Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-n7x5d Total loading time: 1.259 Render date: 2021-11-28T01:05:04.158Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Chapter 20 - Land and Water: Linkages to Bioenergy

Published online by Cambridge University Press:  05 September 2012

Suani T. Coelho
Affiliation:
National Reference Center on Biomass, University of São Paulo
Olivia Agbenyega
Affiliation:
Kwame Nkrumah University of Science and Technology
Astrid Agostini
Affiliation:
Food and Agriculture Organization
Karl-Heinz Erb
Affiliation:
Klagenfurt University
Helmut Haberl
Affiliation:
Klagenfurt University
Monique Hoogwijk
Affiliation:
Ecofys
Rattan Lal
Affiliation:
The Ohio State University
Oswaldo Lucon
Affiliation:
São Paulo State Environment Agency
Omar Masera
Affiliation:
National Autonomous University
Jos É Roberto Moreira
Affiliation:
Biomass Users Network
Gunilla Björklund
Affiliation:
Uppsala University
Fridolin Krausmann
Affiliation:
Klagenfurt University
Siwa Msangi
Affiliation:
International Food Policy Research Institute
Christoph Plutzar
Affiliation:
Klagenfurt University
Rik Leemans
Affiliation:
Wageningen University
Get access

Summary

Executive Summary

Sustainably managing limited resources, such as productive land areas and available freshwater, will be one of the world's most pressing challenges in the coming years. Population increases and economic growth will significantly influence humanity's future demand for land and water for different uses. In particular, changes in food and energy use will have substantial environmental impacts. They will also influence each other in many ways. At the same time, the production of food and energy, and the water resources they require, will be affected by global climate change. Sustainability issues arising from competition and synergies between future production of bioenergy and food, and related water use, are highly important in this context.

Population growth is one of the factors contributing to increased demand for land and water. While the world's population has approximately doubled since the 1960s, global economic activity has increased approximately 40 fold. Since growth in incomes is strongly correlated with increased consumption of animal-derived food (meat, milk, eggs), the combination of population increases and economic growth will likely result in increased feed and food production. This will drive up pressures on land and water resources if not counteracted by innovations that reduce land and water use. Social inequities are increasing as well, with both very rich and very poor populations often practicing ‘inefficient’ methods of using land and water.

Type
Chapter
Information
Global Energy Assessment
Toward a Sustainable Future
, pp. 1459 - 1526
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbot, P. C., C., Hurt, and W. E., Tyner, 2008: What's Driving Food Prices? Issue Report, Farm Foundation, Oak Brook, IL, USA.Google Scholar
,AFREPREN/FWD, 2009: Cogen for Africa Initiative – Project Brief. AFREPREN/FWD, United Nations Environment Programme (UNEP), Nairobi, Kenya.Google Scholar
,African Press Agency, 2007: Thousands of Tanzanian peasants to be displaced for biofuels farm. African Press Agency, 12 August 2007. pacbiofuel.blogspot. com/2007/08/pbn-thousands-of-tanzanian-peasants to.html (accessed 19 March 2011).Google Scholar
Aiking, H., J., de Boer and J., Vereijken, (eds.), 2006: Sustainable Protein Production and Consumption: Pigs or Peas? Envrionment & Policy, Vol. 45. Springer, Dordrecht, the Netherlands.CrossRef
Allan, J. A., 1998: Virtual Water: A Strategic Resource Global Solutions to Regional Deficits. Ground Water, 36 (4):545–546.CrossRefGoogle Scholar
al-Riffai, P., B., Dimaranan, and D., Laborde, 2010: Global Trade and Environmental Impact Study of the EU Biofuels Mandate. Report for the European Commission, DG TRADE, ATLASS Consortium, Brussels, Belgium.Google Scholar
Araujo, A., Q., Quesada-Aguilar, L., Aguilar, A., Athanas and N., McCormick, 2009: Gender and Bioenergy. Factsheet, International Union for the Conservation of Nature (IUCN), Gland, Switzerland.Google Scholar
Arias Chalico, T., M. G. García, Burgos, and G. Guerrero, Pacheco, 2009: Mexico, Task 2.1: Feedstock production in Latin America, Biofuels Assessment on Technical Opportunities and Research Needs for Latin America. BioTop Project No: FP7–213320, BioTop RTD-cooperation, Munich, Germany.Google Scholar
Asea, P. K. and D., Kaija, 2000: Impact of the flower industry in Uganda. Working Paper – WP 148. International Labor Office, Geneva, Switzerland.Google Scholar
Baede, A. P. M., 2007: Annex I – Glossary. In Climate Change 2007 – The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). S., Solomon, D., Qin, M., Manning, Z., Chen, M., Marquis, K. B., Averyt, M., Tignor and H. L., Miller, (eds.), Cambridge University Press, Cambridge, UK and New York, NY, USA.Google Scholar
Baffes, J. and T., Haniotis, 2010: Placing the 2006/08 commodity price boom into perspective. Policy Research Working Paper 5371, World Bank, Washington, DC, USA.Google Scholar
Bates, B. C., Z. W., Kundzewicz, S., Wu, and J. P., Palutikof (eds), 2008: Climate Change and Water. Technical Paper VI of Intergovernmental Panel on Climate Change (IPCC), Geneva, Switzerland, 210 pp.
Bekunda, M., C. A., Palm, C., de Fraiture, P., Leadley, L., Maene, L. A., Martinelli, J., McNeely, M., Otto, N. H., Ravindranath, R. L., Victoria, H., Watson, and J., Woods, 2009: Biofuels in developing countries. In Biofuels: Environmental Consequences and Interactions with Changing Land Use. R. W., Howarth and S., Bringezu (eds.), Proceedings of the Scientific Committee on Problems of the Environment (SCOPE), International Biofuels Project Rapid Assessment, 22–25 September 2008, Gummersbach, Germany and Cornell University, Ithaca, NY, pp.249–269.Google Scholar
Belwal, R. and M., Chala, 2008: Catalysts and barriers to cut flower export: A case study of Ethiopian floriculture industry. International Journal of Emerging Markets, 3 (2): 216–235.CrossRefGoogle Scholar
Bennett, K., 2008: Food or Fuel? The Bioenergy Dilemma. www.wri.org/stories/2008/08/food-or-fuel-the-bioenergy-dilemma (accessed November 19, 2010).
Beringer, T., W., Lucht, and S., Schaphoff, 2011: Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. GCB Bioenergy, 3 (4):299–312.CrossRefGoogle Scholar
Berndes, G., 2008: Water demand for global bioenergy production: trends, risks and opportunities. Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen (WBGU), Externe Expertise für das WBGU-Hauptgutachten “Zukunftsfähige Bioenergie,” Berlin, Germany.Google Scholar
Berndes, G., M., Hoogwijk and R., van den Broek, 2003: The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass and Bioenergy, 25 (1):1–28.CrossRefGoogle Scholar
Bhattacharya, S. C., J. M., Thomas and P., Abdul Salam, 1997: Greenhouse gas emissions and the mitigation potential of using animal wastes in Asia. Energy, 22 (11):1079–1085.CrossRefGoogle Scholar
Bird, D. N., N., Pena, H., Schwaiger and G., Zanchi, 2010: Review of existing methods for carbon accounting. CIFOR Occasional Paper, 978–602–8693–27–1, Center for International Forestry Research (CIFOR), Bogor, Indonesia.Google Scholar
Bogdanski, A., Dubois, O., Jamieson, C., Krell, R., 2010: Making integrated Food-Energy Systems work for people and climate. Environment and Natural Resources Management Working Paper 45, Food and Agriculture Organization (FAO), Rome, Italy.Google Scholar
Börjesson, P., 1999: Environmental effects of energy crop cultivation in Sweden—II: Economic valuation. Biomass and Bioenergy, 16 (2):155–170.Google Scholar
Bondeau, A., P. C., Smith, S., Zaehle, S., Schaphoff, W., Lucht, W., Cramer, D., Gerten, H., Lotze-Campen, C., Mueller, M., Reichstein and B., Smith, 2007: Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biology, 13 (3):679–706.CrossRefGoogle Scholar
Bruinsma, J., 2009: The Resource Outlook to 2050. By how much do land, water use and crop yields need to increase by 2050? Tehcnical Paper, Expert Meeting on “How to Feed the World in 2050.” Food and Agriculture Organization (FAO), Rome, Italy.Google Scholar
Cassman, K. G., 1999: Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proceedings of the National Academy of Sciences, 96 (11):5952–5959.CrossRefGoogle ScholarPubMed
,CENBIO, 2002: Estado da Arte da Gaseifição – Comparção entre tecnologias de gaseifição de biomassa existentes no brasil e no exterior e formação de recursos humanos na região norte. Centro Nacional de Referência em Biomassa, São Paulo, Brazil.Google Scholar
Cerri, C. E. P., G., Sparovek, M., Bernoux, W. E., Easterling, J. M., Melillo and C. C., Cerri, 2007: Tropical agriculture and global warming: impacts and mitigation options. Scientia Agricola, 64 (1):83–99.CrossRefGoogle Scholar
Cherubini, F., N. D., Bird, A., Cowie, G., Jungmeier, B., Schlamadinger and S., Woess-Gallasch, 2009: Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: Key issues, ranges and recommendations. Resources, Conservation and Recycling, 53 (8):434–447.CrossRefGoogle Scholar
Clemens, J., Triborn, M., Weiland, P., Amon, B., 2005: Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry. Agriculture, Ecosystems & Environment, 112 (2–3), 171–177.Google Scholar
Coelho, S. T., B. A., Lora, M. B. C. A., Monteiro, 2008: A Expansão da Cultura Canarieira no Estado de São Paulo. In: VI CBPE – Congresso. Brasileiro de Planejamento Energetico, 2008, Salvador. Anais do VI CBPE, 2008.Google Scholar
Coskun, B. B., 2007: More than water wars: Water and international security. NATO Review, Winter 2007. www.nato.int/docu/review/2007/issue4/english/analysis5.html (accessed 30 September, 2010).
Cotula, L., N., Dyer, and S., Vermeulen, 2008: Fuelling Exclusion? The Biofuels Boom and Poor People's Access to Land. International Institute for Environment and Development (IIED), London, UK.Google Scholar
de Gorter, H. and D. R., Just, 2007: The Economics of U.S. Ethanol Import Tariffs With a Consumption Mandate and Tax Credit. Department of Applied Economics and Management Working Paper # 2007–21, Cornell University, Cornell University, Ithaca, NY.Google Scholar
Dewulf, J., Langenhove, H.v., 2006. Renewables-Based Technology – Sustainability Assessment. John Wiley & Sons Ltd., Chichester, UK.CrossRefGoogle Scholar
,DFID, 2007: DFID Annual Report 2007: Development on the Record. Department for International Development (DFID), London, UK.Google Scholar
Dornburg, V., B. G., Hermann and M. K., Patel, 2008: Scenario Projections for Future Market Potentials of Biobased Bulk Chemicals. Environmental Science & Technology, 42 (7):2261–2267.CrossRefGoogle ScholarPubMed
Dornburg, V., D., van Vuuren, G., van de Ven, H., Langevel, M., Meeusen, M., Banse, M., van Oorschot, J., Ros, G., van den Born, H., Aiking, M., Londo, H., Mozaffarian, P., Verweij, E., Lyseng, and A., Faaij, 2010: Bioenergy revisited: key factors in global potentials of bioenergy. Energy and Environmental Science, 3:258–267.CrossRefGoogle Scholar
Dufey, A., S., Vermeulen, and W., Vorley, 2007: Biofuels: strategic choices for commodity dependent developing countries, Common Fund for Commodities, Amsterdam, the Netherlands.Google Scholar
Dunlap, R. E. and W. R., Catton Jr., 2002: Which Function(s) of the Environment Do We Study? A Comparison of Environmental and Natural Resource Sociology. Society and Natural Resources, 15 (3):239–249.CrossRefGoogle Scholar
,EC and IPTS, undated: Executive Summary: Towards a Sustainable/Strategic Management of Water Resources: Evaluation of Present Policies and Orientations for the Future. European Commission (EC)'s General Directorate XVI (Regional policy and Cohesion) and the Institute for Prospective Technological Studies (IPTS) of the EC's Joint Research Centre. www.fao.org/iccd/object/doc/sustwater.htm (accessed 22 March 2011).
,Ecofys, 2006: Draft Technical Guidance for sustainability reporting under the Renewable Transport Fuel's Obligation. Low Carbon Vehicle Partnership, London, UK.Google Scholar
Edwards, R., D., Mulligan, and L., Marelli, 2010: Indirect Land Use Change from increased biofuels demand: Comparison of model and results for marginal biofuels production from different feedstocks. Report No. JRC 59771, Joint Research Center, Institute for Energy (JRC-IE). European Commission, Luxembourg.Google Scholar
Elia Neto, A., 2005: Impact on the water supply. In Sugar Cane's Energy: twelve studies on Brazilian sugar cane agribusiness and its sustainability. I. C., Macedo, (ed.), UNICA, São Paulo, Brazil.Google Scholar
,EMBRAPA, 2008: Sustentabilidade Agrícola e Biodiversidade (Agricultural Sustainability and Biodiversity). Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA). www.biodiversidade.cnpm.embrapa.br/ambiental/resumo.html (accessed 4 March 2011).
,EMBRAPA, 2011a: Zoneamento da Cana-de-Açcar (Sugarcane Zoning). Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA). www.cnps.embrapa.br/zonea-mento_cana_de_acucar/ (accessed 4 March 2011).
,EMBRAPA, 2011b: Zoneamento do Dendé (Palm Zoning). Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA). www.cnps.embrapa.br/zoneamento_dende (accessed 4 March 2011).
,EPFL, 2007: Roundtable on Sustainable Biofuels. École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.Google Scholar
Erb, K.-H., V., Gaube, F., Krausmann, C., Plutzar, A., Bondeau, and H., Haberl, 2007: A comprehensive global 5 min resolution land-use dataset for the year 2000 consistent with national census data. Journal of Land Use Science, 2 (3):191–224.CrossRefGoogle Scholar
Erb, K.-H., H., Haberl, F., Krausmann, C., Lauk, C., Plutzar, J. K., Steinberger, C., Müller, A., Bondeau, K., Waha, and G., Pollack, 2009: Eating the planet: Feeding and fuelling the world sustainably, fairly and humanely – a scoping study. Report commissioned by Compassion in World Farming and Friends of the Earth, UK. Institute of Social Ecology, Vienna, Austria and Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany.Google Scholar
,European Environment Agency, 2006: How much bioenergy can Europe produce without harming the environment?, EEA Report No 7/2006. European Environment Agency (EEA), Copenhagen, Denmark.Google Scholar
Evans, L. T., 1998: Feeding the ten billion: Plants and population growth. Cambridge University Press, Cambridge, UK, and New York, NY.Google Scholar
Faaij, A. P. C., 2008: Bioenergy and global food security. Externe Expertise für das WBGU-Hauptgutachten “Welt im Wandel: Zukunftsfähige Bioenergie und nachhaltige Landnutzung”, Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen (WBGU), Berlin, Germany.Google Scholar
Faaij, A., 2009: Global Biomass Potentials. In International Conference Biomass in Future Landscapes – Sustainable Use of Biomass and Spatial Development, German Biomass Research Centre (DBFZ) and Agricultural Landscape Resaerch (ZALF), 31 March 2009, Berlin, Germany.Google Scholar
,FAO, 2005: Irrigation in Africa in figures. Aquastat FAO Water Report no. 29. Food and Agriculture Organizatoin (FAO), Rome, Italy.Google Scholar
,FAO, 2006: World Agriculture: towards 2030/2050. Interim Report. Food and Agriculture Organizatoin (FAO), Rome, Italy.Google Scholar
,FAO, 2007a: Gridded livestock of the world. Food and Agriculture Organizatoin (FAO), Rome, Italy.Google Scholar
,FAO, 2007b: Physical and Economic Water Scarcity. Food and Agriculture Organizatoin (FAO), Rome, Italy. www.fao.org/nr/water/art/2007/scarcity.html.Google Scholar
,FAO, 2008a: Soaring Food Prices: Facts, Perspectives, Impacts And Actions Required. High-Level Conference on World Food Security: The Challenges of Climate Change and Bioenergy, Rome, 3–5 June 2008, HLC/08/INF/1. Food and Agriculture Organizatoin (FAO), Rome, Italy.Google Scholar
,FAO, 2008b: Bioenergy, Food Security and Sustainability – Towards an International Framework. High-Level Conference on World Food Security: The Challenges of Climate Change and Bioenergy, Rome, 3–5 June 2008, HLC/08/INF/3. Food and Agriculture Organizatoin (FAO), Rome, Italy.Google Scholar
,FAO, 2008c: The State of Food and Agriculture – Biofuels: prospects, risks and opportunities. Food and Agriculture Organizatoin (FAO), Rome, Italy.Google Scholar
,FAO, 2009a: FAOSTAT Statistics. Food and Agriculture Organizatoin (FAO), Rome, Italy. faostat.fao.org/site/573/default.aspx#ancor (accessed 13 April 2011).Google Scholar
,FAO, 2009b: The State of Food and Agriculture 2009 – Livestock in the balance. Food and Agriculture Organizatoin (FAO), Rome, Italy.Google Scholar
,FAO, 2009c: The State of Agricultural Commodity market: High food prices and the food crisis – experiences and lessons learned. Food and Agriculture Organizatoin (FAO), Rome, Italy.Google Scholar
,FAO, 2010a: Bioenergy and Food Security – The BEFS analysis for Tanzania. The Bioenergy and Food Security (BEFS) Project. Food and Agriculture Organizatoin (FAO), Rome, Italy.Google Scholar
,FAO, 2010b: Bioenergy and Food Security – The BEFS Analysis for Peru: Supporting the policy machinery in Peru. The Bioenergy and Food Security Project. Food and Agriculture Organizatoin (FAO), Rome, Italy.Google Scholar
,FAO and IIASA, 2000: Global Agro-Ecological Zones – GAEZ. Food and Agriculture Organizatoin (FAO), Rome, Italy, and the International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria. www.fao.org/landandwater/agll/gaez/index.htm (accessed 12 June 2011).Google Scholar
,FAO-AQUASTAT, 2008: Proportion of renewable water resources withdrawn: MDG Water Indicator.www.fao.org/nr/water/aquastat/globalmaps/index.stm.
Firbank, L., 2008: Assessing the Ecological Impacts of Bioenergy Projects. BioEnergy Research, 1(1):12–19.CrossRefGoogle Scholar
Fischer, G., H., van Velthuizen, M., Shah, F., Nachtergaele, 2002: Global Agroecological Assessment for Agriculture in the 21st Century: Methodology and Results. IIASA Research Report RR-02–002. International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.Google Scholar
Foley, J. A., R., DeFries, G. P., Asner, C., Barford, G., Bonan, S. R., Carpenter, F. S., Chapin, M. T., Coe, G. C., Daily, H. K., Gibbs, J. H., Helkowski, T., Holloway, E. A., Howard, C. J., Kucharik, C., Monfreda, J. A., Patz, I. C., Prentice, N., Ramankutty and P. K., Snyder, 2005: Global Consequences of Land Use. Science, 309 (5734):570–574.CrossRefGoogle ScholarPubMed
Friis, C. and A., Reenberg, 2010: Land Grap in Africa: Emerging Land System Drivers in a Teleconnected World. GLP Report No. 1, The Global Land Project (GLP) International Project Office (IPO), Copenhagen, Denmark.Google Scholar
Fritsche, U., 2010: GHG emissions of future relevant biomass conversion pathways. In Proceedings of the 16th European Biomass Conference, 2–6 June 2010, Valencia, Spain.Google Scholar
Fritsche, U. R., R. E. H., Sims and A., Monti, 2010: Direct and indirect land-use competition issues for energy crops and their sustainable production – an overview. Biofuels, Bioproducts and Biorefining, 4 (6):692–704.CrossRefGoogle Scholar
,FSC, 2011: Forest Stewardship Council (FSC). www.fsc.org/ (accessed 23 October 2011).
Fthenakis, V. and H. C., Kim, 2010: Life Cycle uses of water in U.S. electricity generation. Renewable and Sustainable Energy Reviews, 14 (7):2039–2048.CrossRefGoogle Scholar
Georgescu, A., 2010: Update on the European Renewable Energy Directive, 2009/28/ECEU. In Presentation at Final Conference of BioTop Project, July 2010, DG Energy, European Commission, Brussels, Belgium.Google Scholar
Gerbens-Leenes, W., A., Hoekstra and T., van der Meer, 2008: The Water Footprint of Energy Consumption: an Assessment of Water Requirements of Primary Energy Carriers. ISESCO Science and Technology Vision, 4 (5):38–42.Google Scholar
Gerbens-Leenes, W., A.Y., Hoekstra, and T. H., van der Meer, 2009: The water footprint of Bioenergy. Proceedings of the National Academy of Sciences, 106 (25):10219–10223.CrossRefGoogle ScholarPubMed
Gibbs, H. K., M., Johnston, J. A., Foley, T., Holloway, C., Monfreda, N., Ramankutty, and D., Zaks, 2008: Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology. Environmental Research Letters, 3 (3):034001.CrossRefGoogle Scholar
Gilbert, C. L., 2010: How to Understand High Food Prices. Journal of Agricultural Economics, 61 (2):398–425.CrossRefGoogle Scholar
,GLOBAL GAP, 2011: European Retailers Produce Working Group. www.eurepgap.org/Languages/English/about.html. (accessed 12 March 2011).
,Global Land Project, 2005: Science Plan and Implementation Strategy. IGBP Report No. 53/IHDP Report No. 19. International Geosphere-Biosphere Programme (IGBP) Secretariat, Stockholm, Sweden, p.64.Google Scholar
,GLOBIO, 2010: Modelling Human Impacts on Biodiversity. www.globio.info/what-is-globio/history-of-globio (accessed 23 October 2010).
,GNESD, 2010: Bioenergy Theme: Summary Report. Global Network for Sustainable Development (GNESD), Roskilde, Denmark.Google Scholar
Godfray, H. C. J., J. R., Beddington, I. R., Crute, L., Haddad, D., Lawrence, J. F., Muir, J., Pretty, S., Robinson, S. M., Thomas and C., Toulmin, 2010: Food Security: The Challenge of Feeding 9 Billion People. Science, 327 (5967):812–818.CrossRefGoogle ScholarPubMed
Goldemberg, J., 2008: The Brazilian biofuels industry. Biotechnology for Biofuels, 1 (1):1–7.CrossRefGoogle ScholarPubMed
Goldemberg, J. 2009: The Brazilian Experience with Biofuels. Innovations Journal, 4 (Fall):91–107.Google Scholar
Goldemberg, J. and P., Guardabassi, 2009: Are biofuels a feasible option?Energy Policy, 37 (1):10–14.CrossRefGoogle Scholar
Goldemberg, J., S. T., Coelho, and P., Guardabassi, 2008: The sustainability of ethanol production from sugarcane. Energy Policy, 36:2086–2097.Google Scholar
Goldsmith, E. and N., Hildyard, 1984: Politics of Damming. Ecologist, 14 (5/6):221–231.Google Scholar
Haberl, H., and S., Geissler, 2000: Cascade utilization of biomass: Strategies for a more efficient use of a scarce resource. Ecological Engineering, 16 (SUPPL. 1):111–121.CrossRefGoogle Scholar
Haberl, H., N. B., Schulz, C., Plutzar, K. H., Erb, F., Krausmann, W., Loibl, D., Moser, N., Sauberer, H., Weisz, H. G., Zechmeister and P., Zulka, 2004: Human appropriation of net primary production and species diversity in agricultural landscapes. Agriculture, Ecosystems & Environment, 102 (2):213–218.CrossRefGoogle Scholar
Haberl, H., K. H., Erb, F., Krausmann, V., Gaube, A., Bondeau, C., Plutzar, S., Gingrich, W., Lucht and M., Fischer-Kowalski, 2007: Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems. Proceedings of the National Academy of Sciences, 104 (31):12942–12947.CrossRefGoogle ScholarPubMed
Haberl, H., T., Beringer, S. C., Bhattacharya, K.-H., Erb and M., Hoogwijk, 2010: The global technical potential of bio-energy in 2050 considering sustainability constraints. Current Opinion in Environmental Sustainability, 2 (5–6):394–403.CrossRefGoogle ScholarPubMed
Haberl, H., K.-H., Erb, F., Krausmann, A., Bondeau, C., Lauk, C., Müller, A., Plutzar and J. K., Steinberger, 2011: Global bioenergy potentials from agricultural land in 2050: Sensitivity to climate change, diets and yields. Biomass and Bioenergy, 35(12), 4753–4769.CrossRefGoogle ScholarPubMed
Harmon, M. E., J. F., Franklin, F. J., Swanson, P., Sollins, S. V., Gregory, J. D., Lattin, N. H., Anderson, S. P., Cline, N. G., Aumen, J. R., Sedell, G. W., Lienkaemper, K., Cromack Jr. and K. W., Cummins, 1986: Ecology of Coarse Woody Debris in Temperate Ecosystems. In Advances in Ecological Research. A., MacFadyen and E. D., Ford, (eds.), Academic Press, Vol. 15, pp.133–302.Google Scholar
Harris, P. S., 1987: Grassland Survey and Integrated Pasture Development in the High mountain Region of Bhutan. TCP/BHU/4505[A] Food and Agriculture Organization (FAO), Rome, Italy.Google Scholar
Hassuani, S. J., M. R. L. V., Leal, and I. d. C., Macedo (eds.), 2005: Biomass Power generation: sugar cane bagasse and trash. Caminhos para Sustentabilidade series. United Nations Development Programme (UNDP) and Centro de Tecnologia Canavieira (CTC), Piracicaba, Brazil.
Hoogwijk, M., A., Faaij, R., van den Broek, G., Berndes, D., Gielen and W., Turkenburg, 2003: Exploration of the ranges of the global potential of biomass for energy. Biomass and Bioenergy, 25 (2):119–133.CrossRefGoogle Scholar
Hoogwijk, M., B., de Vries and W., Turkenburg, 2004: Assessment of the global and regional geographical, technical and economic potential of onshore wind energy. Energy Economics, 26 (5):889–919.CrossRefGoogle Scholar
Hoogwijk, M., A., Faaij, B., Eickhout, B., de Vries and W., Turkenburg, 2005: Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios. Biomass and Bioenergy, 29 (4):225–257.CrossRefGoogle Scholar
Houghton, R.A., 1995: Land-use change and the carbon cycle. Global Change Biology, 1 (2): 275–287.CrossRefGoogle Scholar
,IAASTD, 2009: Agriculture at a Crossroads. International Assessment of Agricultural Knowledge, Science and Technology for Development (IAASTD) Global Report. Island Press, Washington, DC, USA.Google Scholar
,IEA, 2010: Sustainable Production of Second-Generation Biofuels – Potential and perspectives in major economies and developing countries. Information Paper, A., Eisentraut, (ed.) International Energy Agency (IEA) of the Organization for Economic Co-operation and Development, Paris, France.Google Scholar
,IFPRI, 2009: Food Policy Report. Climate Change. Impact on Agriculture and Costs of Adaptation. Food Policy Report, G. C., Nelson, M. W., Rosegrant, J., Koo, R., Robertson, T., Sulser, Z., Tingju, C., Ringler, S., Msangi, A., Palazzo, M., Batka, M., Magalhaes, R., Valmonte-Santos, M., Ewing and D., Lee, (eds.), International Food Policy Research Institute (IFPRI), Washington, DC, USA.Google Scholar
,IPAM, 2002: Perguntas e Respostas Sobre Mudanças Climáticas. Instituto de Pesquisa Ambiental da Amazônia (IPAM), Belém, Brazil.Google Scholar
,IPCC, 2000: Land Use, Land-Use Change and Forestry. A Special Report of the Intergovernmental Panel on Climate Change (IPCC), R. T., Watson, I. R., Noble, B., Bolin, N. H., Ravindranath, D. J., Verardo and D. J., Dokken, (eds.), Cambridge University Press, Cambridge, UK.Google Scholar
,IPCC, 2007: Climate Change 2007: Impacts, Adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Reprot of the Intergovernmental Panel of Climate Change. M. L., Parry, O. F., Canziani, J. P., Palutikof, P. J., van der Linden and C. E., Hanson, (eds.), Cambridge University Press, Cambridge, UK and New York, NY, USA.Google Scholar
,IPCC, 2011: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. O., Edenhofer, R., Pichs-Madruga, Y., Sokona, P., Matschoss and K., Seyboth, (eds.), Cambridge University Press, Cambridge, UK and New York, NY, USA.Google Scholar
,ISRIC, 1991: Global Assessment of Human-induced Soil Degradation (GLASOD). International Soil Reference and Information Centre (ISRIC) World Soil Information, Wageningen, the Netherlands.Google Scholar
Ivanic, M. and W., Martin, 2008: Implications of higher global food prices for poverty in low-income countries. Agricultural Economics, 39:405–416.CrossRefGoogle Scholar
,IWMI, 2007a: Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture. International Water Management Institute (IWMI), Colombo, Sri Lanka and Earthscan, London.Google Scholar
,IWMI, 2007b: International Water Management Institute Annual Report 2007–2008. International Water Management Institute (IWMI), Colombo, Sri Lanka.Google Scholar
Jaccard, M., 2005: Sustainable Fossil Fuels: The Unusual Suspect in the Quest for Clean and Enduring Energy. Cambridge University Press, Cambridge, UK and New York, NY, USA.Google Scholar
Jansson, C., S. T., Wullschleger, U. C., Kalluri and G. A., Tuskan, 2010: Photosequestration: carbon bio-sequestration by plant and the prospect of genetic engineering. Bioscience, 60:685–696.CrossRefGoogle Scholar
Johansson, T. B. and W., Turkenburg, 2004: Policies for renewable energy in the European Union and its member states: an overview. Energy for Sustainable Development, 8 (1):5–24.CrossRefGoogle Scholar
Johnston, M., J. A., Foley, T., Holloway, C. J., Kucharik and C., Monfreda, 2009: Resetting global expectations from agricultural biofuels. Environmental Research Letters, 4 (1):014004.CrossRefGoogle Scholar
Joly, C. A., R. R., Rodrigues, J. P., Metzger, C. F. B., Haddad, L. M., Verdade, M. C., Oliveira and V. S., Bolzani, 2010: Biodiversity Conservation Research, Training, and Policy in São Paulo. Science, 328 (5984):1358–1359.CrossRefGoogle ScholarPubMed
Jumbe, C., F., Msiska and L., Mhango, 2007: Report on National Policies on Biofuels Sector Development in Sub-Saharan Africa. Final Working Draft from Food, Agriculture and Natural Resources Policy Analysis Network (FANRPAN) to WIP Renewable Energies, Germany, for Compete Competence Platform on Energy Crop and Agroforestry Systems for Arid and Semi-arid Ecosystems – Africa.
Khan, S., M. A., Khan, M. A., Hanjra and J., Mu, 2009: Pathways to reduce the environmental footprints of water and energy inputs in food production. Food Policy, 34 (2):141–149.Google Scholar
Koning, N. and M. K., van Ittersum, 2009: Will the world have enough to eat?Current Opinion in Environmental Sustainability, 1 (1):77–82.CrossRefGoogle Scholar
Krajick, K., 2001: Defending Deadwood. Science, 293 (5535):1579–1581.CrossRefGoogle ScholarPubMed
Krausmann, F., 2004: Milk, manure, and muscle power. Livestock and the transformation of preindustrial agriculture in Central Europe. Human Ecology, 32 (6):735–772.CrossRefGoogle Scholar
Krausmann, F., K.-H., Erb, S., Gingrich, C., Lauk and H., Haberl, 2008: Global patterns of socioeconomic biomass flows in the year 2000: A comprehensive assessment of supply, consumption and constraints. Ecological Economics, 65 (3):471–487.CrossRefGoogle Scholar
Lal, R., 2005: World crop residues production and implications of its use as a biofuel. Environment International, 31 (4):575–584.CrossRefGoogle ScholarPubMed
Lal, R., 2006: Soil and environmental implications of using crop residues as biofuel feedstock. International Sugar Journal, 108:161–167.Google Scholar
Lal, R., 2010: Managing Soils and Ecosystems for Mitigating Anthropogenic Carbon Emissions and Advancing Global Food Security. BioScience, 60 (9):708–721.CrossRefGoogle Scholar
Lambin, E. F. and H., Geist, (eds.), 2006: Land-Use and Land-Cover Change: Local processes and global impacts. Springer Berlin, Germany.CrossRef
,LEAF, 2011: Linking Environment and Farming (LEAF). www.assuredcrops.co.uk/leafuk/organisation/Default.asp?id=4030338 (accessed 10 December, 2010).
Lewandowski, I. and A. P. C., Faaij, 2006: Steps towards the development of a certification system for sustainable bio-energy trade. Biomass and Bioenergy, 30 (2):83–104.CrossRefGoogle Scholar
Lewandowski, I., M., Londo, U., Schmidt, and A. P. C., Faaij, 2003: Energiepflanzen und Landnutzungsfunktionen – Ein Überblick zu Kombinatiönsmöglichkeiten, biophysikalischen Effekten und ökonomischen Ansätzen. In Mitteilungen der Gesellschaft für Pflanzenbauwissenschaften Band 15. D., Kauter, A., Kämpf, W., Claupein and W., Diepenbrock (eds). Verlag Günter Heimbach, Stuttgart, Germany, pp.110–113.Google Scholar
Londo, M., 2002: Energy farming in multiple land use – An opportunity for energy crop introduction in the Netherlands, PhD thesis, Dept. of Science, Technology and Society, Utrecht University, Utrecht, the Netherlands.Google Scholar
Lucon, O., 2010: WP4: Sustainability of biofuels production in Latin America. BioTop Project. www.top-biofuel.org (accessed 26 November 2010).
Lucon, O. and J., Goldemberg, 2010: São Paulo – The “Other” Brazil: Different Pathways on Climate Change for State and Federal Governments. Journal of Environment and Development, 19 (3):335–357.CrossRefGoogle Scholar
Lundqvist, J., J., Barron, G., Berndes, A., Berntell, M., Falkenmark, L., Karlberg, and. Rockström, 2007: Water pressure and increases in food and bioenergy demand. Implications of economic growth and options for decoupling. In Scenarios on economic growth and research development: Background report to the Swedish Environmental Advisory Council Memorandum 2007 (1):55–152.Google Scholar
Lundqvist, J., C., de Fraiture, and D., Molden, 2008: Saving Water: From Field to Fork – Curbing Losses and Wastage in the Food Chain. SIWI Policy Brief. Stockholm International Water Institute (SIWI), Stockholm, Sweden.Google Scholar
Macedo, I. C., J. E. A., Seabra and J. E. A. R., Silva, 2008: Greenhouse gases emissions in the production and use of ethanol from sugarcane in Brazil: The 2005/2006 averages and a prediction for 2020. Biomass and Bioenergy, 32 (7):582–595.CrossRefGoogle Scholar
Martínez-Alier, J., 2002: Ecological debt and property rights on carbon sinks and reservoirs. Capitalism, Nature, Socialism, 13 (1):115–119.CrossRefGoogle Scholar
McGuire, V. L., 2007a: Changes in Water Levels and Storage in the High Plains Aquifer, Predevelopment to 2005. USGS Fact Sheet 2007–3029, Ground-Water Resources Program, United States Geological Survey (USGS), Washington, DC, USA.Google Scholar
McGuire, V. L., 2007b: Water-level changes in the High Plains aquifer, predevelopment to 2005 and 2003 to 2005. US Geological Survey Scientific Investigations Report 2006–5324, 7pp. pubs.usgs.gov/sir/2006/5324/ (accessed 4 April 2011).
McKay, G., 2002: Dioxin characterization, formation and minimization during municipal solid waste (MSW) incineration: review. Chemical Engineering Journal, 86 (3):343–368.CrossRefGoogle Scholar
,Millennium Ecosystem Assessment, 2005: Ecosystems and Human Well-Being: Our Human Planet. Summary for Decision Makers. Island Press, Washington, DC, USA.Google Scholar
Mitchell, D., 2008: A Note on Rising Food Prices. Policy Research Working Paper, WPS 4682. Development Prospects Group, The World Bank, Washington, DC, USA.CrossRefGoogle Scholar
,MPOB, 2011: Oil Palm & The Environment. Malaysian Palm Oil Board (MPOB). (accessed 14 November 2010).
Müller, A., J., Schmidhuber, J., Hoogeveen, and P., Steduto, 2007: Some insights in the effect of growing bio-energy demand on global food security and natural resources. In Paper presented at the International Conference on Linkages between Energy and Water Management for Agriculture in Developing Countries, 28–31 January 2007, Hyderabad, India.Google Scholar
Müller, C., A., Bondeau, A., Popp, K., Waha and M., Fader, 2010: Development and Climate Change – Climate Change Impacts on Agricultural Yields. Background Note to the World Development Report 2010, Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany.Google Scholar
Nachtergaele, F. and H., George, 2009: How much land is available for agriculture? Unpublished paper. Food and Agriculture Organization (FAO), Rome, Italy.Google Scholar
Namburete, H. E. S., 2006: Mozambique biofuels. In Presentation at the African Green Revolution Conference, Oslo, Norway, 31 August – 2 September 2006.Google Scholar
Nassar, A. M., 2009: Brazil as an Agricultural and Agroenergy Superpower. In Brazil as an Economic Superpower? Understanding Brazil's Changing Role in the Global Economy. L., Brainard and L., Martinez-Diaz, (eds.), Brookings Institution Press, Washington, DC.Google Scholar
Nassar, A. M., L., Harfuch, M. M. R., Moreira, L. C., Bachion, and L. B., Antoniazzi, 2009: Impacts on Land Use and GHG Emissions from a Shock on Brazilian Sugarcane Ethanol Exports to the United States Using the Brazilian Land Use Model (BLUM). Report to the US Environmental Protection Agency regarding the Proposed Changes to the Renewable Fuel Standard Program. Institute for International Trade Negotiations (ICONE), São Paulo, Brazil.Google Scholar
Nassar, A. M., L., Harfuch, L. C., Bachion, and M. M. R., Moreira, 2011: Biofuels and land-use changes: Searching for the top model. 1:224–232.PubMed
,OECD, 2008a: OECD Environmental Outlook to 2030. Organisation for Economic Co-operation and Development (OECD), Paris, France.Google Scholar
,OECD, 2008b: Rising Food Prices: Causes and Consequences. Organisation for Economic Co-operation and Development (OECD), Paris, France.Google Scholar
,OECD/FAO, 2007: OECD-FAO Agricultural Outlook 2007–2016. OECD Publishing, Paris, France.Google Scholar
,OECD/FAO, 2009: OECD-FAO Agricultural Outlook 2009. OECD Publishing, Paris, France.Google Scholar
Orr, S., and A., Chapagain, 2007: African air-freight of fresh produce: is transport of ‘virtual’ water causing drought? Fresh Perspectives, Issue 5, International Institute for Environment and Development/Natural Resources Institute, London, UK.Google Scholar
Peng, S., R. C., Laza, R. M., Visperas, A. L., Sanico, K. G., Cassman and G. S., Khush, 2000: Grain Yield of Rice Cultivars and Lines Developed in the Philippines since 1966. Crop Science, 40 (2):307–314.CrossRefGoogle Scholar
Peterson, E. and R., Pozner, 2008: Global water futures – a roadmap for future U.S. policy. Center for Strategic and International Studies, Washington, DC.Google Scholar
Pingoud, K., A., Cowie, N., Bird, L., Gustavsson, S., Rüter, R., Sathre, S., Soimakallio, A., Türk, S., Woess-Gallasch, 2010: Bioenergy: Counting on Incentives. Science, 327 (5970):1199–1200.CrossRefGoogle ScholarPubMed
Pistonesi, H., G., Nadal, V., Bravo, and D., Bouille, 2008: Aporte de los biocombustibles a la sustentabilidad del desarrollo en América Latina y el Caribe: Elementos para la formulaciín de políticas públicas. Comisión Económica para América Latina y el Caribe (CEPAL), United Nations (UN), Santiago de Chile.Google Scholar
Pleskett, L., R., Slater, C., Stevens and A., Dufey, 2007: Biofuels, Agriculture and Poverty Reduction. Natural Resource Perspectives, Nr. 107, Overseas Development Institute (ODI), London, UK.Google Scholar
Pope, C. T., 2008: U.S. needs integrated international water strategy to avert conflict, foster cooperation, says new CSIS report. Circle of Blue. www.circleofblue.org/waternews/world/policy-think-tank-calls-for-water-bureau-in-washington/ (accessed 5 May 2011).
,Power Scorecard, 2000: Consumption of Water Resources. Pace University, White Plains, NY. www.powerscorecard.org/issue_detail.cfm?issue_id=5 (accessed 20 November 2010).Google Scholar
Rajabapaiah, P., S., Jayakumar, and A. K. N., Reddy, 1993: Biogas electricity – the Pura village case study. In Renewable Energy, Sources for Fuels and Electricity. T. B., Johansson, H., Kelly, A. K. N., Reddy, and R. H., Williams (eds.), Island Press, Washington, DC, pp.787–815.Google Scholar
Ramankutty, N., J. A., Foley, J., Norman, and K., McSweeney, 2002: The global distribution of cultivable lands: current patterns and sensitivity to possible climate change. Global Ecology and Biogeography, 11 (5):377–392.CrossRefGoogle Scholar
Rogers, P., 2008: Facing the Freshwater Crisis. Scientific American, 299 (2008):46–53.CrossRefGoogle ScholarPubMed
Rogner, H.-H., Barthel, F., Cabrera, M., Faaij, A., Giroux, M., Hall, D.O., Kagramanian, V., Kononov, S., Lefevre, T., Moreira, R., Nötstaller, R., Odell, P., Taylor, M., 2000: Energy Resources. In: World Energy Assessment, J., Goldemberg, (ed.), United Nations Development Programme (UNDP), World Energy Council, New York, pp. 135–172.Google Scholar
,RSPO, 2011: Roundtable on Sustainable Palm Oil (RSPO). www.rspo.org/ (accessed 16 March 2011).
,RTRS, 2011: Roundtable on Responsible Soy Association (RTRS). www.responsible-soy.org/ (accessed 5 May 2011).
Runge, C. F. and B., Senauer, 2007: How Biofuels Could Starve the Poor. Foreign Affairs, 86 (3).Google Scholar
Sagar, A. D. and S., Kartha, 2007: Bioenergy and sustainable development?Annual Review of Environmental Resources, 32:131–167.CrossRefGoogle Scholar
Sartori, F., R., Lal, M. H., Ebinger and D. J., Parrish, 2006: Potential Soil Carbon Sequestration and CO2 Offset by Dedicated Energy Crops in the USA. Critical Reviews in Plant Sciences, 25 (5):441–472.CrossRefGoogle Scholar
Sathaye, J., O., Lucon, A., Rahman, J., Christensen, F., Denton, J., Fujino, G., Heath, S., Kadner, M., Mirza, H., Rudnick, A., Schlaepfer, and A., Shmakin, 2011: Renewable Energy in the Context of Sustainable Development. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. O., Edenhofer, R., Pichs-Madruga, Y., Sokona, K., Seyboth, P., Matschoss, S., Kadner, T., Zwickel, P., Eickemeier, G., Hansen, S., Schlömer and C., von Stechow (eds.), Cambridge University Press, Cambridge, UK and New York, NY, USA.Google Scholar
Saugier, B., J., Roy and H. A., Mooney, 2001: Estimations of global terrestrial productivity: converging toward a single number? In Terrestrial Global Productivity. J., Roy, B., Saugier and H. A., Mooney, (eds.), Academic Press, San Diego, CA, USA.Google Scholar
Schimel, D. S., J. I., House, K. A., Hibbard, P., Bousquet, P., Ciais, P., Peylin, B. H., Braswell, M. J., Apps, D., Baker, A., Bondeau, J., Canadell, G., Churkina, W., Cramer, A. S., Denning, C. B., Field, P., Friedlingstein, C., Goodale, M., Heimann, R. A., Houghton, J. M., Melillo, B., Moore lii, D., Murdiyarso, I., Noble, S. W., Pacala, I. C., Prentice, M. R., Raupach, P. J., Rayner, R. J., Scholes, W. L., Steffen and C., Wirth, 2001: Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 414 (6860):169–172.CrossRefGoogle ScholarPubMed
Searchinger, T., R., Heimlich, et al., 2008: Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science, 319 (5867): 1238–1240.CrossRefGoogle ScholarPubMed
Searchinger, T. D., S. P., Hamburg, J., Melillo, W., Chameides, P., Havlik, D. M., Kammen, G. E., Likens, R. N., Lubowski, M., Obersteiner, M., Oppenheimer, G. P., Robertson, W. H., Schlesinger, G. D., Tilman, 2009: Fixing a critical climate accounting error. Science, 326 (5952):527–528.CrossRefGoogle ScholarPubMed
Searchinger, T. D., 2010: Biofuels and the need for additional carbon. Environmental Research Letters, 5 (2):024007.CrossRefGoogle Scholar
,SECO, 2008: Texas Renewable Energy Resource Assessment. Texas State Energy Conservation Office (SECO), prepared by Frontier Associates, LLC, Austin, Texas.Google Scholar
Shifley, S.R., F. R., Thompson III, W. D., Dijak, M. A., Larson, and J. J., Millspaugh, 2006: Simulated effects of forest management alternatives on landscape structure and habitat suitability in the Midwestern United States. Forest Ecology and Management, 229 (1–3):361–377.CrossRefGoogle Scholar
Showers, K. B., 2006: A History of African Soil: Perceptions, Use and Abuse. In Soils and Societies. Perspectives from environmental history. J. R., McNeill and V., Winiwarter (eds.), The White Horse Press, Cambridge, UK, pp.118–176.Google Scholar
,SIWI, 2008: Saving Water: From Field to Fork. Curbing losses and wastage in the food chain. Stockholm International Water Institute (SIWI), Stockholm, Sweden.Google Scholar
,SMA, 2011: Etanol Verde, São Paulo State Environment Secretariat, Brazil: homologa. ambiente.sp.gov.br/etanolverde/english.asp (accessed 6 June 2011).
Smeets, E. M. W., A. P. C., Faaij, I. M., Lewandowski and W. C., Turkenburg, 2007: A bottom-up assessment and review of global bio-energy potentials to 2050. Progress in Energy and Combustion Science, 33 (1):56–106.CrossRefGoogle Scholar
Smil, V., 2000: Feeding the world: A challenge for the twenty-first century. MIT Press, Cambridge, MA.Google Scholar
Soares, L. H. B., B. J. R., Alves, S., Urquiaga, and R. M., Boddey, 2009: Mitigação das Emissões de Gases de Efeito Estufa pelo Uso de Etanol de Cana-de-açúar Produzido no Brasil. Circular Técnica, 27 (2009).Google Scholar
Somerville, C., 2006: The Billion-Ton Biofuels Vision. Science, 312 (5778):1277.CrossRefGoogle ScholarPubMed
Somerville, C., H., Youngs, C., Taylor, S. C., Davis, S. P., Long, 2010: Feedstocks for lignocellulosic biofuels. Science, 329:790–792.CrossRefGoogle ScholarPubMed
Soyka, T., C., Palmer, and S., Engel, 2007: The Impacts of Tropical Biofuel Production on Land-use: The case of Indonesia. Conference on International Agricultural Research for Development, Tropentag 2007. University of Kassel-Witzenhausen and University of Göttingen, Germany, 9–11 October 2007.Google Scholar
Sparovek, G., G., Berndes, A., Egeskog, F. L. M., de Freitas, S., Gustafsson and J., Hansson, 2007: Sugarcane ethanol production in Brazil: An expansion model sensitive to socioeconomic and environmental concerns. Biofuels, Bioproducts and Biorefining, 1 (4):270–282.CrossRefGoogle Scholar
Sparovek, G., A., Barretto, G., Berndes, S., Martins, and R., Maule, 2009: Environmental, land-use and economic implications of Brazilian sugarcane expansion 1996–2006. Mitigation and Adaptation Strategies for Global Change, 14:285–298.CrossRefGoogle Scholar
Stinner, W., K., Möller, and G., Leithold, 2008: Effects of biogas digestion of clover/grass-leys, cover crops and crop residues on nitrogen cycle and crop yield in organic stockless farming systems. European Journal of Agronomy, 29:125–134.CrossRefGoogle Scholar
Tampier, M., 2002: Promoting Green Power in Canada. Pollution-Probe, Toronto, ON, Canada.Google Scholar
,TERI, 2010: Bioenergy for rural development and poverty alleviation. Project Report No. 2008DG10. The Energy and Resources Institute (TERI), New Delhi.Google Scholar
Tilman, D., K. G., Cassman, P. A., Matson, R., Naylor and S., Polasky, 2002: Agricultural sustainability and intensive production practices. Nature, 418 (6898):671–677.CrossRefGoogle ScholarPubMed
Timilsina, G, J. C., Beghin, D., van der Mensbrugghe, and S., Mevel, 2010: The impacts of biofuel targets on land use and food supply: A Global CGE Assessment. Policy Research Working Paper 5513. World Bank, Washington, DC.Google Scholar
Trostle, R., 2008: Global Agricultural Supply and Demand: Factors Contributing to the Recent Increase in Food Commodity Prices. US Department of Agriculture, Washington, DC.Google Scholar
Trussell, D., E., Goldsmith, and N., Hildyard, 1992: The Social and Environmental Effects of Large Dams, Volume III: A Review of the Literature. Wadebridge Ecological Centre, Camelford, Cornwall, UK.Google Scholar
,UNCTAD, 2008: Making Certification Work for Sustainable Development: The case of Biofuels. United Nations Conference on Trade and Development (UNCTAD), New York, NY, and Geneva, Switzerland.Google Scholar
,UNCTAD, 2009: The Biofuels Market: Current Situation and Alternative Scenarios. Report provided by Global Bioenergy Partnership. United Nations Conference on Trade and Development (UNCTAD), New York, NY, and Geneva, Switzerland.Google Scholar
,UNDESA, 2007: Small-Scale Production and Use of Liquid biofuels in Sub-Saharan Africa: Perspectives for Sustainable Development. Energy and Transport Branch, Division of Sustainable Development. United Nations Department of Economic and Social Affairs (UNCTAD), New York, NY, and Geneva, Switzerland.Google Scholar
,UN-Energy, 2007: Sustainable Bioenergy: A Framework for Decision Makers. UN-Energy, New York, NY, USA.Google Scholar
,UNEP, 2007: Compilations of existing certification schemes, policy measures, ongoing initiatives and crops used for bioenergy. Working Paper, Working group on developing sustainability criteria and standards for the cultivation of biomass used for biofuels, Ministry of Nutrition and Rural Affairs of Baden Württemberg, Germany, DiamlerChrysler, and the United Nations Environment Programme (UNEP), Paris, France.Google Scholar
,UNEP, 2009: Assessing Biofuels – Towards Sustainable Production and Use of Resources. United Nations Environment Programme (UNEP), Division of Technology, Industry and Economics, International Panel for Sustainable Resource Management, Nairobi, Kenya.Google Scholar
,UNEP, 2011: Policies, Markets and other Tools to help ensure Sustainability. United Nations Environment Programme (UNEP), Division of Technology, Industry and Economics, Nairobi, Kenya. www.uneptie.org/energy/bioenergy/issues/policies.htm (accessed 20 October 2010).Google Scholar
,UNEP/GRID-Arendal, 2002: Freshwater withdrawal in agriculture, industry and domestic use, UNEP/GRID-Arendal Maps and Graphics Library, maps.grida.no/go/graphic/freshwater_withdrawal_in_agriculture_industry_and_domes-tic_use (accessed 25 October 2010).
,UNESCO, 2003: Water for People, Water for Life: 1st UN World Water Development Report. United Nations Educational, Scientific and Cultural Organization (UNESCO), Paris, France. www.unesco.org/water/wwap/wwdr/wwdr1/ (accessed 20 October 2010).Google Scholar
,UNESCO, 2006: Water, a shared responsibility – The United Nations World Water Development Report 2, Map 11.2 National Water Footprints around the World. Chapagain A. K. and Hoekstra A. Y., p.391, © UNESCO-WWAP 2006.
,UNESCO, 2009: Water in a Changing World: 3rd UN World Water Development Report. United Nations Educational, Scientific and Cultural Organization (UNESCO), Paris, France. www.unesco.org/water/wwap/wwdr/wwdr3/ (accessed 20 October 2010).Google Scholar
,UNF, 2008: Sustainable Bioenergy Deveopment in UEMOA Member Countries. United Nations Foundation (UNF) Energy and Security Group, International Center for Trade (ICTSD), and The Hub for Rural Development in West and Central Africa. New York, NY, USA.Google Scholar
,ÚNICA, 2010: Sustainability Report. Uniao da Industria de Cana de Açúar (ÚNICA), São Paulo, Brazil. 128pp.Google Scholar
,UNIDO, 2008: Bioenergy Strategy: Sustainable Industrial Conversion and Productive Use of Bioenergy. United Nations Industrial Development Organization (UNIDO), Vienna, Austria.Google Scholar
,UN-Water/FAO, 2007: Coping with water scarcity – Challenge of the twenty-first century. UN-Water and Food and Agriculture Organization (FAO), Rome, Italy.Google Scholar
,US EPA, 2010: Federal Register, Vol. 75, No. 58, Part II, 40 CFR Part 80, p.14711, United States Environmental Protection Agency (US EPA), Washington, DC, USA.Google Scholar
van Vuuren, D. P., J., Van Vliet, and E., Stehfest, 2009: Future bio-energy potential under various natural constraints. Energy Policy, 37 (11):4220–4230.CrossRefGoogle Scholar
Vanwey, L., 2009: Social and distributional impacts of biofuel production. In Biofuels: Environmental Consequences and Interactions with Changing Land Use. In Proceedings of the Scientific Committee on Problems of the Environment (SCOPE). R. W., Howarth and S., Bringezu (eds.), International Biofuels Project Rapid Assessment, 22–25 September 2008, Gummersbach, Germany. Cornell University, Ithaca, NY, pp.205–214.Google Scholar
von Braun, J., 2007: The World Food Situation: New Driving Forces and Required Actions. Food Policy Report, International Food Policy Research Institute (IFPRI), Washington, DC.Google Scholar
Watson, R. T., I. R., Noble, B., Bolin, N. H., Ravindranath, D. J., Verardo, and D. J., Dokken, 2000: Land Use, Land-Use Change, and Forestry. A Special Report of the IPCC. Cambridge University Press, Cambridge, UK.Google Scholar
,WBGU, 2008: Welt im Wandel. Zukunftsfähige Bioenergie und nachhaltige Landnutzung. Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen (WBGU), Berlin, Germany.Google Scholar
,WBGU, 2009: Kassensturz für den Weltklimavertrag – Der Budgetansatz. Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen (WBGU), Berlin, Germany.Google Scholar
,WCD, 2000: The Report of the World Commission on Dams. World Commission on Dams (WCD), Nairobi, Kenya.Google Scholar
Wicke, B., R., Sikkema, V., Dornburg, A., Faaij, 2011: Exploring land use changes and the role of palm oil production in Indonesia and Malaysia. Land Use Policy, 28 (1): 193–206.CrossRefGoogle Scholar
Wildenberg, M.Ecology, Rituals and System-Dynamics, , 2005: An attempt to model the Socio-Ecological System of Trinket Island. [80], 1–185. 2005. IFF Social Ecology. Social Ecology Working Paper, Vienna, Austria.Google Scholar
Wilhelm, W. W., J. M. F., Johnson, D. L., Karlen, and D. T., Lightle, 2007: Corn Stover to Sustain Soil Organic Carbon Further Constrains Biomass Supply. Agronomy Journal, 99:1665–1667.CrossRefGoogle Scholar
Wirsenius, S., 2003a: Efficiencies and biomass appropriation of food commodities on global and regional levels. Agricultural Systems, 77 (3):219–255.CrossRefGoogle Scholar
Wirsenius, S., 2003b: The Biomass Metabolism of the Food System – A Model-Based Survey of the Global and Regional Turnover of Food Biomass. Journal of Industrial Ecology, 7 (1):47–80.CrossRefGoogle Scholar
,WMO, 2006: Greenhouse gas bulletin: the state of greenhouse gases in atmosphere using global observation up to December 2004. World Meteorological Organization (WMO), Geneva, Switzerland.Google Scholar
Wolf, A. T., S. B., Yoffe, and M., Giordano, 2003: International waters: identifying basins at risk. Water Policy, 5 (1):29–60.CrossRefGoogle Scholar
,World Bank, 2008: Global Purchasing Power Parities and Real Expenditures. World Bank, Washington, DC.Google Scholar
,World Bank, 2011: Program Information Document – Concept Stage. Minas Gerais Partnership III DPL/PBG, P121590, Development Policy Lending, World Bank, Washington, DC, USA.Google Scholar
,World Commission on Environment and Development, 1987: Our Common Future. Oxford University Press, Oxford, UK.Google Scholar
Young, A., 1999: Is there Really Spare Land? A Critique of Estimates of Available Cultivable Land in Developing Countries. Environment, Development and Sustainability, 1 (1):3–18.CrossRefGoogle Scholar
Zah, R., H., Böni, M., Gauch, R., Hischier, M., Lehman and P., Wäger, 2007: Ökobilanz von Energieprodukten: Ökologische Bewertung von Biotreibstoffen. EMPA, St. Gallen, Switzerland.Google Scholar
Zhang, Z., L., Lohr, C., Escalante, and M., Wetzstein, 2010: Food versus fuel: What do prices tell us?Energy Policy, 38:445–451.CrossRefGoogle Scholar
13
Cited by