Skip to main content Accessibility help
Hostname: page-component-7d684dbfc8-tqxhq Total loading time: 0 Render date: 2023-09-26T15:43:55.128Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

10 - Non-equilibrium and irreversible processes

Published online by Cambridge University Press:  24 November 2021

David Landau
University of Georgia
Kurt Binder
Johannes Gutenberg Universität Mainz, Germany
Get access


In the preceding chapters we have dealt extensively with equilibrium properties of a wide variety of models and materials. We have emphasized the importance of insuring that equilibrium has been reached, and we have discussed the manner in which the system may approach the correct distribution of states, i.e. behavior before it comes to equilibrium. This latter topic has been treated from the perspective of helping us understand the difficulties of achieving equilibrium. The theory of equilibrium behavior is well developed and in many cases there is extensive, reliable experimental information available.

Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Alberts, B. (1994), Molecular Biology of the Cell (Garland, New York).Google Scholar
Amaro, R. and Luthey-Schulten, Z. (2004), Chem. Phys. 307, 147.CrossRefGoogle Scholar
Baity-Jesi, M. et al. (Janus collaboration) (2014), Comput. Phys. Commun. 185, 550.CrossRefGoogle Scholar
Baity-Jesi, M. et al. (Janus collaboration) (2017), Phys. Rev. Lett. 118, 157202.CrossRefGoogle Scholar
Baity-Jesi, M. et al. (Janus collaboration) (2018), Phys. Rev. Lett. 120, 267203.CrossRefGoogle Scholar
Barabási, A.-L. and Stanley, H. E. (1995), Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge).CrossRefGoogle Scholar
Binder, K. and Stauffer, D. (1974), Phys. Rev. Lett. 33, 1006.CrossRefGoogle Scholar
Binder, K. and Stauffer, D. (1976), Adv. Phys. 25, 343.CrossRefGoogle Scholar
Binder, K. and Wang, J. S. (1989), J. Stat. Phys. 55, 87.CrossRefGoogle Scholar
Bolhuis, P. G., Dellago, C., Chandler, D., and Geissler, P. L. (2002), Ann. Rev. Phys. Chem. 59, 291.CrossRefGoogle Scholar
Bray, A. (1994), Adv. Phys. 43, 357.CrossRefGoogle Scholar
Caracciolo, S., Gambassi, A., Gubinelli, M., and Pelissetto, A. (2004), J. Stat. Phys. 115, 281.CrossRefGoogle Scholar
Chhabra, A., Matthews-Morgan, D., and Landau, D. P. (1986), Phys. Rev. B 34, 4796.CrossRefGoogle Scholar
Cirillo, E. N. M., Gonnella, G., and Saracco, G. P. (2005), Phys. Rev. E 72, 026139.CrossRefGoogle Scholar
Crooks, G. E. (1998), J. Stat. Phys. 90, 1481.CrossRefGoogle Scholar
Crooks, G. E. (1999), Phys. Rev. E 60, 2721.CrossRefGoogle Scholar
Dellago, C., Bolhuis, P. G., and Geissler, P. L. (2001), Advances in Chemical Physics (Wiley, New York).Google Scholar
Derks, D., Aarts, D. G. A. L., Bonn, D., Lekkerkerker, H. N. W., and Imhof, A. (2006). Phys. Rev. Lett. 97, 038301.CrossRefGoogle Scholar
Dubbeldam, J. L. A., Milchev, A., Rostashvili, V. G., and Vilgis, T. A., (2007), Europhys. Lett. 79, 18002.CrossRefGoogle Scholar
Eden, M. (1961), in Proc. 4th Berkeley Symposium on Mathematical Statistics and Probability, Vol. IV, ed. Neyman, J. (University of California, Berkeley) p. 223.Google Scholar
Edwards, S. F. and Wilkinson, D. R. (1982), Proc. R. Soc. A 381, 17.Google Scholar
Evans, J. W. (1993), Rev. Mod. Phys. 65, 1281.CrossRefGoogle Scholar
Family, F. and Landau, D. P. (1984), Kinetics of Aggregation and Gelation (North Holland, Amsterdam).CrossRefGoogle Scholar
Family, F. and Vicsek, T. (1985), J. Phys. A 18, L75.CrossRefGoogle Scholar
Farkas, Z., Derenyi, I., and Vicsek, T. (2003), J. Phys.: Cond. Matter 15, S 1767.Google Scholar
Feder, J. (1988), Fractals (Plenum Press, New York).CrossRefGoogle Scholar
Gilmer, G. H. and Broughton, J. Q. (1983), J. Vac. Sci. Technol. B 1, 298.CrossRefGoogle Scholar
Gilmer, G. H., Leamy, H. J., and Jackson, K. A. (1974), J. Cryst. Growth 24/25, 495.CrossRefGoogle Scholar
Grest, G. S. and Srolovitz, D. J. (1985), Phys. Rev. B 32, 3014.CrossRefGoogle Scholar
Guchhait, S. and Orbach, R. (2017) Phys. Rev. Lett. 118, 157203.CrossRefGoogle Scholar
Gunton, J. D., Gawlinski, E., and Kaski, K. (1988), in Dynamics of Ordering Processes in Condensed Matter, eds. Komura, S. and Furukawa, H. (Plenum, New York), p. 101.CrossRefGoogle Scholar
Han, J., Turner, S. W., and Craigherd, H. G. (1999), Phys. Rev. Lett. 83, 1688.CrossRefGoogle Scholar
Hanss, B., Leal-Pinto, E., Bruggeman, I. A., Copland, T. D., and Klotman, P. E. (1998), Proc. Natl Acad. Sci. USA 95, 1921.CrossRefGoogle Scholar
Harris, N. C., Song, Y., and Kiang, C. H. (2007), Phys. Rev. Lett. 99, 068101.CrossRefGoogle Scholar
Herrmann, H. J. (1986a), Physics Reports 136, 153.CrossRefGoogle Scholar
Herrmann, H. J. (1986b), J. Stat. Phys. 45, 145.CrossRefGoogle Scholar
Herrmann, H. J. (1992), in The Monte Carlo Method in Condensed Matter Physics, ed. Binder, K. (Springer, Berlin), p. 93.CrossRefGoogle Scholar
Herrmann, H. J., Stauffer, D., and Landau, D. P. (1983), J. Phys. A 16, 1221.CrossRefGoogle Scholar
Janssen, H. K. and Schmittmann, B. (1986), Z. Phys. B 64, 503.CrossRefGoogle Scholar
Jarzynski, C. (1997a), Phys. Rev. Lett. 78, 2690CrossRefGoogle Scholar
Jarzynski, C. (1997b), Phys. Rev. E 56, 5018.CrossRefGoogle Scholar
Jarzynski, C. (2006), Phys. Rev. E 73, 046105.CrossRefGoogle Scholar
Jarzynski, C. (2008), Eur. Phys. J. B 64, 331.CrossRefGoogle Scholar
Joh, Y. G., Orbach, R., Wood, G. G., Hammann, J., and Vincent, E. (1999), Phys. Rev. Lett. 82, 438.CrossRefGoogle Scholar
Jullien, R., Kolb, M., and Botet, R. (1984), in Kinetics of Aggregation and Gelation, eds. Family, F. and Landau, D. P. (North Holland, Amsterdam), p. 102.Google Scholar
Kantor, Y. and Kardar, M. (2004), Phys. Rev. E 69, 021806.CrossRefGoogle Scholar
Kardar, M., Parisi, G., and Zhang, Y.-C. (1986), Phys. Rev. Lett. 56, 889.CrossRefGoogle Scholar
Kashchiev, D., van der Eerden, J. P., and van Leeuwen, C. (1997), J. Cryst. Growth 40, 47.CrossRefGoogle Scholar
Katz, S., Lebowitz, J. L., and Spohn, H. (1984), Phys. Rev. B 28, 1655.CrossRefGoogle Scholar
Komura, S. and Furukawa, H. (1988), Dynamics of Ordering Processes in Condensed Matter Theory (Plenum, New York).CrossRefGoogle Scholar
Kremer, K. and Binder, K. (1984), J. Chem. Phys. 81, 6381.CrossRefGoogle Scholar
Kwak, W., Landau, D. P., and Schmittmann, B. (2004), Phys. Rev. E 69, 066134.CrossRefGoogle Scholar
Landau, D. P. and Pal, S. (1996), Thin Solid Films 272, 184.CrossRefGoogle Scholar
Leung, K.-T. (1991), Phys. Rev. Lett. 66, 453.CrossRefGoogle Scholar
Leung, K.-T. and Cardy, J. L. (1986), J. Stat. Phys. 44, 567; erratum (1986), J. Stat. Phys. 45, 1087.CrossRefGoogle Scholar
Måløy, K. J., Feder, J., and Jøssang, T. (1985), Phys. Rev. Lett. 55, 2688.CrossRefGoogle Scholar
Manneville, P. and de Seze, L. (1981), in Numerical Methods in the Study of Critical Phenomena, eds. Della Dora, I., Demongeot, J., and Lacolle, B. (Springer, Berlin), p. 116.CrossRefGoogle Scholar
Marro, J. (2008), Comp. Phys. Commun. 179, 144.CrossRefGoogle Scholar
Meller, A. (2003), J. Phys.: Condens. Matter 15, R581.Google Scholar
Meller, A., Nivon, L., and Branton, D. (2001), Phys. Rev. Lett. 86, 3435.CrossRefGoogle Scholar
Milchev, A., Binder, K., and Bhattacharya, A. (2004), J. Chem. Phys. 121, 6042.CrossRefGoogle Scholar
Milchev, A., Binder, K., and Heermann, D. W. (1986), Z. Phys. B 63, 521.CrossRefGoogle Scholar
Mitchell, S. J. and Landau, D. P. (2006), Phys. Rev. Lett. 97, 025701.CrossRefGoogle Scholar
Moritz, C., Tröster, A., and Dellago, C. (2017), J. Chem. Phys. 147, 152714.CrossRefGoogle Scholar
Mouritsen, O. G. (1990), in Kinetics of Ordering and Growth at Surfaces, ed. Lagally, M. G. (Plenum Press, New York), p. 1.Google Scholar
Muthukumar, M. (1999), J. Chem. Phys. 111, 10379.CrossRefGoogle Scholar
Onuki, A. (2002), Phase Transition Dynamics (Cambridge University Press, Cambridge).CrossRefGoogle Scholar
Pal, S. and Landau, D. P. (1994), Phys. Rev. B 49, 597.Google Scholar
Pal, S. and Landau, D. P. (1999), Physica A 267, 406.CrossRefGoogle Scholar
Pal, S., Landau, D. P., and Binder, K. (2003), Phys. Rev. E 68, 021601.CrossRefGoogle Scholar
Panja, D., Barkema, G. T., and Kolomeisky, A. B. (2013), J.Phys.: Condens. Matter 25, 413101.Google Scholar
Park, P. J. and Sung, W. (1998), J. Chem. Phys. 108, 3013.CrossRefGoogle Scholar
Praestgaard, E. L., Schmittmann, B., and Zia, R. K. P. (2000), Eur. Phys. J. B 18, 675.CrossRefGoogle Scholar
Puri, S., and Wadhavan, V. (2009), Kinetics of Phase Transitions (CRC Press, Boca Raton).CrossRefGoogle Scholar
Sadiq, A. and Binder, K. (1984), J. Stat. Phys. 35, 517.CrossRefGoogle Scholar
Sandomirski, K., Allahyarov, E., Loewen, H., and Egelhaaf, S. U. (2011), Soft Matter 7 , 8050.CrossRefGoogle Scholar
Schadschneider, A., Poeschel, T., Kuehne, R.,  Schreckenberg, M., and Wolf, D. (2007), Traffic and Granular Flow 05 (Springer, Berlin).CrossRefGoogle Scholar
Schmittmann, B. and Zia, R. K. P. (1995), in Phase Transitions and Critical Phenomena, vol. 17 (Academic Press, London), p. 1.Google Scholar
Smith, T. H., Vasilyev, O., Abraham, D. B., Maciolek, A., and Schmitt, M. (2008), Phys. Rev. Lett. 101, 067203.CrossRefGoogle Scholar
Stauffer, D. (1987), Phil. Mag. B 56, 901.CrossRefGoogle Scholar
Stauffer, D. (1997), Int. J. Mod. Phys. C 8, 1263.CrossRefGoogle Scholar
Sung, W. and Park, P. J. (1996), Phys. Rev. Lett. 77, 783.CrossRefGoogle Scholar
Swendsen, R. H., Kortman, P. J., Landau, D. P., and Müller-Krumbhaar, H. (1976), J. Cryst. Growth 35, 73.CrossRefGoogle Scholar
Toxvaerd, S. (1995), in 25 Years of Nonequilibrium Statistical Mechanics, eds. Brey, J. J., Marro, J., Rubi, J. M., and Miguel, M. San (Springer, Berlin), p. 338.CrossRefGoogle Scholar
Tringides, M. C., Wu, P. K., and Lagally, M. G. (1987), Phys. Rev. Lett. 59, 315.CrossRefGoogle Scholar
Uebing, C. and Gomer, R. (1991), J. Chem. Phys. 95, 7626, 7636, 7641, 7648.CrossRefGoogle Scholar
Uebing, C. and Gomer, R. (1994), Surf. Sci. 306, 419.CrossRefGoogle Scholar
Van den Eijnden, E. (2006), in Computer Simulations in Condensed Matter: From Materials to Chemical Biology, eds. Ferrario, M., Ciccotti, G., and Binder, K. (Springer, Heidelberg), vol. 1, p. 453.Google Scholar
Vocks, H., Panja, D., Barkema, G. T., and Ball, R. C. (2008), J. Phys.: Condens. Matter 20, 095224.Google Scholar
Wang, J.-S. (1996), J. Stat. Phys. 82, 1409.CrossRefGoogle Scholar
Witten, T. A. and Sander, L. M. (1981), Phys. Rev. Lett. 47, 1400.CrossRefGoogle Scholar
Wolf, D. E. and Villain, J. (1990), Europhys. Lett. 13, 389.CrossRefGoogle Scholar
Wolfram, S. (1986), Theory and Applications of Cellular Automata (World Scientific, Singapore).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats