Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-fg2fv Total loading time: 0.329 Render date: 2021-10-24T19:58:40.220Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

References

Published online by Cambridge University Press:  15 September 2009

Peter Duren
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abu-Muhanna, Y. and Lyzzaik, A., A geometric criterion for decomposition and multivalence, Math. Proc. Cambridge Philos. Soc. 103 (1988), 487–495CrossRefGoogle Scholar
Abu-Muhanna, Y. and Lyzzaik, A., The boundary behaviour of harmonic univalent maps, Pacific J. Math. 141 (1990), 1–20CrossRefGoogle Scholar
Abu-Muhanna, Y. and Schober, G., Harmonic mappings onto convex domains, Canad. J. Math. 39 (1987), 1489–1530CrossRefGoogle Scholar
L. V. Ahlfors, Lectures on Quasiconformal Mappings (Van Nostrand, Princeton, N.J., 1966)
L. V. Ahlfors, Conformal Invariants: Topics in Geometric Function Theory (McGraw-Hill, New York, 1973)
L. V. Ahlfors, Complex Analysis (Third Edition, McGraw-Hill, New York, 1979)
Avci, Y. and Złotkiewicz, E., On harmonic univalent functions, Ann. Univ. Mariae Curie-Skłodowska 44 (1990), 1–7Google Scholar
J. L. M. Barbosa and A. G. Colares, Minimal Surfaces in R3, Lecture Notes in Math. No. 1195 (Springer-Verlag, Berlin, 1986)
Bers, L., Isolated singularities of minimal surfaces, Ann. of Math. 53 (1951), 364–386CrossRefGoogle Scholar
Bers, L., Univalent solutions of linear elliptic systems, Comm. Pure Appl. Math. 6 (1953), 513–526CrossRefGoogle Scholar
Bojarski, B. V., Homeomorphic solutions of a Beltrami system, Dokl. Akad. Nauk SSSR 102 (1955), 661–664 (Russian)Google Scholar
Bojarski, B. V., On solutions of a linear elliptic system of differential equations in the plane, Dokl. Akad. Nauk SSSR 102 (1955), 871–874 (Russian)Google Scholar
Bojarski, B. V. and Iwaniec, T., Quasiconformal mappings and non-linear elliptic equations in two variables I, II, Bull. Polish Acad. Sci. Math. 22 (1974), 473–478, 479–484Google Scholar
Bshouty, D., Hengartner, N., and Hengartner, W., A constructive method for starlike harmonic mappings, Numer. Math. 54 (1988), 167–178CrossRefGoogle Scholar
D. Bshouty and W. Hengartner, Boundary correspondence of univalent harmonic mappings from the unit disc onto a Jordan domain, in Approximation by Solutions of Partial Differential Equations, Quadrature Formulas, and Related Topics, B. Fuglede et al., eds., NATO ASI Series C, Vol. 365 (Kluwer Academic Publishers, Dordrecht-Boston-London, 1992), pp. 51–60
Bshouty, D. and Hengartner, W., Univalent solutions of the Dirichlet problem for ring domains, Complex Variables Theory Appl. 21 (1993), 159–169CrossRefGoogle Scholar
Bshouty, D. and Hengartner, W., Univalent harmonic mappings in the plane, Ann. Univ. Mariae Curie-Skłodowska 48 (1994), 12–42Google Scholar
Bshouty, D. and Hengartner, W., Boundary values versus dilatations of harmonic mappings, J. Analyse Math. 72 (1997), 141–164CrossRefGoogle Scholar
Bshouty, D. and Hengartner, W., Exterior univalent harmonic mappings with finite Blaschke dilatations, Canad. J. Math. 51 (1999), 470–487CrossRefGoogle Scholar
Bshouty, D., Hengartner, W., and Hossian, O., Harmonic typically real mappings, Math. Proc. Cambridge Philos. Soc. 119 (1996), 673–680CrossRefGoogle Scholar
Bshouty, D., Hengartner, W., and Suez, T., The exact bound on the number of zeros of harmonic polynomials, J. Analyse Math. 67 (1995), 207–218CrossRefGoogle Scholar
Chen, H., Gauthier, P. M., and Hengartner, W., Bloch constants for planar harmonic mappings, Proc. Amer. Math. Soc. 128 (2000), 3231–3240CrossRefGoogle Scholar
Choquet, G., Sur un type de transformation analytique généralisant la représentation conforme et définie au moyen de fonctions harmoniques, Bull. Sci. Math. 69 (1945), 156–165Google Scholar
Choquet, G., Sur les homéomorphies harmoniques d'un disque D sur D, Complex Variables Theory Appl. 24 (1993), 47–48CrossRefGoogle Scholar
Chuaqui, M., Duren, P., and Osgood, B., The Schwarzian derivative for harmonic mappings, J. Analyse Math. 91 (2003), 329–351CrossRefGoogle Scholar
Cima, J. A. and Livingston, A. E., Integral smoothness properties of some harmonic mappings, Complex Variables Theory Appl. 11 (1989), 95–110CrossRefGoogle Scholar
Cima, J. A. and Livingston, A. E., Nonbasic harmonic maps onto convex wedges, Colloq. Math. 66 (1993), 9–22CrossRefGoogle Scholar
Clunie, J. and Sheil-Small, T., Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A.I 9 (1984), 3–25Google Scholar
Colonna, F., The Bloch constant of bounded harmonic mappings, Indiana Univ. Math. J. 38 (1989), 829–840CrossRefGoogle Scholar
Vries, H. L., A remark concerning a lemma of Heinz on harmonic mappings, J. Math. Mech. 11 (1962), 469–471Google Scholar
Vries, H. L., Über Koeffizientenprobleme bei Eilinien und über die Heinzsche Konstante, Math. Z. 112 (1969), 101–106CrossRefGoogle Scholar
U. Dierkes, S. Hildebrandt, A. Küster, and O. Wohlrab, Minimal Surfaces I (Springer-Verlag, Berlin-Heidelberg-New York, 1991)
Dorff, M. J., Some harmonic n-slit mappings, Proc. Amer. Math. Soc. 126 (1998), 569–576CrossRefGoogle Scholar
Dorff, M. J., Convolutions of planar harmonic convex mappings, Complex Variables Theory Appl. 45 (2001), 263–271CrossRefGoogle Scholar
Dorff, M. J., Minimal graphs in ℝ3 over convex domains, Proc. Amer. Math. Soc. 132 (2004), 491–498CrossRefGoogle Scholar
Dorff, M. J. and Suffridge, T. J., The inner mapping radius of harmonic mappings of the unit disk, Complex Variables Theory Appl. 33 (1997), 97–103CrossRefGoogle Scholar
Dorff, M. and Szynal, J., Harmonic shears of elliptic integrals, Rocky Mountain J. Math., to appear
Driver, K. and Duren, P., Harmonic shears of regular polygons by hypergeometric functions, J. Math. Anal. Appl. 239 (1999), 72–84CrossRefGoogle Scholar
P. L. Duren, Theory of HpSpaces (Academic Press, New York, 1970; reprinted with supplement by Dover Publications, Mineola, N.Y., 2000)
P. L. Duren, Univalent Functions (Springer-Verlag, New York, 1983)
P. L. Duren, A survey of harmonic mappings in the plane, in Texas Tech University, Mathematics Series, Visiting Scholars' Lectures 1990–1992, vol. 18 (1992), pp. 1–15
Duren, P. and Hengartner, W., A decomposition theorem for planar harmonic mappings, Proc. Amer. Math. Soc. 124 (1996), 1191–1195CrossRefGoogle Scholar
Duren, P. and Hengartner, W., Harmonic mappings of multiply connected domains, Pacific J. Math. 180 (1997), 201–220CrossRefGoogle Scholar
Duren, P., Hengartner, W., and Laugesen, R. S., The argument principle for harmonic functions, Amer. Math. Monthly 103 (1996), 411–415CrossRefGoogle Scholar
Duren, P. and Khavinson, D., Boundary correspondence and dilatation of harmonic mappings, Complex Variables Theory Appl. 33 (1997), 105–111CrossRefGoogle Scholar
Duren, P. and Schober, G., A variational method for harmonic mappings onto convex regions, Complex Variables Theory Appl. 9 (1987), 153–168CrossRefGoogle Scholar
Duren, P. and Schober, G., Linear extremal problems for harmonic mappings of the disk, Proc. Amer. Math. Soc. 106 (1989), 967–973CrossRefGoogle Scholar
Duren, P. and Thygerson, W. R., Harmonic mappings related to Scherk's saddle-tower minimal surfaces, Rocky Mountain J. Math. 30 (2000), 555–564CrossRefGoogle Scholar
Finn, R. and Osserman, R., On the Gauss curvature of non-parametric minimal surfaces, J. Analyse Math. 12 (1964), 351–364CrossRefGoogle Scholar
FitzGerald, C. and Pommerenke, Ch., The de Branges theorem on univalent functions, Trans. Amer. Math. Soc. 290 (1985), 683–690CrossRefGoogle Scholar
W. H. J. Fuchs, Topics in the Theory of Functions of One Complex Variable (Van Nostrand, Princeton, N.J., 1967)
Gleason, S. and Wolff, T. H., Lewy's harmonic gradient maps in higher dimensions, Comm. Partial Differential Equations 16 (1991), 1925–1968CrossRefGoogle Scholar
G. M. Goluzin, Geometric Theory of Functions of a Complex Variable (Moscow, 1952; German transl., Deutscher Verlag, Berlin, 1957; Second Edition, Izdat. “Nauka”, Moscow, 1966; English transl., American Mathematical Society, Providence, R.I., 1969)
Goodloe, M. R., Hadamard products of convex harmonic mappings, Complex Variables Theory Appl. 47 (2002), 81–92CrossRefGoogle Scholar
Goodman, A. W. and Saff, E. B., On univalent functions convex in one direction, Proc. Amer. Math. Soc. 73 (1979), 183–187CrossRefGoogle Scholar
P. Greiner, Boundary properties of planar harmonic mappings, Ph. D. Thesis, University of Michigan, 1995
Greiner, P., Geometric properties of harmonic shears, Computational Methods and Function Theory, to appear
Grigoryan, A. and Nowak, M., Integral means of harmonic mappings, Ann. Univ. Mariae Curie-Skł, odowska 52 (1998), 25–34Google Scholar
Grigoryan, A. and Nowak, M., Estimates of integral means of harmonic mappings, Complex Variables Theory Appl. 42 (2000), 151–161CrossRefGoogle Scholar
Grigoryan, A. and Szapiel, W., Two-slit harmonic mappings, Ann. Univ. Mariae Curie-Skł, odowska 49 (1995), 59–84Google Scholar
Hall, R. R., On a conjecture of Shapiro about trigonometric series, J. London Math. Soc. 25 (1982), 407–415CrossRefGoogle Scholar
Hall, R. R., On an inequality of E. Heinz, J. Analyse Math. 42 (1982/83), 185–198CrossRefGoogle Scholar
Hall, R. R., A class of isoperimetric inequalities, J. Analyse Math. 45 (1985), 169–180CrossRefGoogle Scholar
Hall, R. R., The Gaussian curvature of minimal surfaces and Heinz' constant, J. Reine Angew. Math. 502 (1998), 19–28Google Scholar
W. K. Hayman, Multivalent Functions (Cambridge University Press, London, 1958)
Heinz, E., Über die Lösungen der Minimalflächengleichung, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. (1952), 51–56Google Scholar
Heinz, E., On one-to-one harmonic mappings, Pacific J. Math. 9 (1959), 101–105CrossRefGoogle Scholar
Hengartner, W. and Schober, G., On schlicht mappings to domains convex in one direction, Comm. Math. Helv. 45 (1970), 303–314CrossRefGoogle Scholar
Hengartner, W. and Schober, G., A remark on level curves for domains convex in one direction, Appl. Analysis 3 (1973), 101–106CrossRefGoogle Scholar
Hengartner, W. and Schober, G., Univalent harmonic mappings onto parallel slit domains, Michigan Math. J. 32 (1985), 131–134Google Scholar
Hengartner, W. and Schober, G., On the boundary behavior of orientation-preserving harmonic mappings, Complex Variables Theory Appl. 5 (1986), 197–208CrossRefGoogle Scholar
Hengartner, W. and Schober, G., Harmonic mappings with given dilatation, J. London Math. Soc. 33 (1986), 473–483CrossRefGoogle Scholar
Hengartner, W. and Schober, G., Univalent harmonic functions, Trans. Amer. Math. Soc. 299 (1987), 1–31CrossRefGoogle Scholar
W. Hengartner and G. Schober, Curvature estimates for some minimal surfaces, in Complex Analysis: Articles Dedicated to Albert Pfluger on the Occasion of his 80th Birthday, J. Hersch and A. Huber, editors (Birkhäuser Verlag, Basel, 1988), pp. 87–100
Hengartner, W. and Schober, G., Univalent harmonic exterior and ring mappings, J. Math. Anal. Appl. 156 (1991), 154–171CrossRefGoogle Scholar
Hengartner, W. and Szynal, J., Univalent harmonic ring mappings vanishing on the interior boundary, Canad. J. Math. 44 (1992), 308–323CrossRefGoogle Scholar
Hersch, J. and Pfluger, A., Généralisation du lemme de Schwarz et du principe de la mesure harmonique pour les fonctions pseudo-analytiques, C. R. Acad. Sci. Paris 234 (1952), 43–45Google Scholar
Hildebrandt, S. and Sauvigny, F., Embeddedness and uniqueness of minimal surfaces solving a partially free boundary value problem, J. Reine Angew. Math. 422 (1991), 69–89Google Scholar
Hoffman, D., The computer-aided discovery of new embedded minimal surfaces, Math. Intelligencer 9 (1987), 8–21CrossRefGoogle Scholar
Hopf, E., On an inequality for minimal surfaces z = z(x, y), J. Rational Mech. Anal. 2 (1953), 519–522; 801–802Google Scholar
Jahangiri, J. M., Morgan, C., and Suffridge, T. J., Construction of close-to-convex harmonic polynomials, Complex Variables Theory Appl. 45 (2001), 319–326CrossRefGoogle Scholar
S. H. Jun, Harmonic mappings and applications to minimal surfaces, Ph. D. Thesis, Indiana University, 1989
Jun, S. H., Curvature estimates for minimal surfaces, Proc. Amer. Math. Soc. 114 (1992), 527–533CrossRefGoogle Scholar
Jun, S. H., Univalent harmonic mappings on Δ = }z: |z| > 1{, Proc. Amer. Math. Soc. 119 (1993), 109–114
Jun, S. H., Planar harmonic mappings and curvature estimates, J. Korean Math. Soc. 32 (1995), 803–814Google Scholar
Khavinson, D. and Swiatek, G., On the number of zeros of certain harmonic polynomials, Proc. Amer. Math. Soc. 131 (2003), 409–414CrossRefGoogle Scholar
Kneser, H., Lösung der Aufgabe 41, Jahresber. Deutsch. Math.-Verein. 35 (1926), 123–124Google Scholar
Krzyż, J., and Nowak, M., Harmonic automorphisms of the unit disk, J. Comput. Appl. Math. 105 (1999), 337–346CrossRefGoogle Scholar
Laugesen, R. S., Injectivity can fail for higher-dimensional harmonic extensions, Complex Variables Theory Appl. 28 (1996), 357–369CrossRefGoogle Scholar
Laugesen, R. S., Planar harmonic maps with inner and Blaschke dilatations, J. London Math. Soc. 56 (1997), 37–48CrossRefGoogle Scholar
O. Lehto, Univalent Functions and Teichmüller Spaces (Springer-Verlag, New York, 1987)
O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane (Second Edition, Springer-Verlag, Berlin-Heidelberg-New York, 1973)
Lewy, H., On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42 (1936), 689–692CrossRefGoogle Scholar
Lewy, H., On the non-vanishing of the jacobian of a homeomorphism by harmonic gradients, Ann. of Math. 88 (1968), 518–529CrossRefGoogle Scholar
Liu, H. and Liao, G., A note on harmonic maps, Appl. Math. Lett. 9 (1996), no. 4, 95–97CrossRefGoogle Scholar
Livingston, A. E., Univalent harmonic mappings, Ann. Polon. Math. 57 (1992), 57–70CrossRefGoogle Scholar
Livingston, A. E., Univalent harmonic mappings II, Ann. Polon. Math. 67 (1997), 131–145CrossRefGoogle Scholar
Lyzzaik, A., On the valence of some classes of harmonic maps, Math. Proc. Cambridge Philos. Soc. 110 (1991), 313–325CrossRefGoogle Scholar
Lyzzaik, A., Local properties of light harmonic mappings, Canad. J. Math. 44 (1992), 135–153CrossRefGoogle Scholar
Lyzzaik, A., The geometry of some classes of folding polynomials, Complex Variables Theory Appl. 20 (1992), 145–155CrossRefGoogle Scholar
Lyzzaik, A., Univalence criteria for harmonic mappings in multiply-connected domains, J. London Math. Soc. 58 (1998), 163–171CrossRefGoogle Scholar
Lyzzaik, A., A note on the valency of harmonic maps, J. Math. Anal. Appl. 218 (1998), 611–620CrossRefGoogle Scholar
Lyzzaik, A., The modulus of the image annuli under univalent harmonic mappings and a conjecture of J. C. C. Nitsche, J. London Math. Soc. 64 (2001), 369–384CrossRefGoogle Scholar
Martio, O., On harmonic quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A.I, (1968), 3–10Google Scholar
Mateljević, M. and Pavlović, M., Multipliers of Hp and BMOA, Pacific J. Math. 146 (1990), 71–84CrossRefGoogle Scholar
Melas, A. D., An example of a harmonic map between Euclidean balls, Proc. Amer. Math. Soc. 117 (1993), 857–859CrossRefGoogle Scholar
Nehari, Z., The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545–551CrossRefGoogle Scholar
Z. Nehari Conformal Mapping (McGraw-Hill, New York, 1952; reprinted by Dover Publications, New York, 1975)
Neumann, G., Valence of complex-valued planar harmonic functions, to appear
Nitsche, J. C. C., Über eine mit der Minimalflächengleichung zusammenhängende analytische Funktion und den Bernsteinschen Satz, Archiv der Math. (Basel) 7 (1956), 417–419CrossRefGoogle Scholar
Nitsche, J. C. C., On harmonic mappings, Proc. Amer. Math. Soc. 9 (1958), 268–271CrossRefGoogle Scholar
Nitsche, J. C. C., On an estimate for the curvature of minimal surfaces z = z(x, y), J. Math. Mech. 7 (1958), 767–769Google Scholar
Nitsche, J. C. C., On the constant of E. Heinz, Rend. Circ. Mat. Palermo 8 (1959), 178–181CrossRefGoogle Scholar
Nitsche, J. C. C., On the module of doubly-connected regions under harmonic mappings, Amer. Math. Monthly 69 (1962), 781–782CrossRefGoogle Scholar
Nitsche, J. C. C., Zum Heinzschen Lemma über harmonische Abbildungen, Arch. Math. (Basel) 14 (1963), 407–410CrossRefGoogle Scholar
J. C. C. Nitsche, Lectures on Minimal Surfaces, Vol. I (Cambridge University Press, Cambridge, 1989)
Nowak, M., Integral means of univalent harmonic maps, Ann. Univ. Mariae Curie-Skł, odowska 50 (1996), 155–162Google Scholar
Osserman, R., On the Gauss curvature of minimal surfaces, Trans. Amer. Math. Soc. 96 (1960), 115–128CrossRefGoogle Scholar
Osserman, R., Global properties of classical minimal surfaces, Duke Math. J. 32 (1965), 565–573CrossRefGoogle Scholar
R. Osserman, A Survey of Minimal Surfaces (Second Edition, Dover Publications, Mineola, N.Y., 1986)
R. Osserman, Minimal surfaces in R3, in Global Differential Geometry, S. S. Chern, editor, Mathematical Association of America Studies in Mathematics Vol. 27 (1989), pp. 73–98
G. Pólya and G. Szegő, Isoperimetric Inequalities in Mathematical Physics (Princeton University Press, Princeton, N.J., 1951)
Ch. Pommerenke, Univalent Functions (Vandenhoeck & Ruprecht, Göttingen, 1975)
Radó, T., Aufgabe 41, Jahresber. Deutsch. Math.-Verein. 35 (1926), 49Google Scholar
Radó, T., Über den analytischen Charakter der Minimalflächen, Math. Z. 24 (1926), 321–327CrossRefGoogle Scholar
Radó, T., Zu einem Satze von S. Bernstein über Minimalflächen im Grossen, Math. Z. 26 (1927), 559–565CrossRefGoogle Scholar
Reich, E., The composition of harmonic mappings, Ann. Acad. Sci. Fenn. Ser. A.I 12 (1987), 47–53Google Scholar
Reich, E., Local decomposition of harmonic mappings, Complex Variables Theory Appl. 9 (1987), 263–269CrossRefGoogle Scholar
H. Renelt, Quasikonforme Abbildungen und elliptische Systeme erster Ordnung in der Ebene (B. G. Teubner, Leipzig, 1982); English edition: Elliptic Systems and Quasiconformal Mappings (John Wiley & Sons, New York, 1988)
Robertson, M. S., Analytic functions star-like in one direction, Amer. J. Math. 58 (1936), 465–472CrossRefGoogle Scholar
Royster, W. C. and Ziegler, M., Univalent functions convex in one direction, Publ. Math. Debrecen 23 (1976), 339–345Google Scholar
W. Rudin, Principles of Mathematical Analysis (Third Edition, McGraw-Hill, New York, 1976)
Ruscheweyh, St. and Salinas, L., On the preservation of direction-convexity and the Goodman-Saff conjecture, Ann. Acad. Sci. Fenn. Ser. A.I 14 (1989), 63–73Google Scholar
Schaubroeck, L. E., Subordination of planar harmonic functions, Complex Variables Theory Appl. 41 (2000), 163–178CrossRefGoogle Scholar
Schaubroeck, L. E., Growth, distortion and coefficient bounds for plane harmonic mappings convex in one direction, Rocky Mountain J. Math. 31 (2001), 625–639CrossRefGoogle Scholar
G. Schober, Planar harmonic mappings, in Computational Methods and Function Theory, Lecture Notes in Math. No. 1435 (Springer-Verlag, Berlin-Heidelberg, 1990), pp. 171–176
J. T. Schwartz, Nonlinear Functional Analysis (Gordon and Breach, New York, 1969)
H. S. Shapiro, Research problems in complex analysis (edited by J. M. Anderson, K. F. Barth, and D. A. Brannan), Bull. London Math. Soc. 9 (1977), 129–162; Problem No. 7.26, p. 146
Sheil-Small, T., On the Fourier series of a finitely described convex curve and a conjecture of H. S. Shapiro, Math. Proc. Cambridge Philos. Soc. 98 (1985), 513–527CrossRefGoogle Scholar
Sheil, T.-Small, On the Fourier series of a step function, Michigan Math. J. 36 (1989), 459–475Google Scholar
Sheil, T.-Small, Constants for planar harmonic mappings, J. London Math. Soc. 42 (1990), 237–248CrossRefGoogle Scholar
J. J. Stoker, Differential Geometry (Wiley-Interscience, New York, 1969)
D. J. Struik, Lectures on Classical Differential Geometry (Second Edition, Addison-Wesley, Cambridge, Mass., 1961; reprinted by Dover Publications, Mineola, N.Y., 1988)
Suffridge, T. J., Harmonic univalent polynomials, Complex Variables Theory Appl. 35 (1998), 93–107CrossRefGoogle Scholar
Suffridge, T. J. and Thompson, J. W., Local behavior of harmonic mappings, Complex Variables Theory Appl. 41 (2000), 63–80CrossRefGoogle Scholar
Szulkin, A., An example concerning the topological character of the zero-set of a harmonic function, Math. Scand. 43 (1978), 60–62CrossRefGoogle Scholar
Ullman, J. L. and Titus, C. J., An integral inequality with applications to harmonic mappings, Michigan Math. J. 10 (1963), 181–192Google Scholar
N. Vekua, Generalized Analytic Functions (Pergamon Press, London, 1962)
A. Weitsman, Harmonic mappings whose dilatations are singular inner functions, preprint (1996)
Weitsman, A., On the dilatation of univalent planar harmonic mappings, Proc. Amer. Math. Soc. 126 (1998), 447–452CrossRefGoogle Scholar
Weitsman, A., On the Fourier coefficients of homeomorphisms of the circle, Math. Res. Lett. 5 (1998), 383–390CrossRefGoogle Scholar
Weitsman, A., On univalent harmonic mappings and minimal surfaces, Pacific J. Math. 192 (2000), 191–200CrossRefGoogle Scholar
Weitsman, A., Univalent harmonic mappings of annuli and a conjecture of J. C. C. Nitsche, Israel J. Math. 124 (2001), 327–331CrossRefGoogle Scholar
Weitsman, A., On the Poisson integral of step functions and minimal surfaces, Canad. Math. Bull. 45 (2002), 154–160CrossRefGoogle Scholar
W. L. Wendland, Elliptic Systems in the Plane (Pitman, London, 1979)
Wilmshurst, A., The valence of harmonic polynomials, Proc. Amer. Math. Soc. 126 (1998), 2077–2081CrossRefGoogle Scholar
Wood, J. C., Lewy's theorem fails in higher dimensions, Math. Scand. 69 (1991), 166CrossRefGoogle Scholar

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Peter Duren, University of Michigan, Ann Arbor
  • Book: Harmonic Mappings in the Plane
  • Online publication: 15 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546600.013
Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

  • References
  • Peter Duren, University of Michigan, Ann Arbor
  • Book: Harmonic Mappings in the Plane
  • Online publication: 15 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546600.013
Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

  • References
  • Peter Duren, University of Michigan, Ann Arbor
  • Book: Harmonic Mappings in the Plane
  • Online publication: 15 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546600.013
Available formats
×