Skip to main content Accessibility help
×
Hostname: page-component-797576ffbb-jhnrh Total loading time: 0 Render date: 2023-12-10T20:43:10.327Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

8 - Quantum Monte Carlo methods

Published online by Cambridge University Press:  24 November 2021

David Landau
Affiliation:
University of Georgia
Kurt Binder
Affiliation:
Johannes Gutenberg Universität Mainz, Germany
Get access

Summary

In most of the discussion presented so far in this book, the quantum character of atoms and electrons has been ignored. The Ising spin models have been an exception, but since the Ising Hamiltonian is diagonal (in the absence of a transverse magnetic field), all energy eigenvalues are known and the Monte Carlo sampling can be carried out just as in the case of classical statistical mechanics. Furthermore, the physical properties are in accord with the third law of thermodynamics for Ising-type Hamiltonians (e.g. entropy S and specific heat vanish for temperature T → 0, etc.) in contrast to the other truly classical models dealt with in previous chapters (e.g. classical Heisenberg spin models, classical fluids and solids, etc.) which have many unphysical low temperature properties.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abanov, A. and Chubukov, A. V. (2000), Phys. Rev. Lett. 84, 5608.CrossRefGoogle Scholar
Abanov, A. and Chubukov, A. V. (2004), Phys. Rev. Lett. 93, 255702.CrossRefGoogle Scholar
Anderson, J. B. (1975), J. Chem. Phys. 63, 1499CrossRefGoogle Scholar
Assaad, F. F. and Evertz, H. G. (2008), Computational Many-Particle Physics, Lecture Notes in Physics (Springer, Berlin), p. 739.Google Scholar
Badinski, A. and Needs, R. J. (2007), Phys. Rev. E 76, 036707.CrossRefGoogle Scholar
Barma, M. and Shastry, B. S. (1977), Phys. Lett. 61A, 15.CrossRefGoogle Scholar
Barma, M. and Shastry, B. S. (1978), Phys. Rev. B 18, 3351.CrossRefGoogle Scholar
Batchelder, D. N., Losee, D. L., and Simmons, R. O. (1968), Phys. Rev. 73, 873.CrossRefGoogle Scholar
Beard, B. B. and Wiese, U.-J. (1996), Phys. Rev. Lett. 77, 5130.CrossRefGoogle Scholar
Berg, E., Metlitski, M. A., and Sachdev, S. (2012), Science 338, 1606.CrossRefGoogle Scholar
Berne, B. J. and Thirumalai, D. (1986), Ann. Rev. Phys. Chem. 37, 401.CrossRefGoogle Scholar
Bethe, H. A. (1931), Z. Phys. 71, 205.CrossRefGoogle Scholar
Blanckenbecler, R., Scalapino, D. J., and Sugar, R. L. (1981), Phys. Rev. D 24, 2278.CrossRefGoogle Scholar
Boninsegni, M., Prokof’ev, N., and Svistunov, B. (2006a), Phys. Rev. E 74, 036701.CrossRefGoogle Scholar
Boninsegni, M., Prokof’ev, N., and Svistunov, B. (2006b), Phys. Rev. Lett. 96, 070601.CrossRefGoogle Scholar
Bonner, J. C. and Fisher, M. E. (1964), Phys. Rev. 135, A640.CrossRefGoogle Scholar
Booth, G. H., Grüneis, A., Kresse, G., and Alavi, A. (2012), Nature 493, 465.Google Scholar
Booth, G. H., Thorn, A. J. W., and Alavi, A. (2009), J. Chem. Phys. 131, 054106.CrossRefGoogle Scholar
Carlson, J., Gandolfi, S., Pieper, S. C., Schmidt, K. E., and Wiringa, R. B. (2015), Rev. Mod. Phys. 87, 1067.CrossRefGoogle Scholar
Ceperley, D. M. (1995), Rev. Mod. Phys. 67, 279.CrossRefGoogle Scholar
Ceperley, D. M. (1996), in Monte Carlo and Molecular Dynamics of Condensed Matter Systems, eds. Binder, K. and Ciccotti, G. (Societá Italiana di Fisica, Bologna), p. 445.Google Scholar
Ceperley, D. M. and Alder, B. J. (1980), Phys. Rev. Lett. 45, 566.CrossRefGoogle Scholar
Ceperley, D. M. and Kalos, M. H. (1979), Monte Carlo Methods in Statistical Physics, ed. Binder, K. (Springer, Berlin), p. 145.CrossRefGoogle Scholar
Cizek, J. (1966), J. Chem. Phys. 49, 4256.CrossRefGoogle Scholar
Cleland, D., Booth, G. H., and Alavi, A. (2010), J. Chem. Phys. 132, 041103.CrossRefGoogle Scholar
Cleland, D., Booth, G. H., Overy, C., and Alavi, A. (2012), J. Chem. Theory Comput. 8, 4138.CrossRefGoogle Scholar
Cohen, A. J., Mon-Sanchez, M., and Yang, W. (2012), Chem. Rev. 112, 189.Google Scholar
Cullen, J. J. and Landau, D. P. (1983), Phys. Rev. B. 27, 297.CrossRefGoogle Scholar
Dadobaev, G. and Slutsker, A. I. (1981), Soviet Phys. Solid State 23, 1131.Google Scholar
de Raedt, H. and Lagendijk, A. (1981), Phys. Rev. Lett. 46, 77.CrossRefGoogle Scholar
de Raedt, H. and Lagendijk, A. (1985), Phys. Rep. 127, 233.CrossRefGoogle Scholar
de Raedt, H. and von der Linden, W. (1992), in The Monte Carlo Method in Condensed Matter Physics, ed. Binder, K. (Springer, Berlin), p. 249.Google Scholar
Doll, J. D. and Gubernatis, J. E. (eds.) (1990), Quantum Simulations (World Scientific, Singapore).Google Scholar
Doniach, S., Iuni, M., Kalmeyer, V., and Gabay, M. (1988), Europhys. Lett. 6, 663.CrossRefGoogle Scholar
Evertz, H. G. and Marcu, M. (1993), in Computer Simulations Studies in Condensed Matter Physics VI, eds. Landau, D. P., Mon, K. K., and Schüttler, H.-B. (Springer, Heidelberg), p. 109.CrossRefGoogle Scholar
Evertz, H. G., Lana, G., and Marcu, M. (1993), Phys. Rev. Lett. 70, 875.CrossRefGoogle Scholar
Ewald, P. (1921), Ann. Phys. 74, 253.CrossRefGoogle Scholar
Feynman, R. P. (1953), Phys. Rev. 90, 1116; 91, 1291; 91, 1301.CrossRefGoogle Scholar
Feynman, R. P. and Hibbs, A. R. (1965), Quantum Mechanics and Path Integrals (McGraw Hill, New York).Google Scholar
Foulkes, M. W. C., Mitas, L., Needs, R. J., and Rajagopal, G. (2001), Rev. Mod. Phys. 73, 33.CrossRefGoogle Scholar
Gandolfi, S., Carlson, J., and Reddy, S. (2012), Phys. Rev. C 85, 032801.CrossRefGoogle Scholar
Gandolfi, S., Lovato, A., Carlson, J., and Schmidt, K. E. (2014), Phys. Rev. C 90, 061306.CrossRefGoogle Scholar
Gezerlis, A., Tews, I., Epelbaum, E., Freunek, M., Gandolfi, S., Hebeler, K., Nogga, A., and Schwenk, A. (2014). Phys. Rev. C 90, 054323.CrossRefGoogle Scholar
Gillan, M. J. and Christodoulos, F. (1993), Int. J. Mod. Phys. C4, 287.CrossRefGoogle Scholar
Gomez-Santos, G. Joannopoulos, J. D., and Negele, J. W. (1989), Phys. Rev. B 39, 4435.CrossRefGoogle Scholar
Grossman, J. C. and Mitas, L. (2005), Phys. Rev. Lett. 94, 056403.CrossRefGoogle Scholar
Gubernatis, J. E. and Kawashima, N. (1996), in Monte Carlo and Molecular Dynamics of Condensed Matter Systems, eds. Binder, K. and Ciccotti, G. (Societa Italiana di Fisica, Bologna), p. 519.Google Scholar
Gubernatis, J., Kawashima, N., and Philipp, W. (2016), Quantum Monte Carlo Methods: Algorithms for Lattice Models (Cambridge University Press, Cambridge).CrossRefGoogle Scholar
Gubernatis, J. E., Jarrell, M., Silver, R. N., and Sivia, D. S. (1991), Phys. Rev. B 44, 6011.CrossRefGoogle Scholar
Gull, E., Millis A, J., Lichtenstein, A. I., Rubtsov, A. N., Troyer, M., and Werner, P. (2011), Rev. Mod. Phys. 83, 349.CrossRefGoogle Scholar
Handscomb, D. C. (1962), Proc. Cambridge Philos. Soc. 58, 594.CrossRefGoogle Scholar
Handscomb, D. C. (1964), Proc. Cambridge Philos. Soc. 60, 115.CrossRefGoogle Scholar
Hirsch, J. E., Sugar, R. L., Scalapino, D. J., and Blancenbecler, R. (1982), Phys. Rev. B 26, 5033.CrossRefGoogle Scholar
Homma, S., Matsuda, H., and Ogita, N. (1984), Prog. Theor. Phys. 72, 1245.CrossRefGoogle Scholar
Homma, S., Matsuda, H., and Ogita, N. (1986), Prog. Theor. Phys. 75, 1058.CrossRefGoogle Scholar
Horsch, R. and von der Linden, W. (1988), Z. Phys. B 72, 181.CrossRefGoogle Scholar
Hubbard, J. (1963), Proc. Roy. Soc. London A 276, 238.Google Scholar
Hulthén, J. L. (1938), Ark. Mat. Astron. Fjs. A 26, 1.Google Scholar
Huse, D. A. and Elser, V. (1988), Phys. Rev. Lett. 60, 2531.CrossRefGoogle Scholar
Kalos, M. H. (ed.) (1984), Monte Carlo Methods in Quantum Problems (D. Reidel, Dordrecht).CrossRefGoogle Scholar
Kasteleijn, P. W. (1952), Physica 18, 104.CrossRefGoogle Scholar
Kawashima, N. (1997), in Computer Simulations Studies in Condensed Matter Physics IX, eds. Landau, D. P., Mon, K. K., and Schüttler, H.-B. (Springer, Heidelberg), p. 45.CrossRefGoogle Scholar
Kawashima, N. and Gubernatis, J. E. (1995), Phys. Rev. E 51, 1547.CrossRefGoogle Scholar
Kohn, W. (1999), Rev. Mod. Phys. 71, 1253.CrossRefGoogle Scholar
Lee, D. H., Joannopoulos, J. D., and Negele, J. W. (1984), Phys. Rev. B 30, 1599.CrossRefGoogle Scholar
Liang, S., Doucot, B., and Anderson, P. W. (1988), Phys. Rev. Lett. 61, 365.CrossRefGoogle Scholar
Loewdin, P. O. (1955), Phys. Rev. 97, 1474.CrossRefGoogle Scholar
Loh, E. Y., Gubernatis, J. E., Scalettar, R. T., White, S. R., Scalapino, D. J., and Sugar, R. L. (1990), Phys. Rev. B 41, 9301.CrossRefGoogle Scholar
Lopez-Rios, P., Ma, A., Drummond, N. D., Fowler, M. D., and Needs, R. J. (2006), Phys. Rev. E 74, 066701.CrossRefGoogle Scholar
Lovato, A., Gandolfi, S., Butler, R., Carlson, J., Lusk, E., Pieper, S. C., and Schiavilla, R. (2013), Phys. Rev. Lett. 111, 092501.CrossRefGoogle Scholar
Lyklema, J. W. (1982), Phys. Rev. Lett. 49, 88.CrossRefGoogle Scholar
Manousakis, E. and Salvador, R. (1989), Phys. Rev. B 39, 575.CrossRefGoogle Scholar
Marinari, E. and Parisi, G. (1992), Europhys. Lett. 19, 451.CrossRefGoogle Scholar
Marshall, W. (1955), Proc. Roy. Soc. London A 232, 64.Google Scholar
Martonak, P., Paul, W., and Binder, K. (1998), Phys. Rev. E 57, 2425.CrossRefGoogle Scholar
Marx, D. and Nielaba, P. (1992), Phys. Rev. A 45, 8968.CrossRefGoogle Scholar
Marx, D. and Wiechert, H. (1996), Adv. Chem. Phys. 95, 213.Google Scholar
Marx, D., Opitz, O., Nielaba, P., and Binder, K. (1993), Phys. Rev. Lett. 70, 2908.CrossRefGoogle Scholar
Metlitski, M. A., and Sachdev, S. (2010), Phys. Rev. B 82, 075128.CrossRefGoogle Scholar
Miyazawa, S. and Homma, S. (1995), in Computer Simulations Studies in Condensed Matter Physics VIII, eds. Landau, D. P., Mon, K. K., and Schüttler, H.-B. (Springer, Heidelberg), p. 78.CrossRefGoogle Scholar
Miyazawa, S., Miyashita, S., Makivic, M. S., and Homma, S. (1993), Prog. Theor. Phys. 89, 1167.CrossRefGoogle Scholar
Møller, C. and Plesset, M. S. (1934), Phys. Rev. 46, 618.CrossRefGoogle Scholar
Müser, M. H. (1996), Mol. Simulation 17, 131.CrossRefGoogle Scholar
Müser, M. H., Nielaba, P., and Binder, K. (1995), Phys. Rev. B 51, 2723.CrossRefGoogle Scholar
Nho, K. and Landau, D. P. (2004), Phys. Rev. A 70, 053614.CrossRefGoogle Scholar
Nielaba, P. (1997), in Annual Reviews of Computational Physics V, ed. Stauffer, D. (World Scientific, Singapore), p. 137.CrossRefGoogle Scholar
Okabe, Y. and Kikuchi, M. (1986), Phys. Rev. B 34, 7896.CrossRefGoogle Scholar
Onsager, L. (1944), Phys. Rev. 65, 117.CrossRefGoogle Scholar
Ovchinnikov, A. A. (1973), Sov. Phys. JETP 37, 176.Google Scholar
Pople, J. A. (1999), Rev. Mod. Phys. 71, 1267.CrossRefGoogle Scholar
Raghavachari, K., Trucks, G. W., Pople, J. A., and Head-Gordon, M. (1989), Chem. Phys. Lett. 157, 479.CrossRefGoogle Scholar
Reger, J. D. and Young, A. P. (1988), Phys. Rev. B 37, 5978.CrossRefGoogle Scholar
Rutledge, G. C., Lacks, D. J., Martonak, R., and Binder, K. (1998), J. Chem. Phys. 108, 10274.CrossRefGoogle Scholar
Sandvik, A. W. (1992), J. Phys. A 25, 3667.CrossRefGoogle Scholar
Sandvik, A. W. (1997), Phys. Rev. B 56, 14510.CrossRefGoogle Scholar
Sandvik, A. W. (1998), Phys. Rev. Lett. 80, 5196.CrossRefGoogle Scholar
Sandvik, A. W. and Kurkijärvi, J. (1991), Phys. Rev. B 43, 5950.CrossRefGoogle Scholar
Schattner, Y., Gerlach, M. H., Trebst, S., and Berg, E. (2016), Phys. Rev. Lett. 117, 097002.CrossRefGoogle Scholar
Schmidt, K. E. and Ceperley, D. M. (1992), in The Monte Carlo Method in Condensed Matter Physics, ed. Binder, K. (Springer, Berlin), p. 205.CrossRefGoogle Scholar
Schmidt, K. E. and Kalos, M. H. (1984), in Applications of the Monte Carlo Method in Statistical Physics, ed. Binder, K. (Springer, Berlin), p. 125.CrossRefGoogle Scholar
Schwenk, A. (2014), Phys. Rev. C 90, 054323.Google Scholar
Shepherd, J. J., Booth, G. H., Grüneis, A., and Alavi, A. (2012), Phys. Rev. B 85, 081103 (R).CrossRefGoogle Scholar
Skilling, J. (ed.) (1989), Maximum Entropy and Bayesian Methods (Kluwer, Dordrecht).CrossRefGoogle Scholar
Suzuki, M. (1966), J. Phys. Soc. Jpn. 21, 2274.CrossRefGoogle Scholar
Suzuki, M. (1971), Prog. Theor. Phys. 46, 1337.CrossRefGoogle Scholar
Suzuki, M. (1976a), Commun. Math. Phys. 51, 183.CrossRefGoogle Scholar
Suzuki, M. (1976b), Prog. Theor. Phys. 56, 1454.CrossRefGoogle Scholar
Suzuki, M. (ed.) (1986), Quantum Monte Carlo Methods (Springer, Berlin).Google Scholar
Suzuki, M. (ed.) (1992), Quantum Monte Carlo Methods in Condensed Matter Physics (World Scientific, Singapore).Google Scholar
Trivedi, N. and Ceperley, D. M. (1989), Phys. Rev. B 40, 2737.CrossRefGoogle Scholar
Todo, S., Matsuo, H., and Shitara, H. (2019), Comput. Phys. Commun. 239, 84.CrossRefGoogle Scholar
Trotter, H. F. (1959), Proc. Am. Math. Soc. 10, 545.CrossRefGoogle Scholar
Troyer, M., Wessel, S., and Alet, F. (2003), Phys. Rev. Lett. 90, 120201.CrossRefGoogle Scholar
Troyer, M., and Wiese, U.-J. (2005), Phys. Rev. Lett. 94, 170201.CrossRefGoogle Scholar
Wlazłowski, G., Holt, J. W., Moroz, S., Bulgac, A., and Roche, K. J. (2014), Phys. Rev. Lett. 113, 182503.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Quantum Monte Carlo methods
  • David Landau, University of Georgia, Kurt Binder, Johannes Gutenberg Universität Mainz, Germany
  • Book: A Guide to Monte Carlo Simulations in Statistical Physics
  • Online publication: 24 November 2021
  • Chapter DOI: https://doi.org/10.1017/9781108780346.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Quantum Monte Carlo methods
  • David Landau, University of Georgia, Kurt Binder, Johannes Gutenberg Universität Mainz, Germany
  • Book: A Guide to Monte Carlo Simulations in Statistical Physics
  • Online publication: 24 November 2021
  • Chapter DOI: https://doi.org/10.1017/9781108780346.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Quantum Monte Carlo methods
  • David Landau, University of Georgia, Kurt Binder, Johannes Gutenberg Universität Mainz, Germany
  • Book: A Guide to Monte Carlo Simulations in Statistical Physics
  • Online publication: 24 November 2021
  • Chapter DOI: https://doi.org/10.1017/9781108780346.009
Available formats
×