Skip to main content Accessibility help
×
Hostname: page-component-5d59c44645-mhl4m Total loading time: 0 Render date: 2024-02-24T23:26:59.763Z Has data issue: false hasContentIssue false

4 - Importance sampling Monte Carlo methods

Published online by Cambridge University Press:  24 November 2021

David Landau
Affiliation:
University of Georgia
Kurt Binder
Affiliation:
Johannes Gutenberg Universität Mainz, Germany
Get access

Summary

In this chapter we want to introduce simple importance sampling Monte Carlo techniques as applied in statistical physics and which can be used for the study of phase transitions at finite temperature. We shall discuss details, algorithms, and potential sources of difficulty using the Ising model as a paradigm. It should be understood, however, that virtually all of the discussion of the application to the Ising model is relevant to other models as well, and a few such examples will also be discussed. Other models as well as sophisticated approaches to the Ising model will be discussed in later chapters. The Ising model is one of the simplest lattice models which one can imagine, and its behavior has been studied for a century. The simple Ising model consists of spins which are confined to the sites of a lattice and which may have only the values +1 or −1.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ala-Nissila, T., Ferrando, R., and Ying, S. C. (2002), Adv. Phys. 51, 949.CrossRefGoogle Scholar
Attig, N., Binder, K., Grubmüller, H., and Kremer, K. (2004), Computational Soft Matter: From Synthetic Polymers to Proteins (NIC Directors, Jülich).Google Scholar
Baxter, R. J. (1972), Ann. Phys. (N.Y.) 70, 193.CrossRefGoogle Scholar
Baxter, R. J. (1982), Exactly Solved Models in Statistical Mechanics (Academic Press, London).Google Scholar
Baxter, R. J. and Wu, F. Y. (1973), Phys. Rev. Lett. 31, 1294.Google Scholar
Binder, K. (1981), Z. Phys. B 43, 119.CrossRefGoogle Scholar
Binder, K. (1983), in Phase Transitions and Critical Phenomena, vol. 8, eds. Domb, C. and Lebowitz, J. L. (Academic Press, London), p. 1.Google Scholar
Binder, K. (1987), Rep. Prog. Phys. 50, 783.Google Scholar
Binder, K. (1992), in Computational Methods in Field Theory, eds. Lang, C. B. and Gausterer, H. (Springer, Berlin), p. 59.Google Scholar
Binder, K. (ed.) (1995), Monte Carlo and Molecular Dynamics Simulations in Polymer Science (Oxford University Press, New York).Google Scholar
Binder, K. and Hohenberg, P. C. (1974), Phys. Rev. B 9, 2194.Google Scholar
Binder, K. and Landau, D. P. (1984), Phys. Rev. B 30, 1477.Google Scholar
Binder, K. and Müller-Krumbhaar, H. (1973), Phys. Rev. B 7, 3297.Google Scholar
Binder, K. and Stauffer, D. (1972), J. Stat. Phys. 6, 49.Google Scholar
Binder, K. and Young, A. P. (1986), Rev. Mod. Phys. 58, 801.CrossRefGoogle Scholar
Block, B. J., Kim, S., Virnau, P., and Binder, K. (2014), Phys. Rev. E 90, 062106.Google Scholar
Borgs, C. and Kotecký, R. (1990), J. Stat. Phys. 61, 79.Google Scholar
Bulnes, F. M., Pereyra, V. D., and Ricardo, J. L. (1998), Phys. Rev. E 58, 86.Google Scholar
Caillol, J. M. (1993), J. Chem. Phys. 99, 8953.Google Scholar
Carmesin, I. and Kremer, K. (1988), Macromolecules 21, 2878.Google Scholar
Challa, M. S. S. and Hetherington, J. H. (1988), in Computer Simulation Studies in Condensed Matter Physics I, eds. Landau, D. P., Mon, K. K., and Schüttler, H.-B. (Springer, Heidelberg).Google Scholar
Challa, M. S. S. and Landau, D. P. (1986), Phys. Rev. B 33, 437.CrossRefGoogle Scholar
Challa, M. S. S., Landau, D. P., and Binder, K. (1986), Phys. Rev. B 34, 1841.Google Scholar
Creutz, M. (1983), Phys. Rev. Lett. 50, 1411.Google Scholar
Crisanti, A. and Ritort, F. (2003), J. Phys. A 36, R181.CrossRefGoogle Scholar
da Silva, R., Fernandes, H. A., de Felicio, J. R. D., and Figueiredo, W. (2013), Comput. Phys. Commun. 184, 2371.Google Scholar
de Gennes, P. G. (1979), in Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca), Chapter 1.Google Scholar
Ferrenberg, A. M. and Landau, D. P. (1991), Phys. Rev. B 44, 5081.CrossRefGoogle Scholar
Ferrenberg, A. M., Landau, D. P., and Binder, K. (1991), J. Stat. Phys. 63, 867.Google Scholar
Fichthorn, K. A. and Weinberg, W. H. (1991), J. Chem. Phys. 95, 1090.CrossRefGoogle Scholar
Fisher, M. E. (1971), in Critical Phenomena, ed. Green, M. S. (Academic Press, London), p. 1.Google Scholar
Flory, P. J. (1953), Principles of Polymer Chemistry (Cornell University Press, Ithaca).Google Scholar
Fosdick, L. D. (1959), Phys. Rev. 116, 565.Google Scholar
Glauber, R. J. (1963), J. Math. Phys. 4, 294.Google Scholar
Gompper, G. and Goos, J. (1995), in Annual Reviews of Computational Physics II, ed. Stauffer, D. (World Scientific, Singapore), p. 101.Google Scholar
Graim, T. and Landau, D. P. (1981), Phys. Rev. B 24, 5156.CrossRefGoogle Scholar
Grassberger, P. (1997), Phys. Rev. E 56, 3682.Google Scholar
Gunton, J. D., San Miguel, M., and Sahni, P. S. (1983), in Phase Transitions and Critical Phenomena, eds. Domb, C. and Lebowitz, J. L. (Academic Press, London), vol. 8, p. 267.Google Scholar
Heenen, H.-H., Schewer, C., and Reuter, K. (2017), Nano Lett. 17, 3884.CrossRefGoogle Scholar
Hohenberg, P. C. and Halperin, B. I. (1977), Rev. Mod. Phys. 49, 435.CrossRefGoogle Scholar
Houdayer, J. (2002), J. Chem. Phys. 116, 1783.Google Scholar
Houdayer, J. and Müller, M. (2002), Europhys. Lett. 58, 660.Google Scholar
Hsu, H.-P. and Binder, K. (2012), J. Chem. Phys. 136, 024901.CrossRefGoogle Scholar
Hsu, H.-P. and Grassberger, P. (2011), J. Stat. Phys. 144, 597.CrossRefGoogle Scholar
Hsu, H.-P., Binder, K., Klushin, L. I., and Skvortsov, A. M. (2008), Phys. Rev. E 78, 041803.Google Scholar
Hsu, H.-P., Mehra, V., Nadler, W., and Grassberger, P. (2003), J. Chem. Phys. 118, 444.Google Scholar
Hüller, A. (1993), Z. Phys. B 90, 207.Google Scholar
Ito, N. (1993), Physica A 196, 591.CrossRefGoogle Scholar
Janssen, H. K., Schaub, B., and Schmittmann, B. (1989), Z. Phys. B 73, 539.Google Scholar
Jasnow, D. (1984), Rep. Prog. Phys. 47, 1059.CrossRefGoogle Scholar
Jin, S., Sen, A., and Sandvik, A. (2012), Phys. Rev. Lett. 108, 045702.Google Scholar
Kang, H. C. and Weinberg, W. H. (1989), J. Chem. Phys. 90, 2824.Google Scholar
Katzgraber, H. G., Lee, L. W., and Young, A. P. (2004), Phys. Rev. B 70, 014417.Google Scholar
Katzgraber, H. G., Palassini, M., and Young, A. P. (2001), Phys. Rev. B 64, 184422.Google Scholar
Kawamura, H. and Kikuchi, M. (1993), Phys. Rev. B 47, 1134.CrossRefGoogle Scholar
Kawasaki, K. (1972), in Phase Transitions and Critical Phenomena, vol. 2, eds. Domb, C. and Green, M. S. (Academic Press, London).Google Scholar
Kehr, K. W. and Binder, K. (1984), in Applications of the Monte Carlo Method in Statistical Physics, ed. Binder, K. (Springer, Heidelberg), p. 181.Google Scholar
Kehr, K. W., Reulein, S., and Binder, K. (1989), Phys. Rev. B 39, 4891.CrossRefGoogle Scholar
Kikuchi, M. and Ito, N. (1993), J. Phys. Soc. Japan 62, 3052.Google Scholar
Koch, W. and Dohm, V. (1998), Phys. Rev. E 58, 1179.Google Scholar
Koch, W., Dohm, V., and Stauffer, D. (1996), Phys. Rev. Lett. 77, 1789.CrossRefGoogle Scholar
Kratky, O. and Porod, G. (1949), J. Colloid Sci. 4, 35.Google Scholar
Kremer, K. and Binder, K. (1988), Computer Phys. Rep. 7, 261.Google Scholar
Landau, D. P. (1976), Phys. Rev. B 13, 2997.Google Scholar
Landau, D. P. (1996), in Monte Carlo and Molecular Dynamics of Condensed Matter Systems, eds. Binder, K. and Ciccotti, G. (Societa Italiana di Fisica, Bologna), p. 181.Google Scholar
Landau, D. P. and Binder, K. (1985), Phys. Rev. B 31, 5946.Google Scholar
Landau, D. P. and Binder, K. (1990), Phys. Rev. B 41, 4633.Google Scholar
Landau, D. P., Tang, S., and Wansleben, S. (1988), J. de Physique 49, C81525.Google Scholar
Li, Z. B., Ritschel, U., and Zhang, B. (1994), J. Phys. A: Math. Gen. 27, L837.CrossRefGoogle Scholar
Li, Z., Schülke, L., and Zheng, B. (1996), Phys. Rev. E 53, 2940.CrossRefGoogle Scholar
Lin, Y. and Wang, F. (2016), Phys. Rev. E 93, 022113.Google Scholar
Liu, H.-P., Plascak, J., and Landau, D.P. (2018), Phys. Rev. E 97, 052118.CrossRefGoogle Scholar
Liu, A. J. and Fisher, M. E. (1990), J. Stat. Phys. 58, 431.CrossRefGoogle Scholar
Lulli, M., Bernachi, M., and Parisi, G. (2015), Comput. Phys. Commun. 196, 290.Google Scholar
Madras, N. and Sokal, A. (1988), J. Stat. Phys. 50, 109.CrossRefGoogle Scholar
Marinari, E., Parisi, G., Ricci-Tersenghi, F., Ruiz-Lorenzo, J. J., and Zuliani, F. (2000), J. Stat. Phys. 98, 973.CrossRefGoogle Scholar
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953), J. Chem Phys. 21, 1087.Google Scholar
Milchev, A. (1993), Polymer 34, 362.Google Scholar
Milchev, A. and Landau, D. P. (1995), Phys. Rev. E 52, 6431.Google Scholar
Milchev, A., Binder, K., and Heermann, D. W. (1986), Z. Phys. B 63, 527.Google Scholar
Müller, S., Wolveston, C., Wang, L.-W., and Zunger, A. (2000), Acta Mater. 48, 4007.CrossRefGoogle Scholar
Müller, S., Wang, L.-W., Zunger, A., and Wolveston, C. (2001), Europhys. Lett. 55, 33.Google Scholar
Müller, S., Wang, L.-W., and Zunger, A. (2002), Model. Sim. Mater. Sci. Eng. 10, 131.Google Scholar
Müller-Krumbhaar, H. and Binder, K. (1973), J. Stat. Phys. 8, 1.CrossRefGoogle Scholar
Nightingale, M. P. and Blöte, H. W. J. (1998), Phys. Rev. Lett. 80, 1007.Google Scholar
Novotny, M. A. and Landau, D. P. (1981), Phys. Rev. B 24, 1468.CrossRefGoogle Scholar
Olsson, P. (1994), Phys. Rev. Lett. 73, 3339.CrossRefGoogle Scholar
Onsager, L. (1944), Phys. Rev. 65, 117.CrossRefGoogle Scholar
Ozeki, Y. and Ito, N. (2007), J. Phys. A: Math Theor. 40, R149.Google Scholar
Parry, A. D. and Evans, R. (1992), Physica A 181, 250.Google Scholar
Paul, W. and Müller, M. (2001), J. Chem. Phys. 115, 630.Google Scholar
Potts, R. B. (1952), Proc. Cambridge Philos. Soc. 48, 106.CrossRefGoogle Scholar
Privman, V. (ed.) (1990), Finite Size Scaling and Numerical Simulation of Statistical Systems (World Scientific, Singapore).Google Scholar
Privman, V., Hohenberg, C., and Aharony, A. (1991), in Phase Transitions and Critical Phenomena, vol. 14, eds. Domb, C. and Lebowitz, J. L. (Academic Press, London), p. 1.Google Scholar
Rampf, F., Binder, K., and Paul, W. (2006), J. Polymer Sci. B: Polym. Phys. 44, 2542.Google Scholar
Reuter, K. and Scheffler, M. (2002), Phys. Rev. B 65, 035406.Google Scholar
Reuter, K. and Scheffler, M. (2003), Phys. Rev. Lett. 90, 046103.Google Scholar
Reuter, K., Frenkel, D., and Scheffler, M. (2004), Phys. Rev. Lett. 93, 116105.Google Scholar
Reuter, K., Stampfl, C., and Scheffler, M. (2005), in Handbook of Materials Modeling Part A Methods, ed. Yip, S. (Springer, Dordrecht), p. 149.Google Scholar
Rosenbluth, M. N. and Rosenbluth, A. W. (1955), J. Chem. Phys. 23, 356.Google Scholar
Sadiq, A. and Binder, K. (1983), Surface Sci. 128, 350.Google Scholar
Schmid, F. and Binder, K. (1992a), Phys. Rev. B 46, 13553.Google Scholar
Schmid, F. and Binder, K. (1992b), Phys. Rev. B 46, 13565.Google Scholar
Schmitz, F., Virnau, P., and Binder, K. (2013), Phys. Rev. E 87, 053302.Google Scholar
Schmitz, F., Virnau, P., and Binder, K. (2014), Phys. Rev. E 90, 01128.Google Scholar
Selke, W. (1992), in Phase Transitions and Critical Phenomena, Vol. 15, eds. Domb, C. and Lebowitz, J. L. (Academic Press, London), p. 1.Google Scholar
Shida, C. S. and Henriques, V. B. (2000), Int. J. Mod. Phys. C 11, 1133.Google Scholar
Sokal, A. D. (1995), in Monte Carlo and Molecular Dynamics Simulations in Polymer Science, ed. Binder, K. (Oxford University Press, New York), Chapter 2.Google Scholar
Stauffer, D. (1997), Physica A 244, 344.Google Scholar
Stoll, E., Binder, K., and Schneider, T. (1973), Phys. Rev. B 8, 3266.Google Scholar
Wall, F. T. and Erpenbeck, J. J. (1959), J. Chem. Phys. 30, 634.CrossRefGoogle Scholar
Wang, J.-S. and Gan, C. K. (1998), Phys. Rev. E 57, 6548.CrossRefGoogle Scholar
Wansleben, S. and Landau, D. P. (1991), Phys. Rev. B 43, 6006.Google Scholar
Weigel, M. and Janke, W. (2009), Phys. Rev. Lett. 102, 100601.CrossRefGoogle Scholar
Weigel, M. and Janke, W. (2010), Phys. Rev. E 81, 066701.CrossRefGoogle Scholar
Werner, A., Schmid, F., Müller, M., and Binder, K. (1997), J. Chem. Phys. 107, 8175.CrossRefGoogle Scholar
Wheeler, J. C. and Pfeuty, P. (1981), Phys. Rev. A 24, 1050.Google Scholar
Wilding, N. B. (1995), in Computer Simulation Studies in Condensed Matter Physics VIII, eds. Landau, D. P., Mon, K. K., and Schüttler, H.-B. (Springer, Heidelberg).Google Scholar
Wilding, N. B. and Bruce, A. D. (1992), J. Phys. Condens. Matter 4, 3087.Google Scholar
Wilding, N. B., Müller, M., and Binder, K. (1996), J. Chem. Phys. 105, 802.CrossRefGoogle Scholar
Yaldram, K. and Binder, K. (1991), J. Stat. Phys. 62, 161.Google Scholar
Young, A. P. and Katzgraber, H. G. (2004), Phys. Rev. Lett. 93, 207203.Google Scholar
Young, A. P. and Kawashima, N. (1996), Int. J. Mod. Phys. C 7, 327.CrossRefGoogle Scholar
Zheng, B., Ren, F., and Ren, H. (2003), Phys. Rev. E 68, 046120.CrossRefGoogle Scholar
Zifferer, G. (1999), Macromol. Theory Simul. 8, 433.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×