinez, R, et al. Neurodevelopmental outcome of full-term small-for-gestational-age infants with normal placental function. Ultrasound Obstet Gynecol 2013; 42: 201–6.CrossRefGoogle ScholarPubMed
Van Wyk, L, Boers, KE, Van Der Post, JAM, et al. Effects on (neuro)developmental and behavioral outcome at 2 years of age of induced labor compared with expectant management in intrauterine growth-restricted infants: long-term outcomes of the DIGITAT trial. Am J Obstet Gynecol 2012; 206: 406.e1–7.CrossRefGoogle ScholarPubMed
Baschat, AA, Weiner, CP. Umbilical artery Doppler screening for detection of the small fetus in need of antepartum surveillance. Am J Obstet Gynecol 2000; 182: 154–8.CrossRefGoogle Scholar
Spellacy, WN, Miller, S, Winegar, A, Peterson, PQ. Macrosomia: maternal characteristics and infant complications. Obstet Gynecol 1985; 66: 158–61.Google ScholarPubMed
Menticoglou, SM, Manning, FA, Morrison, I, Harman, CR. Must macrosomic fetuses be delivered by a caesarean section? A review of outcome for 786 babies greater than or equal to 4,500 g. Aust N Z J Obstet Gynaecol 1992; 32: 100–3.CrossRefGoogle ScholarPubMed
Lipscomb, KR, Gregory, K, Shaw, K. The outcome of macrosomic infants weighing at least 4500 grams: Los Angeles county + University of Southern California experience. Obstet Gynecol 1995; 85: 558–64.CrossRefGoogle ScholarPubMed
Babinszki, A, Kerenyi, T, Torok, O, et al. Perinatal outcome in grand and great-grand multiparity: Effects of parity on obstetric risk factors. Am J Obstet Gynecol 1999; 181: 669–74.CrossRefGoogle ScholarPubMed
Dooley, SL, Metzger, BE, Cho, NH. Gestational diabetes mellitus: influence of race on disease prevalence and perinatal outcome in a U.S. population. Diabetes 1991; 40 (Suppl 2): 25–9.Google Scholar
Okun, N, Verma, A, Mitchell, BF, Flowerdew, G. Relative importance of maternal constitutional factors and glucose intolerance of pregnancy in the development of newborn macrosomia. J Matern Fetal Med 1997; 6: 285–90.Google ScholarPubMed
Black, MH, Sacks, DA, Xiang, AH, Lawrence, JM. The relative contribution of prepregnancy overweight and obesity, gestational weight gain, and IADPSG-defined gestational diabetes mellitus to fetal overgrowth. Diabetes Care 2013; 36: 5662.CrossRefGoogle ScholarPubMed
Gaudet, L, Ferraro, ZM, Wen, SW, Walker, M. Maternal obesity and occurrence of fetal macrosomia: a systematic review and meta-analysis. Biomed Res Int 2014; 2014: 640291.CrossRefGoogle ScholarPubMed
Cogswell, ME, Serdula, MK, Hungerford, DW, Yip, R. Gestational weight gain among average-weight and overweight women–what is excessive? Am J Obstet Gynecol 1995; 172: 705–12.CrossRefGoogle ScholarPubMed
Ogunyemi, D, Hullett, S, Leeper, J, Risk, A. Prepregnancy body mass index, weight gain during pregnancy, and perinatal outcome in a rural black population. J Matern Fetal Med 1998; 7: 190–3.Google Scholar
Lazer, S, Biale, Y, Mazor, M, Lewenthal, H, Insler, V. Complications associated with the macrosomic fetus. J Reprod Med 1986; 31: 501–5.Google ScholarPubMed
Klebanoff, MA, Mills, JL, Berendes, HW. Mother’s birth weight as a predictor of macrosomia. Am J Obstet Gynecol 1985; 153: 253–7.Google ScholarPubMed
Langer, O, Levy, J, Brustman, L, et al. Glycemic control in gestational diabetes mellitus–how tight is tight enough: small for gestational age versus large for gestational age? Am J Obstet Gynecol 1989; 161: 646–53.CrossRefGoogle ScholarPubMed
Carpenter, MW, Canick, JA, Hogan, JW, et al. Amniotic fluid insulin at 14–20 weeks’ gestation: Association with later maternal glucose intolerance and birth macrosomia. Diabetes Care 2001; 24: 1259–63.CrossRefGoogle ScholarPubMed
Metzger, BE, Lowe, LP, Dyer, AR, et al.; HAPO Study Cooperative Research Group. Hyperglycemia and adverse pregnancy outcome. N Engl J Med 2008; 358: 19912002.Google ScholarPubMed
Nasrat, H, Abalkhail, B, Fageeh, W, Shabat, A, El Zahrany, F. Anthropometric measurements of newborns of gestational diabetic mothers: does it indicate disproportionate fetal growth? J Matern Fetal Med 1997; 6: 291–5.Google ScholarPubMed
McFarland, MB, Trylovich, CG, Langer, O. Anthropometric differences in macrosomic infants of diabetic and nondiabetic mothers. J Matern Fetal Med 1998; 7: 292–5.CrossRefGoogle ScholarPubMed
Ferber, A. Maternal complications of fetal macrosomia. Clin Obstet Gynecol 2000; 43: 335–9.CrossRefGoogle ScholarPubMed
Boulet, SL, Alexander, GR, Salihu, HM, Pass, M. Macrosomic births in the United States: Determinants, outcomes, and proposed grades of risk. Am J Obstet Gynecol 2003; 188: 1372–8.CrossRefGoogle ScholarPubMed
Perlow, JH, Wigton, T, Hart, J, et al. Birth trauma. A five-year review of incidence and associated perinatal factors. J Reprod Med 1996; 41: 754–60.CrossRefGoogle Scholar
Acker, DB, Gregory, KD, Sachs, BP, Friedman, EA. Risk factors for Erb-Duchenne palsy. Obstet Gynecol 1988; 71: 389–92.CrossRefGoogle ScholarPubMed
Ecker, JL, Greenberg, JA, Norwitz, ER, Nadel, AS, Repke, JT. Birth weight as a predictor of brachial plexus injury. Obstet Gynecol 1997; 89: 643–7.CrossRefGoogle Scholar
Esakoff, TF, Cheng, YW, Sparks, TN, Caughey, AB. The association between birthweight 4000 g or greater and perinatal outcomes in patients with and without gestational diabetes mellitus. Am J Obstet Gynecol 2009; 200: 672.e1–4.CrossRefGoogle ScholarPubMed
Chez, RA, Carlan, S, Greenberg, SL, Spellacy, WN. Fractured clavicle is an unavoidable event. Am J Obstet Gynecol 1994; 171: 797–8.CrossRefGoogle ScholarPubMed
Gherman, RB, Ouzounian, JG, Goodwin, TM. Brachial plexus palsy: an in utero injury? Am J Obstet Gynecol 1999; 180: 1303–7.Google ScholarPubMed
Bérard, J, Dufour, P, Vinatier, D, Subtil, D, Vanderstichèle, S, Monnier, JC, et al. Fetal macrosomia: Risk factors and outcome. A study of the outcome concerning 100 cases >4500 g. Eur J Obstet Gynecol Reprod Biol 1998; 77: 51–9.CrossRefGoogle ScholarPubMed
Catalano, PM, Ehrenberg, HM. The short- and long-term implications of maternal obesity on the mother and her offspring. BJOG 2006; 113: 1126–33.Google Scholar
Stones, RW, Paterson, CM, Saunders, NJ. Risk factors for major obstetric haemorrhage. Eur J Obstet Gynecol Reprod Biol 1993; 48: 15–8.CrossRefGoogle ScholarPubMed
El Madany, AA, Jallad, KB, Radi, FA, El Hamdan, H, O’deh, HM. Shoulder dystocia: Anticipation and outcome. Int J Gynecol Obstet 1991; 34: 712.CrossRefGoogle ScholarPubMed
Baschat, AA, Harman, CR, Farid, G, Chodirker, BN, Evans, JA. Very low second-trimester maternal serum alpha-fetoprotein: Association with high birth weight. Obstet Gynecol 2002; 99: 531–6.Google ScholarPubMed
Wikström, I, Bergström, R, Bakketeig, L, Jacobsen, G, Lindmark, G. Prediction of high birthweight from maternal characteristics, symphysis fundal height and ultrasound biometry. Gynecol Obstet Invest 1993; 35: 2733.CrossRefGoogle ScholarPubMed
Neilson, JP. Symphysis–fundal height measurement in pregnancy. Cochrane Database Syst Rev 2000; (2): CD000944.CrossRefGoogle ScholarPubMed
Gonen, R, Spiegel, D, Abend, M. Is macrosomia predictable, and are shoulder dystocia and birth trauma preventable? Obstet Gynecol 1996; 88: 526–9.CrossRefGoogle ScholarPubMed
Chauhan, SP, Hendrix, NW, Magann, EF, et al. Limitations of clinical and sonographic estimates of birth weight: Experience with 1034 parturients. Obstet Gynecol 1998; 91: 72–7.CrossRefGoogle ScholarPubMed
Chauhan, SP, Sullivan, CA, Lutton, TC, Magann, EF, Morrison, JC. Parous patients’ estimate of birth weight in postterm pregnancy. J Perinatol 1995; 15: 192–4.Google ScholarPubMed
Sherman, DJ, Arieli, S, Tovbin, J, Siegel, G, Caspi, E, Bukovsky, I. A comparison of clinical and ultrasonic estimation of fetal weight. Obstet Gynecol 1998; 91: 212–17.CrossRefGoogle ScholarPubMed
Chauhan, SP, Cowan, BD, Magann, EF, Bradford, TH, Roberts, WE, Morrison, JC. Intrapartum detection of a macrosomic fetus: clinical versus 8 sonographic models. Aust N Z J Obstet Gynaecol 1995; 35: 266–70.Google ScholarPubMed
Benacerraf, BR, Gelman, R, Frigoletto, FD. Sonographically estimated fetal weights: accuracy and limitation. Am J Obstet Gynecol 1988; 159: 1118–21.Google ScholarPubMed
Smith, GC, Smith, MF, McNay, MB, Fleming, JE. The relation between fetal abdominal circumference and birthweight: findings in 3512 pregnancies. Br J Obstet Gynaecol 1997; 104: 186–90.CrossRefGoogle ScholarPubMed
O’Reilly-Green, CP, Divon, MY. Receiver operating characteristic curves of sonographic estimated fetal weight for prediction of macrosomia in prolonged pregnancies. Ultrasound Obstet Gynecol 1997; 9: 403–8.CrossRefGoogle ScholarPubMed
Alsulyman, OM, Ouzounian, JG, Kjos, SL. The accuracy of intrapartum ultrasonographic fetal weight estimation in diabetic pregnancies. Am J Obstet Gynecol 1997; 177: 503–6.CrossRefGoogle ScholarPubMed
Rigano, S, Ferrazzi, E, Radaelli, T, Cetin, ET, Pardi, G. Sonographic measurements of subcutaneous fetal fat in pregnancies complicated by gestational diabetes and in normal pregnancies. Croat Med J 2000; 41: 240–4.CrossRefGoogle ScholarPubMed
Combs, CA, Jaekle, RK, Rosenn, B, Pope, M, Miodovnik, M, Siddiqi, TA. Sonographic estimation of fetal weight based on a model of fetal volume. Obstet Gynecol 1993; 82: 365–70.Google ScholarPubMed
Hawkins, JS, Casey, BM, Lo, JY, Moss, K, McIntire, DD, Leveno, KJ. Weekly compared with daily blood glucose monitoring in women with diet-treated gestational diabetes. Obstet Gynecol 2009; 113: 1307–12.
Gonen, O, Rosen, DJD, Dolfin, Z, et al. Induction of labor versus expectant management in macrosomia: A randomized study. Obstet Gynecol 1997; 89: 913–17.
Sanchez-Ramos, L, Bernstein, S, Kaunitz, AM. Expectant management versus labor induction for suspected fetal macrosomia: a systematic review. Obstet Gynecol 2002; 100: 9971002.
Rouse, DJ, Owen, J, Goldenberg, RL, Cliver, SP. The effectiveness and costs of elective cesarean delivery for fetal macrosomia diagnosed by ultrasound. JAMA 1996; 276: 1480–6.
Flamm, BL, Goings, JR. Vaginal birth after cesarean section: is suspected fetal macrosomia a contraindication? Obstet Gynecol 1989; 74: 694–7.
Brace, RA. Physiology of amniotic fluid volume regulation. Clin Obstet Gynecol 1997; 40: 280–9.CrossRefGoogle ScholarPubMed
Gulbis, B, Jauniaux, E, Cotton, F, Stordeur, P. Protein and enzyme patterns in the fluid cavities of the first trimester gestational sac: relevance to the absorptive role of secondary yolk sac. Mol Hum Reprod 1998; 4: 857–62.CrossRefGoogle ScholarPubMed
Campbell, J, Wathen, N, Perry, G, et al. The coelomic cavity: an important site of materno-fetal nutrient exchange in the first trimester of pregnancy. Br J Obstet Gynaecol 1993; 100: 765–7.CrossRefGoogle ScholarPubMed
Campbell, J, Wathen, N, Macintosh, M, et al. Biochemical composition of amniotic fluid and extraembryonic coelomic fluid in the first trimester of pregnancy. Br J Obstet Gynaecol 1992; 99: 563–5.Google ScholarPubMed
Brace, RA, Ross, MG. Amniotic fluid volume regulation. In Brace, RA, Hanson, MA, Rodeck, CH (eds), Fetus and Neonate, Volume 4: Body Fluids and Kidney Function. Cambridge: Cambridge University Press, 1998, p. 88.Google Scholar
Jang, PR, Brace, RA. Amniotic fluid composition changes during urine drainage and tracheoesophageal occlusion in fetal sheep. Am J Obstet Gynecol 1992; 167: 1732–41.CrossRefGoogle ScholarPubMed
Reddy, UM, Abuhamad, AZ, Levine, D, et al. Fetal imaging: executive summary of a joint Eunice Kennedy Shriver National Institute of Child Health and Human Development, Society for Maternal-Fetal Medicine, American Institute of Ultrasound in Medicine, American College of Obstetricians and Gynecologists, American College of Radiology, Society for Pediatric Radiology, and Society of Radiologists in Ultrasound Fetal Imaging workshop. Obstet Gynecol 2014; 123: 1070–82.CrossRefGoogle Scholar
Dildy, GA, Lira, N, Moise, KJ, Riddle, GD, Deter, RL. Amniotic fluid assessment: comparison of ultrasonographic estimates versus direct measurements with a dye dilution technique in human pregnancy. Am J Obset Gynecol 1992; 167: 986–94.CrossRefGoogle ScholarPubMed
Magann, EF, Perry, KG, Chauhan, SP, et al. The accuracy of ultrasound evaluation of amniotic fluid volume in singleton pregnancies: the effect of operator experience and ultrasound interpretative technique. J Clin Ultrasound 1997; 25: 249–53.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Nabhan, AF, Abdelmoula, YA. Amniotic fluid index versus single deepest vertical pocket as a screening test for preventing adverse pregnancy outcome. Cochrane Database Syst Rev 2008; (3): CD006593.CrossRefGoogle Scholar
Moore, TR, Cayle, JE. The amniotic fluid index in normal human pregnancy. Am J Obstet Gynecol 1990; 162: 1168–73.CrossRefGoogle ScholarPubMed
Magann, EF, Whitworth, NS, Klausen, JH, et al. Accuracy of ultrasonography in evaluating amniotic fluid volume at less than 24 weeks’ gestation. J Ultrasound Med 1995; 14: 895–7.CrossRefGoogle Scholar
Ippolito, DL, Bergstrom, JE, Lutgendorf, MA, Flood-Nichols, SK, Magann, EF. A systematic review of amniotic fluid assessments in twin pregnancies. J Ultrasound Med 2014; 33: 1353–64.CrossRefGoogle ScholarPubMed
Locatelli, A, Zagarella, A, Toso, L, et al. Serial assessment of amniotic fluid index in uncomplicated term pregnancies: prognostic value of amniotic fluid reduction. J Matern Fetal Neonatal Med 2004; 15: 233–6.CrossRefGoogle ScholarPubMed
Bromley, B, Harlow, BL, Laboda, LA, Benacerraf, BR. Small sac size in the first trimester: a predictor of poor fetal outcome. Radiology 1991; 178: 375–7.CrossRefGoogle ScholarPubMed
Tadmor, OP, Achiron, R, Rabinowiz, R, et al. Predicting first-trimester spontaneous abortion. Ratio of mean sac diameter to crown–rump length compared to embryonic heart rate. J Reprod Med 1994; 39: 459–62.Google ScholarPubMed
Nazari, A, Check, JH, Epstein, RH, Dietterich, C, Farzanfar, S. Relationship of small-for-dates sac size to crown–rump length and spontaneous abortion in patients with a known date of ovulation. Obstet Gynecol 1991; 78: 369–73.Google ScholarPubMed
Dickey, RP, Olar, TT, Taylor, SN, Curole, DN, Matulich, EM. Relationship of small gestational sac-crown-rump length differences to abortion and abortus karyotypes. Obstet Gynecol 1992; 79: 554–7.Google ScholarPubMed
Rowling, SE, Coleman, BG, Langer, JE, et al. First-trimester US parameters of failed pregnancy. Radiology 1997; 203: 211–17.CrossRefGoogle ScholarPubMed
Shipp, TD, Bromley, B, Pauker, S, Frigoletto, FD, Benacerraf, BR. Outcome of singleton pregnancies with severe oligohydramnios in the second and third trimesters. Ultrasound Obstet Gynecol 1996; 7: 108–13.CrossRefGoogle ScholarPubMed
Mercer, LJ, Brown, LG, Petres, RE, Messer, RH. A survey of pregnancies complicated by decreased amniotic fluid. Am J Obstet Gynecol 1984; 149: 355–61.CrossRefGoogle ScholarPubMed
Chamberlain, PF, Manning, FA, Morrison, I, Harman, CR, Lange, IR. Ultrasound evaluation of amniotic fluid volume. I. The relationship of marginal and decreased amniotic fluid volumes to perinatal outcome. Am J Obstet Gynecol 1984; 150: 245–9.Google ScholarPubMed
Petrozella, LN, Dashe, JS, McIntire, DD, Leveno, KJ. Clinical significance of borderline amniotic fluid index and oligohydramnios in preterm pregnancy. Obstet Gynecol 2011; 117: 338–42.CrossRefGoogle ScholarPubMed
Rutherford, SE, Phelan, JP, Smith, CV, Jacobs, N. The four-quadrant assessment of amniotic fluid volume: an adjunct to antepartum fetal heart rate testing. Obstet Gynecol 1987; 70: 353–6.Google ScholarPubMed
Sarno, AP, Ahn, MO, Phelan, JP. Intrapartum amniotic fluid volume at term. Association of ruptured membranes, oligohydramnios and increased fetal risk. J Reprod Med 1990; 35: 719–23.Google ScholarPubMed
Chauhan, SP, Sanderson, M, Hendrix, NW, Magann, EF, Devoe, LD. Perinatal outcome and amniotic fluid index in the antepartum and intrapartum periods: A meta-analysis. Am J Obstet Gynecol 1999; 181: 1473–8.CrossRefGoogle ScholarPubMed
Phelan, JP. The postdate pregnancy: an overview. Clin Obstet Gynecol 1989; 32: 221–7.CrossRefGoogle ScholarPubMed
Alchalabi, HA, Obeidat, BR, Jallad, MF, Khader, YS. Induction of labor and perinatal outcome: the impact of the amniotic fluid index. Eur J Obstet Gynecol Reprod Biol 2006; 129: 124–7.CrossRefGoogle ScholarPubMed
Ashwal, E, Hiersch, L, Melamed, N, et al. The association between isolated oligohydramnios at term and pregnancy outcome. Arch Gynecol Obstet 2014; 290: 875–81.CrossRefGoogle ScholarPubMed
Zhang, J, Troendle, J, Meikle, S, Klebanoff, MA, Rayburn, WF. Isolated oligohydramnios is not associated with adverse perinatal outcomes. BJOG 2004; 111: 220–5.CrossRefGoogle Scholar
Danon, D, Ben-Haroush, A, Yogev, Y, et al. Prostaglandin E2 induction of labor for isolated oligohydramnios in women with unfavorable cervix at term. Fetal Diagn Ther 2007; 22: 75–9.CrossRefGoogle ScholarPubMed
Driggers, RW, Holcroft, CJ, Blakemore, KJ, Graham, EM. An amniotic fluid index ≤ 5 cm within 7 days of delivery in the third trimester is not associated with decreasing umbilical arterial pH and base excess. J Perinatol 2004; 24: 72–6.CrossRefGoogle Scholar
Sherer, DM. A review of amniotic fluid dynamics and the enigma of isolated oligohydramnios. Am J Perinatol 2002; 19: 253–66.CrossRefGoogle ScholarPubMed
Conway, DL, Adkins, WB, Schroeder, B, Langer, O. Isolated oligohydramnios in the term pregnancy: is it a clinical entity? J Matern Fetal Med 1998; 7: 197200.Google ScholarPubMed
Rainford, M, Adair, R, Scialli, AR, Ghidini, A, Spong, CY. Amniotic fluid index in the uncomplicated term pregnancy. Prediction of outcome. J Reprod Med 2001; 46: 589–92.Google ScholarPubMed
Magann, EF, Kinsella, MJ, Chauhan, SP, et al. Does an amniotic fluid index of ≤ 5 cm necessitate delivery in high-risk pregnancies? A case–control study. Am J Obstet Gynecol 1999; 180: 1354–9.CrossRefGoogle Scholar
Magann, EF, Doherty, DA, Field, K, et al. Biophysical profile with amniotic fluid volume assessments. Obstet Gynecol 2004; 104: 510.CrossRefGoogle ScholarPubMed
Kreiser, D, el-Sayed, YY, Sorem, KA, et al. Decreased amniotic fluid index in low-risk pregnancy. J Reprod Med 2001; 46: 743–6.Google ScholarPubMed
Elsandabesee, D, Majumdar, S, Sinha, S. Obstetricians’ attitudes towards “isolated” oligohydramnios at term. J Obstet Gynaecol 2007; 27: 574–6.CrossRefGoogle ScholarPubMed
Manzanares, S, Carrillo, MP, González-Perán, E, Puertas, A, Montoya, F. Isolated oligohydramnios in term pregnancy as an indication for induction of labor. J Matern Fetal Neonatal Med 2007; 20: 221–4.CrossRefGoogle ScholarPubMed
Pryde, PG, Hallak, M, Lauria, MR, et al. Severe oligohydramnios with intact membranes: an indication for diagnostic amnioinfusion. Fetal Diagn Ther 2000; 15: 46–9.CrossRefGoogle ScholarPubMed
Fisk, NM, Ronderos-Dumit, D, Soliani, A, et al. Diagnostic and therapeutic transabdominal amnioinfusion in oligohydramnios. Obstet Gynecol 1991; 78: 270–8.Google ScholarPubMed
Bienstock, JL, Birsner, ML, Coleman, F, Hueppchen, NA. Successful in utero intervention for bilateral renal agenesis. Obstet Gynecol 2014; 124: 413–15.CrossRefGoogle ScholarPubMed
Hofmeyr, GJ, Gülmezoglu, AM. Maternal hydration for increasing amniotic fluid volume in oligohydramnios and normal amniotic fluid volume. Cochrane Database Syst Rev 2002; (1): CD000134.CrossRefGoogle Scholar
Golan, A, Wolman, I, Sagi, J, Yovel, I, David, MP. Persistence of polyhydramnios during pregnancy: its significance and correlation with maternal and fetal complications. Gynecol Obstet Invest 1994; 37: 1820.CrossRefGoogle ScholarPubMed
Many, A, Hill, LM, Lazebnik, N, Martin, JG. The association between polyhydramnios and preterm delivery. Obstet Gynecol 1995; 86: 389–91.CrossRefGoogle ScholarPubMed
Smith, CV, Plambeck, RD, Rayburn, WF, Albaugh, KJ. Relation of mild idiopathic polyhydramnios to perinatal outcome. Obstet Gynecol 1992; 79: 387–9.CrossRefGoogle ScholarPubMed
Hill, LM, Breckle, R, Thomas, ML, Fries, JK. Polyhydramnios: ultrasonically detected prevalence and neonatal outcome. Obstet Gynecol 1987; 69: 21–5.Google ScholarPubMed
Dashe, JS, McIntire, DD, Ramus, RM, Santos-Ramos, R, Twickler, DM. Hydramnios: anomaly prevalence and sonographic detection. Obstet Gynecol 2002; 100: 134–9.Google ScholarPubMed
Thompson, O, Brown, R, Gunnarson, G, Harrington, K. Prevalence of polyhydramnios in the third trimester in a population screened by first and second trimester ultrasonography. J Perinat Med 1998; 26: 371–7.CrossRefGoogle Scholar
Biggio, JR, Wenstrom, KD, Dubard, MB, Cliver, SP. Hydramnios prediction of adverse perinatal outcome. Obstet Gynecol 1999; 94: 773–7.Google ScholarPubMed
Pri-Paz, S, Khalek, N, Fuchs, KM, Simpson, LL. Maximal amniotic fluid index as a prognostic factor in pregnancies complicated by polyhydramnios. Ultrasound Obstet Gynecol 2012; 39: 648–53.CrossRefGoogle ScholarPubMed
Ben-Chetrit, A, Hochner-Celnikier, D, Ron, M, Yagel, S. Hydramnios in the third trimester of pregnancy: a change in the distribution of accompanying fetal anomalies as a result of early ultrasonographic prenatal diagnosis. Am J Obstet Gynecol 1990; 162: 1344–5.CrossRefGoogle ScholarPubMed
Stoll, CG, Alembik, Y, Dott, B. Study of 156 cases of polyhydramnios and congenital malformations in a series of 118,265 consecutive births. Am J Obstet Gynecol 1991; 165: 586–90.CrossRefGoogle Scholar
Vink, JY, Poggi, SH, Ghidini, A, Spong, CY. Amniotic fluid index and birth weight: is there a relationship in diabetics with poor glycemic control? Am J Obstet Gynecol 2006; 195: 848–50.CrossRefGoogle Scholar
Idris, N, Wong, SF, Thomae, M, Gardener, G, McIntyre, DH. Influence of polyhydramnios on perinatal outcome in pregestational diabetic pregnancies. Ultrasound Obstet Gynecol 2010; 36: 338–43.CrossRefGoogle ScholarPubMed
Abele, H, Starz, S, Hoopmann, M, et al. Idiopathic polyhydramnios and postnatal abnormalities. Fetal Diagn Ther 2012; 32: 251–5.CrossRefGoogle ScholarPubMed
Ross, MG, Brace, RA; National Institute of Child Health and Development Workshop Participants. National Institute of Child Health and Development Conference summary: amniotic fluid biology. Basic and clinical aspects. J Matern Fetal Med 2001; 10: 219.CrossRefGoogle ScholarPubMed
Magann, EF, Chauhan, SP, Doherty, DA, et al. A review of idiopathic hydramnios and pregnancy outcomes. Obstet Gynecol Surv 2007; 62: 795802.CrossRefGoogle ScholarPubMed
Elliott, JP, Sawyer, AT, Radin, TG, Strong, RE. Large-volume therapeutic amniocentesis in the treatment of hydramnios. Obstet Gynecol 1994; 84: 1025–7.Google ScholarPubMed
Cabrol, D, Landesman, R, Muller, J, et al. Treatment of polyhydramnios with prostaglandin synthetase inhibitor (indomethacin). Am J Obstet Gynecol 1987; 157: 422–6.CrossRefGoogle Scholar
Hickok, DE, Hollenbach, KA, Reilley, SF, Nyberg, DA. The association between decreased amniotic fluid volume and treatment with nonsteroidal anti-inflammatory agents for preterm labor. Am J Obstet Gynecol 1989; 160: 1525–30.CrossRefGoogle ScholarPubMed
Kirshon, B, Mari, G, Moise, KJ. Indomethacin therapy in the treatment of symptomatic polyhydramnios. Obstet Gynecol 1990; 75: 202–5.Google ScholarPubMed
Fisk, NM, Tannirandorn, Y, Nicolini, U, Talbert, DG, Rodeck, CH. Amniotic pressure in disorders of amniotic fluid volume. Obstet Gynecol 1990; 76: 210–14.Google ScholarPubMed
Leung, WC, Jouannic, JM, Hyett, J, Rodeck, C, Jauniaux, E. Procedure-related complications of rapid amniodrainage in the treatment of polyhydramnios. Ultrasound Obstet Gynecol 2004; 23: 154–8.CrossRefGoogle ScholarPubMed
Kramer, WB, Van den Veyver, IB, Kirshon, B. Treatment of polyhydramnios with indomethacin. Clin Perinatol 1994; 21: 615–30.CrossRefGoogle ScholarPubMed
Harman, CR. Amniotic fluid abnormalities. Semin Perinatol 2008; 32: 288–94.CrossRefGoogle ScholarPubMed
Moise, KJ. Polyhydramnios. Clin Obstet Gynecol 1997; 40: 266–79.CrossRefGoogle ScholarPubMed
Macones, GA, Marder, SJ, Clothier, B, Stamilio, DM. The controversy surrounding indomethacin for tocolysis. Am J Obstet Gynecol 2001; 184: 264–72.CrossRefGoogle ScholarPubMed
Norton, ME, Merrill, J, Cooper, BA, Kuller, JA, Clyman, RI. Neonatal complications after the administration of indomethacin for preterm labor. N Engl J Med 1993; 329: 1602–7.CrossRefGoogle ScholarPubMed
Bennett, PR, Le Van Kim, C, Colin, Y, et al. Prenatal determination of fetal RhD type by DNA amplification. N Engl J Med 1993; 329: 607–10.CrossRefGoogle ScholarPubMed
Chown, B, Duff, AM, James, J, et al. Prevention of primary Rh immunization: First report of the Western Canadian Trial. Can Med J 1969; 100: 1021–47.Google Scholar
Harper, DC, Swingle, HM, Weiner, CP, et al. Long-term neurodevelopmental outcome and brain volume after treatment for hydrops fetalis by in utero intravascular transfusion. Am J Obstet Gynecol 2006; 195: 192200.CrossRefGoogle ScholarPubMed
Liley, AW. Errors in the assessment of hemolytic disease from amniotic fluid. Am J Obstet Gynecol 1963; 86: 485–94.CrossRefGoogle ScholarPubMed
Mari, G, Deter, RL, Carpenter, RL, et al.; Collaborative Group for Doppler Assessment of the Blood Velocity in Anemic Fetuses. Noninvasive diagnosis by Doppler ultrasonography of fetal anemia due to maternal red cell alloimmunization. N Engl J Med 2000; 342: 914.CrossRefGoogle ScholarPubMed
Nicolaides, KH, Rodeck, CH, Mibashan, RS, Kemp, JR. Have Liley charts outlived their usefulness? Am J Obstet Gynecol 1986; 155: 90–4.CrossRefGoogle ScholarPubMed
Weiner, CP, Pelzer, GD, Heilskov, J, et al. The effect of intravascular transfusion on umbilical venous pressure in anemic fetuses with and without hydrops. Am J Obstet Gynecol 1989; 161: 149E.CrossRefGoogle ScholarPubMed
Weiner, CP, Williamson, RA, Wenstrom, KD, et al. Management of fetal hemolytic disease by cordocentesis: I. Prediction of fetal anemia. Am J Obstet Gynecol 1991; 165: 546–53.CrossRefGoogle ScholarPubMed
Weiner, CP, Williamson, RA, Wenstrom, KD, et al. Management of fetal hemolytic disease by cordocentesis: ii. Outcome of treatment. Am J Obstet Gynecol 1991; 165: 1302–7.CrossRefGoogle ScholarPubMed
Yankowitz, J, Li, S, Weiner, CP. Polymerase chain reaction determination of RhC, Rhc, and RhE blood types: an evaluation of accuracy and clinical utility. Am J Obstet Gynecol 1997; 176: 1107–11.CrossRefGoogle ScholarPubMed
Diamond, LK, Blackfan, KD, Baty, JM. Erythroblastosis fetalis and its association with universal edema of the fetus, icterus gravis neonatorum and anemia of the newborn. J Pediatr 1932; 1: 269–74.CrossRefGoogle Scholar
Levine, P, Katzin, EM, Burnham, L. Isoimmunization in pregnancy: Its possible bearing on the etiology of erythroblastosis fetalis. JAMA 1941; 116: 825–30.Google Scholar
Chown, B. Anemia from bleeding of the fetus into the mother’s circulation. Lancet 1954; I: 1213–15.Google Scholar
Liley, AW. Liquor amnii analysis and management of pregnancy complicated by rhesus immunization. Am J Obstet Gynecol 1961; 82: 1359–68.CrossRefGoogle Scholar
Liley, AW. Errors in the assessment of hemolytic disease from amniotic fluid. Am J Obstet Gynecol 1963; 86: 485–94.CrossRefGoogle ScholarPubMed
Freda, VJ, Gorman, JG, Pollack, W. Successful prevention of experimental Rh sensitization in man with an anti-Rh gamma-2-globulin antibody preparation—A preliminary report. Transfusion 1964; 4: 2631.CrossRefGoogle Scholar
Rodeck, CH, Holman, CA, Karnicki, J, et al. Direct intravascular fetal blood transfusion by fetoscopy in severe rhesus isoimmunization. Lancet 1981; I: 652–4.Google Scholar
Mari, G, Deter, RL, Carpenter, RL, et al.; Collaborative Group for Doppler Assessment of the Blood Velocity in Anemic Fetuses. Noninvasive diagnosis by Doppler ultrasonography of fetal anemia due to maternal red cell alloimmunization. N Engl J Med 2000; 342: 914.CrossRefGoogle ScholarPubMed
Holzgreve, W, Gänshirt-Ahlert, D, Burschyk, M, et al. Detection of fetal DNA in maternal blood by PCR. Lancet 1990; 335: 1220–1.CrossRefGoogle ScholarPubMed
Lo, YM, Patel, P, Wainscoat, JS, et al. Prenatal sex determination by DNA amplification from maternal peripheral blood. Lancet 1989; 2: 1363–5.Google ScholarPubMed
Mourant, AE, Kopec, AC, Domaniewska-Sobozak, K. The Distribution of Human Blood Groups and Other Polymophisms, 2nd edn. London: Oxford University Press, 1976, pp. 351505.Google Scholar
Joseph, KS, Kramer, MS. The decline in Rh hemolytic disease: should Rh prophylaxis get all the credit? Am J Public Health 1998; 88: 209–15.CrossRefGoogle ScholarPubMed
Bowman, JM, Pollock, JM, Penston, LE. Fetomaternal transplacental hemorrhage during pregnancy and after delivery. Vox Sang 1986; 51: 117–25.CrossRefGoogle ScholarPubMed
Westhoff, CM. The structure and function of the Rh antigen complex. Semin Hematol 2007; 44: 4250.CrossRefGoogle ScholarPubMed
Ballas, S, Clark, MR, Mohandas, N, et al. Red cell membranes and cation deficiency in Rhnull syndrome. Blood 1984; 63: 1046–55.CrossRefGoogle Scholar
Bruce, LJ, Ghosh, S, King, MJ, et al. Absence of CD47 in protein 4.2-deficient hereditary spherocytosis in man: An interaction between the Rh complex and the band 3 complex. Blood 2002; 100: 1878–85.CrossRefGoogle ScholarPubMed
Dahl, KN, Parthasarathy, R, Westhoff, CM, et al. Protein 4.2 is critical to CD47-membrane skeleton attachment in human red cells. Blood 2004; 103: 1131–6.CrossRefGoogle ScholarPubMed
Nicolas, V, Le Van Kim, C, Gane, P, et al. Rh-RhAG/ankyrin-R, a new interaction site between the membrane bilayer and the red cell skeleton, is impaired by Rh(null)-associated mutation. J Biol Chem 2003; 278: 25526–33.CrossRefGoogle ScholarPubMed
Marini, AM, Matassi, G, Raynal, V, et al. The human Rhesus-associated RhAG protein and a kidney homologue promote ammonium transport in yeast. Nat Genet 2000; 26: 341–4.CrossRefGoogle Scholar
Westhoff, CM, Ferreri-Jacobia, M, Mak, DOD, Foskett, JK. Identification of the erythrocyte Rh blood group glycoprotein as a mammalian ammonium transporter. J Biol Chem 2002; 277: 12499–502.CrossRefGoogle ScholarPubMed
Conroy, MJ, Bullough, PA, Merrick, M, Avent, ND. Modelling the human rhesus proteins: Implications for structure and function. Br J Haematol 2005; 131: 543–51.CrossRefGoogle ScholarPubMed
Liu, Z, Chen, Y, Mo, R, et al. Characterization of human RhCG and mouse RhCG as novel nonerythroid Rh glycoprotein homologues predominantly expressed in kidney and testis. J Biol Chem 2000; 275: 25641–51.Google ScholarPubMed
Weiner, ID, Verlander, JW. Renal and hepatic expression of the ammonium transporter proteins, Rh B glycoprotein and Rh C glycoprotein. Acta Physiol Scand 2003; 179: 331–8.CrossRefGoogle ScholarPubMed
Weiner, ID, Miller, RT, Verlander, JW. Localization of the ammonium transporters, Rh B glycoprotein and Rh C glycoprotein, in the mouse liver. Gastroenterology 2003; 124: 1432–40.CrossRefGoogle Scholar
Tippett, P, Sanger, R. Observations on subdivisions of the Rh antigen D. Vox Sang 1962; 7: 914.CrossRefGoogle ScholarPubMed
Bowman, JM. Maternal alloimmunization and fetal hemolytic disease. In Reece, EA, Hobbins, JC, Mahoney, MJ, Petrie, RH (eds), Medicine of the Fetus and Mother. Philadelphia, PA: Lippincott, 1992, pp. 1152–82.Google Scholar
Knibll, W. Der gang der erythrophose beim menschlichen embryo. Acta Haematol 1949; 2: 369–77.Google Scholar
Palfi, M, Hilden, JO, Gottvall, T, Selbing, A. Placental transport of maternal immunoglobulin G in pregnancies at risk of Rh (D) hemolytic disease of the newborn. Am J Reprod Immunol 1998; 39: 323–8.Google ScholarPubMed
Hilden, JO, Gottvall, T, Lindblom, B. HLA phenotypes and severe Rh (D) immunization. Tissue Antigens 1995; 46: 313–15.CrossRefGoogle ScholarPubMed
Weiner, CP, Williamson, RA, Wenstrom, KD, et al. Management of fetal hemolytic disease by cordocentesis: I. Prediction of fetal anemia. Am J Obstet Gynecol 1991; 165: 546–53.CrossRefGoogle ScholarPubMed
Weiner, CP. Human fetal bilirubin and fetal hemolytic disease. Am J Obstet Gynecol 1992; 116: 1449–54.Google Scholar
Soothill, PW, Nicolaides, KH, Rodeck, CH, et al. Relationship of fetal hemoglobin and oxygen content to lactate concentration in sensitized pregnancies. Obstet Gynecol 1987; 69: 268–71.Google Scholar
Nicolaides, KH, Warenski, JC, Rodeck, CH. The relationship of fetal protein concentration and haemoglobin level to the development of hydrops in rhesus isoimmunization. Am J Obstet Gynecol 1985; 152: 341–4.CrossRefGoogle ScholarPubMed
Phibbs, RH, Johnson, P, Tooley, WE. Cardio-respiratory status of erythroblastotic infants. II. Blood volume, hematocrit, and serum albumin concentration in relation to hydrops fetalis. Pediatrics 1974; 53: 1326.Google Scholar
Weiner, CP, Heilskov, J, Pelzer, G, et al. Normal values for human umbilical venous and amniotic fluid pressures and their alteration by fetal disease. Am J Obstet Gynecol 1989; 161: 714–17.CrossRefGoogle ScholarPubMed
Weiner, CP, Williamson, RA, Wenstrom, KD, et al. Management of fetal hemolytic disease by cordocentesis: ii. Outcome of treatment. Am J Obstet Gynecol 1991; 165: 1302–7.CrossRefGoogle ScholarPubMed
Weiner, CP, Pelzer, GD, Heilskov, J, et al. The effect of intravascular transfusion on umbilical venous pressure in anemic fetuses with and without hydrops. Am J Obstet Gynecol 1989; 161: 149E.CrossRefGoogle ScholarPubMed
Weiner, CP, Sipes, SL, Wenstrom, KD. The effect of gestation upon normal fetal laboratory parameters and venous pressure. Obstet Gynecol 1992; 79: 713–18.Google Scholar
Lucas, GF, Hadley, AG, Nance, SJ, Garratty, G. Predicting hemolytic disease of the newborn: a comparison of the monocyte monolayer assay and the chemiluminescence test. Transfusion 1993; 33: 484–7.CrossRefGoogle ScholarPubMed
Moise, KJ, Perkins, JT, Sosler, SD, et al. The predictive value of maternal serum testing for detection of fetal anemia in red blood cell alloimmunization. Am J Obstet Gynecol 1995; 172: 1003–9.CrossRefGoogle ScholarPubMed
Buggins, AG, Thilaganathan, B, Hambley, H, Nicolaides, KH. Predicting the severity of rhesus alloimmunization: monocyte-mediated chemiluminescence versus maternal anti-D antibody estimation. Br J Haematol 1994; 88: 199200.CrossRefGoogle ScholarPubMed
Gordon, LG, Hyland, CA, Hyett, JA, et al. Noninvasive fetal RHD genotyping of RhD negative pregnant women for targeted anti-D therapy in Australia: a cost-effectiveness analysis. Prenat Diagn 2017; 37: 1245–53. doi: 10.1002/pd.5176.CrossRefGoogle Scholar
Abbey, R, Dunsmoor-Su, R. Cost–benefit analysis of indirect antiglobulin screening in Rh(D)-negative women at 28 weeks gestation. Obstet Gynecol 2014; 123: 938–45.Google ScholarPubMed
Bowman, JM, Chown, B, Lewis, M, Pollock, JM. Rh isoimmunization during pregnancy: antenatal prophylaxis. Can Med Assoc J 1978; 118: 623–7.CrossRefGoogle ScholarPubMed
Chilcott, J, Tappenden, P, Lloyd Jones, M, et al. The economics of routine antenatal anti-D prophylaxis for pregnant women who are rhesus negative. BJOG 2004; 111: 903–7.Google ScholarPubMed
Bowman, JM, Pollack, JM. Transplacental fetal hemorrhage after amniocentesis. Obstet Gynecol 1985; 66: 749–55.Google Scholar
Chown, B, Duff, AM, James, J, et al. Prevention of primary Rh immunization: first report of the Western Canadian Trial. Can Med J 1969; 100: 1021–47.Google ScholarPubMed
Pollack, W, Ascari, WQ, Kochesky, RJ, et al. Studies on Rh prophylaxis. I. Relationship between doses of anti-Rh and the size of the antigenic stimulus. Transfusion 1971; 11: 333–9.Google ScholarPubMed
Bowman, JM, Pollock, JM. Amniotic fluid spectrophotometry and early delivery in the management of erythroblastosis fetalis. Pediatrics 1965; 35: 815–21.Google Scholar
LeVanKim, C, Mouro, I, Brossard, Y, et al. PCR-based determination of Rhc and RhE status of fetuses at risk of Rhc and RhE haemolytic disease. Br J Haematol 1994; 88: 193–5.CrossRefGoogle ScholarPubMed
Bennett, PR, Le Van Kim, C, Colin, Y, et al. Prenatal determination of fetal RhD type by DNA amplification. N Engl J Med 1993; 329: 607–10.CrossRefGoogle ScholarPubMed
Van den Veyver, IB, Subramanian, SB, Hudson, KM, et al. Prenatal diagnosis of the RhD fetal blood type on amniotic fluid by polymerase chain reaction. Obstet Gynecol 1996; 87: 419–22.CrossRefGoogle ScholarPubMed
Fisk, NM, Bennett, P, Warwick, RM, et al. Clinical utility of fetal RhD typing in alloimmunized pregnancies by means of polymerase chain reaction on amniocytes or chorionic villi. Am J Obstet Gynecol 1994; 171: 50–4.CrossRefGoogle ScholarPubMed