Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-16T09:54:10.321Z Has data issue: false hasContentIssue false

5 - Evolution of color vision and its reflections in contemporary mammals

from Part II - Foundations: basics of color science

Published online by Cambridge University Press:  05 April 2016

Andrew J. Elliot
Affiliation:
University of Rochester, New York
Mark D. Fairchild
Affiliation:
Rochester Institute of Technology, New York
Anna Franklin
Affiliation:
University of Sussex
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahnelt, P. K, and Kolb, H. (2000). The mammalian photoreceptor mosaic-adaptive design. Progress in Retinal and Eye Research, 19, 711–70.CrossRefGoogle ScholarPubMed
Bickelmann, C. (2011). Visual Pigment Evolution and the Paleobiology of Early Mammals. Doctoral thesis, Humboldt-Universität zu Berlin.Google Scholar
Bowmaker, J. K. (2008). Evolution of vertebrate visual pigments. Vision Research, 48, 2022–41.CrossRefGoogle ScholarPubMed
Brainard, D. H., and Maloney, L. T. (2011). Surface color perception and equivalent illumination models. Journal of Vision, 11, 110.CrossRefGoogle ScholarPubMed
Briscoe, A. D., and Chittka, L. (2001). The evolution of color vision in insects. Annual Review of Entomology, 46, 471510.CrossRefGoogle ScholarPubMed
Buck, S. L. (2014). The interaction of rod and cone signals: pathways and psychophysics. In Werner, J. S. and Chalupa, L. M. (eds.), The New Visual Neurosciences (pp. 485–97). Cambridge, MA: MIT Press.Google Scholar
Bunce, J. A., Isbell, L. A., Grote, M. N., and Jacobs, G. H. (2011). Color vision variation and foraging behavior in wild neotropical titi monkeys (Callicebus brunneus): possible mediating roles for spatial memory and reproductive status. International Journal of Primatology, 32, 1058–75.CrossRefGoogle Scholar
Chiao, C.-C., Vorobyev, M., Cronin, T. W., and Osorio, D. (2000). Spectral tuning of dichromats to natural scenes. Vision Research, 40, 3257–71.CrossRefGoogle ScholarPubMed
Collin, S. P. (2010). Evolution and ecology of retinal photoreception in early vertebrates. Brain Behavior and Evolution, 75, 174–85.CrossRefGoogle ScholarPubMed
Collin, S. P., Davies, W. L., Hart, N. S., and Hunt, D. M. (2009). The evolution of early vertebrate photoreceptors. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 364, 2925–40.Google ScholarPubMed
Collin, S. P., Hart, N. S., Shand, J., and Potter, I. C. (2003). Morphology and spectral absorption characteristics of retinal photoreceptors in the Southern Hemisphere lamprey (Geotria australis). Visual Neuroscience, 20, 119–30.CrossRefGoogle ScholarPubMed
Collin, S. P., Knight, M. A., Davies, W. L., Potter, I. C., Hunt, D. M., and Trezise, A. E. O. (2003). Ancient colour vision: multiple opsin genes in ancestral vertebrates. Current Biology, 13, R864–5.CrossRefGoogle ScholarPubMed
Collin, S. P., and Trezise, A. E. O. (2004). The origins of colour vision in vertebrates. Clinical and Experimental Optometry, 87, 217–33.CrossRefGoogle ScholarPubMed
Crompton, A. W., Taylor, C., and Jagger, J. A. (1978). Evolution of homeothermy in mammals. Nature, 272, 333–6.CrossRefGoogle ScholarPubMed
Cronin, T. W., Porter, M. L., Bok, M. J., Wolf, J. B., and Robinson, P. R. (2010). The molecular genetics and evolution of colour and polarization vision in stomatopod crustaceans. Ophthalmic and Physiological Optics, 30, 460–9.CrossRefGoogle ScholarPubMed
Davies, W. L., Caravalho, L. S., Cowing, J. A., Beazley, L. D., Hunt, D. M., and Arrese, C. A. (2007). Visual pigments of the platypus: a novel route to mammalian colour vision. Current Biology, 17, B161–3.CrossRefGoogle ScholarPubMed
Davies, W. L., Collin, S. P., and Hunt, D. M. (2012). Molecular ecology and adaptation of visual pigments in craniates. Molecular Ecology, 21, 3121–58.CrossRefGoogle ScholarPubMed
Deeb, S. S. (2010). Visual pigments and colour vision in marsupials and monotremes. In Deakin, J. E., Waters, P. D., and Marshall Graves, J. A. (eds.), Marsupial Genetics and Genomics (pp. 403–14). Dordrecht: Springer.Google Scholar
Dominy, N. J., and Lucas, P. W. (2001). Ecological importance of trichromatic colour vision to primates. Nature, 410, 363–5.CrossRefGoogle ScholarPubMed
Duke-Elder, S. (1958). The Eye in Evolution (vol. I of System of Ophthalmology). London: Henry Kimpton.CrossRefGoogle Scholar
Feuda, R., Hamilton, S. C., McInerney, J. O., and Pisani, D. (2012). Metazoan opsin evolution reveals a simple route to animal vision. Proceedings of the National Academy of Sciences of the United States of America, 109, 18868–72.Google ScholarPubMed
Heesy, C. P., and Hall, M. I. (2010). The nocturnal bottleneck and the evolution of mammalian vision. Brain Behavior and Evolution, 75, 195203.CrossRefGoogle ScholarPubMed
Hiramatsu, C., Melin, A. D., Aureli, F., Schaffner, C. M., Vorobyev, M., and Kawamura, S. (2008). Importance of luminance contrast in short-range fruit foraging of primates. PLoS ONE, 3, e3356.CrossRefGoogle ScholarPubMed
Hiramatsu, C., Tsutsui, T., Matsumoto, Y., Aurrell, F., Fedigan, L. M., and Kawamura, S. (2005). Color vision polymorphism in wild capuchins (Cebus capuchinus) and spider monkeys (Ateles geoffroyi) in Costa Rica. American Journal of Primatology, 67, 471–85.CrossRefGoogle Scholar
Hisatomi, O., and Tokunaga, F. (2002). Molecular evolution of proteins involved in vertebrate phototransduction. Comparative and Biochemical Physiology. Part B, Biochemistry & Molecular Biology, 133, 509–22.CrossRefGoogle ScholarPubMed
Hunt, D. M., Carvallo, L. S., Cowing, J. A., and Davies, W. L. (2009). Evolution and spectral tuning of visual pigments in birds and mammals. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 364, 2941–55.Google ScholarPubMed
Hunt, D. M., Dulai, K. S., Cowing, J. A., Juillot, C., Mollon, J. D., Bowmaker, J. K., and Hewett-Emmett, D. (1998). Molecular evolution of trichromacy in primates. Vision Research, 38, 32993306.CrossRefGoogle ScholarPubMed
Hunt, D. M., Jacobs, G. H., and Bowmaker, J. K. (2005). The genetics and evolution of primate visual pigments. In Kremers, J. (ed.), The Primate Visual System: A Comparative Approach (pp. 73126). Chichester: Wiley.CrossRefGoogle Scholar
Hunt, D. M., and Peichl, L. (2014). S cones: evolution, retinal distribution, development, and spectral sensitivity. Visual Neuroscience, 31, 115–38.CrossRefGoogle ScholarPubMed
Hunt, David M., Wilkie, S. E., Bowmaker, J. K., and Poopalasundaram, S. (2001). Vision in the ultraviolet. Cellular and Molecular Life Sciences, 58, 1583–98.CrossRefGoogle ScholarPubMed
Jacobs, G. H. (1984). Within-species variations in visual capacity among squirrel monkeys (Saimiri sciureus): color vision. Vision Research, 24, 1267–77.CrossRefGoogle ScholarPubMed
Jacobs, G. H. (2007). New World monkeys and color. International Journal of Primatology, 28, 729–59.CrossRefGoogle Scholar
Jacobs, G. H. (2008). Primate color vision: a comparative perspective. Visual Neuroscience, 25, 619–33.CrossRefGoogle ScholarPubMed
Jacobs, G. H. (2009). Evolution of colour vision in mammals. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 364, 2957–67.Google ScholarPubMed
Jacobs, G. H. (2010). Recent progress in understanding mammalian color vision. Ophthalmic and Physiological Optics, 30, 422–34.CrossRefGoogle ScholarPubMed
Jacobs, G. H. (2012). The evolution of vertebrate color vision. Advances in Experimental Medicine and Biology, 739, 156–72.CrossRefGoogle ScholarPubMed
Jacobs, G. H. (2013). Losses of functional opsin genes, short-wavelength cone photopigments, and color vision – a significant trend in the evolution of mammalian vision. Visual Neuroscience, 30, 319–53.CrossRefGoogle ScholarPubMed
Jacobs, G. H., and Deegan, J. F. II (1993). Photopigments underlying color vision in ringtail lemurs (Lemur catta) and brown lemurs (Eulemur fulvus). American Journal of Primatology, 30, 243–56.CrossRefGoogle Scholar
Jacobs, G. H., and Deegan, J. F. II, (1999). Uniformity of colour vision in Old World monkeys. Proceedings of the Royal Society of London. B, Biological Sciences, 266, 2023–8.Google ScholarPubMed
Jacobs, G. H., and Deegan, J. F. II, (2001). Photopigments and colour vision in New World monkeys from the family Atelidae. Proceedings of the Royal Society of London. B, Biological Sciences, 268, 695702.CrossRefGoogle ScholarPubMed
Jacobs, G. H., and Deegan, J. F. II, (2003). Diurnality and cone pigment polymorphism in strepsirrhines: examination of the linkage in Lemur catta. American Journal of Physical Anthropology, 122, 676–2.CrossRefGoogle ScholarPubMed
Jacobs, G. H., Deegan, J. F. II, Tan, Y., and Li, W.-H. (2002). Opsin gene and photopigment polymorphism in a prosimian primate. Vision Research, 42, 1118.CrossRefGoogle Scholar
Jacobs, G. H., Fenwick, J. C., Calderone, J. B., and Deeb, S. S. (1999). Human cone pigment expressed in transgenic mice yields altered vision. Journal of Neuroscience, 19, 3258–65.CrossRefGoogle ScholarPubMed
Jacobs, G. H., Fenwick, J. A., and Williams, G. A. (2001). Cone-based vision of rats for ultraviolet and visible lights. Journal of Experimental Biology, 204, 2439–46.CrossRefGoogle ScholarPubMed
Jacobs, G. H., and Nathans, J. (2009). The evolution of primate color vision. Scientific American, 300(4), 40–7.CrossRefGoogle ScholarPubMed
Jacobs, G. H., and Neitz, J. (1987). Inheritance of color vision in a New World monkey (Saimiri sciureus). Proceedings of the National Academy of Sciences of the United States of America, 84, 2545–9.Google Scholar
Jacobs, G. H., Neitz, M., Deegan, J. F., II, and Neitz, J. (1996). Trichromatic colour vision in New World monkeys. Nature, 382, 156–8.CrossRefGoogle ScholarPubMed
Jacobs, G. H., Neitz, M., and Neitz, J. (1996). Mutations in S-cone pigment genes and the absence of colour vision in two species of nocturnal primate. Proceedings of the Royal Society of London. B, Biological Sciences, 263, 705–10.Google ScholarPubMed
Jacobs, G. H., and Rowe, M. P. (2004). Evolution of vertebrate colour vision. Clinical and Experimental Optometry, 87, 206–16.CrossRefGoogle ScholarPubMed
Jacobs, G. H., and Williams, G. A. (2001). The prevalence of defective color vision in Old World monkeys and apes. Color Research & Application, 26, S123–7.3.0.CO;2-6>CrossRefGoogle Scholar
Kashiyama, K., Seki, T., Numata, H., and Goto, S. G. (2009). Molecular characterization of visual pigments in Branchiopoda and the evolution of opsins in Arthropoda. Molecular Biology and Evolution, 26(2), 299311.CrossRefGoogle ScholarPubMed
Kawamura, S., Hiramatsu, C., Melin, A. D., Schaffner, C. M., Aureli, F., and Fedigan, L. M. (2012). Polymorphic color vision in primates: evolutionary considerations. In Hirai, H., Imai, H., and Go, Y. (eds.), Post-Genome Biology of Primates (pp. 93120). Tokyo: Springer.CrossRefGoogle Scholar
Kawamura, S., and Kubotera, N. (2004). Ancestral loss of short wave-sensitive cone visual pigment in lorisiform prosimians, contrasting with its strict conservation in other prosimians. Journal of Molecular Evolution, 58(3), 314–21.CrossRefGoogle ScholarPubMed
Kelber, A., and Osorio, D. (2010). From spectral information to animal colour vision: experiments and concepts. Proceedings of the Royal Society of London. B, Biological Sciences, 277, 1617–25.Google ScholarPubMed
Kemp, T. S. (2005). The Origin and Evolution of Mammals. Oxford University Press.Google Scholar
Koida, K., Yokoi, I., Okazawa, G., Mikami, A., Widayati, K. A., Miyachi, S., and Komatsu, H. (2013). Color vision test for dichromatic and trichromatic macaque monkeys. Journal of Vision, 13, 115.CrossRefGoogle ScholarPubMed
Krishnan, A., Almen, M. S., Fredriksson, R., and Schioth, H. B. (2012). The origin of GPCRs: identification of mammalian like Rhodopsin, Adhesion, Glutamate and Frizzled GPCRs in fungi. PLoS ONE, 7, 1.CrossRefGoogle ScholarPubMed
Ladd-Franklin, C. (1929). Colour and Colour Theories. New York: Harcourt Brace.Google Scholar
Lagman, D., Daza, D. C., Widmark, J., Abalo, X. M., Sundstrom, G., and Larhammar, D. (2013). The vertebrate ancestral repertoire of visual opsins, transducin alpha subunits and oxytocin/vasopressin receptors was established by duplication of their shared genomic region in two rounds of early vertebrate genome duplications. BMC Evolutionary Biology, 13, 238.CrossRefGoogle ScholarPubMed
Lamb, T. D. (2013). Evolution of phototransduction, vertebrate photoreceptors and retina. Progress in Retinal and Eye Research, 36, 52119.CrossRefGoogle ScholarPubMed
Lamb, T. D., Pugh, E. N. Jr., and Collin, S. P. (2007). Evolution of the vertebrate eye: opsins, photoreceptors, retina, and eye-cup. Nature Reviews Neuroscience, 8, 960–75.CrossRefGoogle ScholarPubMed
Lythgoe, J. N., and Partridge, J. C. (1989). Visual pigments and the acquisition of visual information. Journal of Experimental Biology, 146, 120.CrossRefGoogle ScholarPubMed
Matsushita, Y., Oota, H., Welker, B. J., Pavelka, M. S., and Kawamura, S. (2014). Color vision variation as evidenced by hybrid L/M opsin genes in wild populations of trichromatic Alouatta New World monkeys. International Journal of Primatology, 35, 7187.CrossRefGoogle ScholarPubMed
Maximov, V. V. (2000). Environmental factors which may have led to the appearance of colour vision. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 355, 1239–42.Google Scholar
Melin, A. D., Fedigan, L. M., Hiramatsu, C., Hiwatashi, T., Parr, N., and Kawamura, S. (2009). Fig foraging by dichromatic and trichromatic Cebus capucinus in a tropical dry forest. International Journal of Primatology, 30(6), 753–75.CrossRefGoogle Scholar
Mollon, J. D., Bowmaker, J. K., and Jacobs, G. H. (1984). Variations of colour vision in a New World primate can be explained by polymorphism of retinal photopigments. Proceedings of the Royal Society of London. B, Biological Sciences, 222, 373–99.Google Scholar
Nathans, J. (1999). The evolution and physiology of human color vision: insights from molecular genetic studies of visual pigments. Neuron, 24, 299312.CrossRefGoogle ScholarPubMed
Nathans, J., Thomas, D., and Hogness, D. S. (1986). Molecular genetics of human color vision: the genes encoding blue, green and red pigments. Science, 232, 193202.CrossRefGoogle ScholarPubMed
Neitz, J., Geist, T., and Jacobs, G. H. (1989). Color vision in the dog. Visual Neuroscience, 3, 119–25.CrossRefGoogle ScholarPubMed
Neitz, J., and Neitz, M. (2011). The genetics of normal and defective color vision. Vision Research, 51, 633–51.CrossRefGoogle ScholarPubMed
Neitz, M., Neitz, J., and Jacobs, G. H. (1991). Spectral tuning of pigments underlying red-green color vision. Science, 252, 971–4.CrossRefGoogle ScholarPubMed
Nilsson, D. E. (2009). The evolution of eyes and visually guided behaviour. Philosophical Transactions of the Royal Society. Series B, Biological Sciences, 2833–47.CrossRefGoogle Scholar
Nilsson, D. E. (2013). Eye evolution and its functional basis. Visual Neuroscience, 30, 520.CrossRefGoogle ScholarPubMed
Niven, J. E., and Laughlin, S. B. (2008). Energy limitation as a selective pressure on the evolution of sensory systems. Journal of Experimental Biology, 211, 17921804.CrossRefGoogle ScholarPubMed
Nordstrom, K., Larsson, T. A., and Larhammar, D. (2004). Extensive duplications of phototransduction genes in early vertebrate evolution correlate with block (chromosome) duplications. Genomics, 83, 852–72.CrossRefGoogle ScholarPubMed
Okano, T., Yoshizawa, T., and Fukada, Y. (1992). Primary structures of chicken cone visual pigments: vertebrate rods have evolved out of cone visual pigments. Proceedings of the National Academy of Sciences of the United States of America, 89, 5932–6.Google Scholar
Onishi, A., Koike, S., Ida, M., Imai, H., Schichida, Y., Osamu, T., Hanazawa, A., et al. (1999). Dichromatism in macaque monkeys. Nature, 402, 139–40.CrossRefGoogle ScholarPubMed
Osorio, D., Smith, A. C., Vorobyev, M., and Buchanan-Smith, H. M. (2004). Detection of fruit and the selection of primate visual pigments for color vision. American Naturalist, 164, 696708.CrossRefGoogle ScholarPubMed
Osorio, D., and Vorobyev, M. (1996). Colour vision as an adaptation to frugivory in primates. Proceedings of the Royal Society of London. B, Biological Sciences, 263, 593–9.Google ScholarPubMed
Osorio, D., and Vorobyev, M. (2005). Photoreceptor spectral sensitivities in terrestrial animals: adaptations for luminance and colour vision. Proceedings of the Royal Society of London. B, Biological Sciences, 272, 1745–52.Google ScholarPubMed
Parker, A. R. (1998). Colour in Burgess Shale animals and the effect of light on evolution in the Cambrian. Proceedings of the Royal Society of London. Series B, Biological Sciences, 205, 967–72.Google Scholar
Parker, A. R. (2011). On the origin of optics. Optics and Laser Technology, 43, 323–9.CrossRefGoogle Scholar
Parraga, C. A., Troscianko, T., and Tolhurst, D. J. (2002). Spatiochromatic properties of natural images and human vision. Current Biology, 12, 483587.CrossRefGoogle ScholarPubMed
Peichl, L. (2005). Diversity of mammalian photoreceptor properties: adaptations to habitat and lifestyle? The Anatomical Record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology, 287A, 1001–12.CrossRefGoogle Scholar
Plotnick, R. E., Dornbos, S. Q., and Chen, J. (2010). Information landscapes and sensory ecology of the Cambrian radiation. Paleobiology, 36, 303–17.CrossRefGoogle Scholar
Podlaha, O., and Zhang, J. (2010). Pseudogenes and their evolution. In Kehrer-Sawatzki, H. (ed.), Encyclopedia of Life Sciences. Chichester: Wiley.Google Scholar
Porter, M. L., Blasic, J. R., Bok, M. J., Cameron, E. G., Pringle, T., Cronin, T. W., and Robinson, P. R. (2012). Shedding light on opsin evolution. Proceedings of the Royal Society of London. Series B, Biological Sciences, 279, 314.Google ScholarPubMed
Regan, B. C., Julliot, C., Simmen, B., Vienot, F., Charles-Dominique, P., and Mollon, J. D. (2001). Fruits, foliage and the evolution of primate colour vision. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 356, 229–83.Google ScholarPubMed
Schmitz, L., and Motani, R. (2011). Nocturnality in dinosaurs inferred from schleral ring and orbit morphology. Science, 332, 705–8.CrossRefGoogle Scholar
Schopf, J. W. (2011). The paleobiological record and photosynthesis. Photosynthesis Research, 107, 87101.CrossRefGoogle Scholar
Schultze, M. (1866). Zur Anatomie und Physiologie der Retina. Archiv für mikroskopische Anatomie, 2, 175286.CrossRefGoogle Scholar
Schwab, I. R. (2012). Evolution’s Witness: How Eyes Evolved. New York: Oxford University Press.Google Scholar
Shichida, Y., and Matsuyama, T. (2009). Evolution of opsins and phototransduction. Philosophical Transactions of the Royal Society. Series B, Biological Sciences, 364, 2881–95.Google ScholarPubMed
Skorupski, P., and Chittka, L. (2011). Is colour cognitive? Optics and Laser Technology, 43, 251–60.CrossRefGoogle Scholar
Smith, A. C., Buchanan-Smith, H. M., Surridge, A. K., Osorio, D., and Mundy, N. I. (2003). The effect of colour vision status on the detection and selection of fruits by tamarins (Saguinus spp.). Journal of Experimental Biology, 206, 3159–65.CrossRefGoogle ScholarPubMed
Stabell, B., and Stabell, U. (2009). Duplicity Theory of Vision. Cambridge University Press.CrossRefGoogle Scholar
Striedter, G. F. (2005). Principles of Brain Evolution. Sutherland, MA: Sinauer.Google Scholar
Surridge, A. K., and Mundy, N. I. (2002). Trans-specific evolution of opsin alleles and the maintenance of trichromatic colour vision in callitrichine primates. Molecular Ecology, 11, 2157–69.CrossRefGoogle ScholarPubMed
Tan, Y., and Li, W.-H. (1999). Trichromatic vision in prosimians. Nature, 402, 36.CrossRefGoogle ScholarPubMed
Veilleux, C. C., and Bolnick, D. A. (2009). Opsin gene polymorphism predicts trichromacy in a cathemeral lemur. American Journal of Primatology, 71, 8690.CrossRefGoogle Scholar
Veilleux, C. C., Jacobs, R. L., Cummings, M. E., Louis, E. E., and Bolnick, D. A. (2014). Opsin genes and visual ecology in a nocturnal folivorous lemur. International Journal of Primatology, 35, 88107.CrossRefGoogle Scholar
Vogel, E. R., Neitz, M., and Dominy, N. J. (2007). Effect of color vision phenotype on the foraging of wild white-faced capuchins, Cebus capucinus. Behavioral Ecology, 18, 292–7.CrossRefGoogle Scholar
Wakefield, M. J., Anderson, M., Chang, E., Wei, K. J., Kaul, R., Graves, J. A., and Deeb, S. S. (2008). Cone visual pigments of monotremes: filling the phylogenetic gap. Visual Neuroscience, 25, 257–64.CrossRefGoogle ScholarPubMed
Walls, G. L. (1942). The Vertebrate Eye and Its Adaptive Radiation. Bloomfield Hills, MI: Cranbrook Institute of Science.Google Scholar
Wyszecki, G., and Stiles, W. S. (1982). Color Science, 2nd edn. New York: Wiley.Google Scholar
Yokoyama, S. (2000). Molecular evolution of vertebrate visual pigments. Progress in Retinal and Eye Research, 19(4), 385419.CrossRefGoogle ScholarPubMed
Yokoyama, S. (2008). Evolution of dim-light and color vision pigments. Annual Review of Genomics and Human Genetics, 9, 259–82.CrossRefGoogle ScholarPubMed
Yokoyama, S., and Radlwimmer, F. B. (1998). The “five-sites” rule and the evolution of red and green color vision in mammals. Molecular Biology and Evolution, 15, 560–7.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×