Skip to main content Accessibility help
Hostname: page-component-99c86f546-x5mqb Total loading time: 1.968 Render date: 2021-12-04T20:47:28.169Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Book contents

Chapter 19 - Other Neurological Conditions and Age-Related Changes

Published online by Cambridge University Press:  11 July 2020

Kim A. Collins
LifePoint Inc, South Carolina
Roger W. Byard
University of Adelaide
Get access


A complete forensic autopsy includes examination of the brain. When the decedent is elderly, the procedures for the macroscopic examination and the decisions about selecting areas for microscopic examination follow the same general principles that guide other forensic cases. In addition, however, the pathologist should also be able to recognize incidental age-related changes and to understand how the presentation of different disease processes may vary in the geriatric population.

Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Le Roux, A. A., Nadvi, S. S.. Acute extradural haematoma in the elderly. Br J Neurosurg 2007; 21: 1620.CrossRefGoogle ScholarPubMed
Double, K. L., Halliday, G. M., Kril, J. J. et al. Topography of brain atrophy during normal aging and Alzheimer’s disease. Neurobiol Aging 1996; 17: 513–21.CrossRefGoogle ScholarPubMed
Piguet, O., Double, K. L., Kril, J. J. et al. White matter loss in healthy ageing: a postmortem analysis. Neurobiol Aging 2009; 30: 1288–95.CrossRefGoogle ScholarPubMed
Mouton, P. R., Martin, L. H., Calhoun, M. E. et al. Cognitive decline strongly correlates with cortical atrophy in Alzheimer’s dementia. Neurobiol Aging 1998; 19: 371–7.CrossRefGoogle ScholarPubMed
Ylikoski, A., Erkinjuntti, T., Raininko, R. et al. White matter hyperintensities on MRI in the neurologically nondiseased elderly. Analysis of cohorts of consecutive subjects aged 55 to 85 years living at home. Stroke 1995; 26: 1171–7.CrossRefGoogle ScholarPubMed
Debette, S., Markus, H. S.. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 2010; 341: c3666.CrossRefGoogle ScholarPubMed
Fazekas, F., Kleinert, R., Offenbacher, H. et al. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology 1993; 43: 1683–9.CrossRefGoogle ScholarPubMed
Glees, P., Hasan, M.. Lipofuscin in neuronal aging and diseases. Norm Pathol Anat (Stuttg) 1976; 32: 168.Google ScholarPubMed
Hirano, A.. Hirano bodies and related neuronal inclusions. Neuropathol Appl Neurobiol 1994; 20: 311.CrossRefGoogle ScholarPubMed
Lowe, J.. Aging of the brain. In Love, S., Perrie, A., Ironside, J., Budka, H., eds. Greenfield’s Neuropathology. 9th edn. London, CRC Press; 2015: pp. 849–57.Google Scholar
Donahue, J. E.. “Normal” and pathological changes with age in the brain. Med Health RI 2012; 95: 75–6.Google Scholar
Del Brutto, V. J., Ortiz, J. G., Biller, J.. Intracranial arterial dolichoectasia. Front Neurol 2017; 8: 344.CrossRefGoogle ScholarPubMed
Fuller, G. N., Burger, P.. Central nervous system. In Mills, S., ed. Histology for Pathologists. 3rd edn. Philadelphia, Lippincott, Williams &Wilkins; 2012: pp. 322–5.Google Scholar
Brown, W. R., Thore, C. R.. Review: cerebral microvascular pathology in ageing and neurodegeneration. Neuropathol Appl Neurobiol 2011; 37: 5674.CrossRefGoogle ScholarPubMed
Brown, W. R., Moody, D. M., Challa, V. R. et al. Venous collagenosis and arteriolar tortuosity in leukoaraiosis. J Neurol Sci 2002; 203–204: 159–63.Google ScholarPubMed
Choi, C.. Bacterial meningitis in aging adults. Clin Infect Dis 2001; 33: 1380–5.CrossRefGoogle ScholarPubMed
Domingo, P., Pomar, V., de Benito, N. et al. The spectrum of acute bacterial meningitis in elderly patients. BMC Infect Dis 2013; 13: 108.CrossRefGoogle ScholarPubMed
Behrman, R. E., Meyers, B. R., Mendelson, M. H. et al. Central nervous system infections in the elderly. Arch Intern Med 1989; 149: 1596–9.CrossRefGoogle ScholarPubMed
Parisi, S. G., Basso, M., Del Vecchio, C. et al. Viral infections of the central nervous system in elderly patients: a retrospective study. Int J Infect Dis 2016; 44: 810.CrossRefGoogle ScholarPubMed
Reynolds, E.. Vitamin B12, folic acid, and the nervous system. Lancet Neurol 2006; 5: 949–60.CrossRefGoogle ScholarPubMed
Caine, D., Halliday, G. M., Kril, J. J. et al. Operational criteria for the classification of chronic alcoholics: identification of Wernicke’s encephalopathy. J Neurol Neurosurg Psychiatr 1997; 62: 5160.CrossRefGoogle ScholarPubMed
Zuccoli, G., Gallucci, M., Capellades, J. et al. Wernicke encephalopathy: MR findings at clinical presentation in twenty-six alcoholic and nonalcoholic patients. AJNR Am J Neuroradiol 2007; 28: 1328–31.CrossRefGoogle ScholarPubMed
Harper, C.. The neuropathology of alcohol-related brain damage. Alcohol Alcohol 2009; 44: 136–40.CrossRefGoogle ScholarPubMed
Zahr, N. M., Kaufman, K. L., Harper, C. G.. Clinical and pathological features of alcohol-related brain damage. Nat Rev Neurol 2011; 7: 284–94.CrossRefGoogle ScholarPubMed
Pfefferbaum, A., Lim, K. O., Zipursky, R. B. et al. Brain gray and white matter volume loss accelerates with aging in chronic alcoholics: a quantitative MRI study. Alcohol Clin Exp Res 1992; 16: 1078–89.CrossRefGoogle ScholarPubMed
Kleinschmidt-DeMasters, B. K., Rojiani, A. M., Filley, C. M.. Central and extrapontine myelinolysis: Then … and now. J Neuropathol Exp Neurol 2006; 65: 111.CrossRefGoogle Scholar
Tomasello, F.. Meningiomas in the elderly: a growing challenge. World Neurosurg 2011; 75: 217–18.CrossRefGoogle ScholarPubMed
Arora, R. S., Alston, R. D., Eden, T. O. et al. Age-incidence patterns of primary CNS tumors in children, adolescents, and adults in England. Neuro Oncol 2009; 11: 403–13.CrossRefGoogle ScholarPubMed
Chakrabarti, I., Cockburn, M., Cozen, W. et al. A population-based description of glioblastoma multiforme in Los Angeles County, 1974–1999. Cancer 2005; 104: 2798–806.Google ScholarPubMed
Louis, D. N., Perry, A., Reifenberg, G., et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 2016; 131: 803–20.CrossRefGoogle ScholarPubMed
Lowry, J. K., Snyder, J. J., Lowry, P. W.. Brain tumors in the elderly. Recent trends in a Minnesota cohort study. Arch Neurol 1998; 55: 922–8.CrossRefGoogle Scholar
Marturano, E., Ferreri, A. J.. Primary CNS lymphoma in immunocompetent patients. Ann Oncol 2011; 22(S4): iv41–iv43.CrossRefGoogle Scholar
Erdag, N., Bhorade, R. M., Alberico, R. A. et al. Primary lymphoma of the central nervous system. Typical and atypical CT and MR imaging appearances. AJR Am J Roentgenol 2001; 176: 1319–26.CrossRefGoogle ScholarPubMed
An, S. J., Kim, T. J., Yoo, B.-W.. Epidemiology, risk factors, and clinical features of intracerebral hemorrhage: an update. J Stroke 2017; 19: 310.CrossRefGoogle ScholarPubMed
Broderick, J., Brott, T., Tomsic, T. et al. Lobar hemorrhage in the elderly. The undiminishing importance of hypertension. Stroke 1993; 24: 4951.CrossRefGoogle ScholarPubMed
Vinters, H.. Cerebral amyloid angiopathy. A critical review. Stroke 1987; 18: 311–24.CrossRefGoogle ScholarPubMed
Attems, J.. Sporadic cerebral amyloid angiopathy: pathology, clinical implications, and possible mechanisms. Acta Neuropathol 2005; 110: 345–59.CrossRefGoogle Scholar
Vernooij, M. W., van der Lugt, A., Ikram, M. A. et al. Prevalence and risk factors of cerebral microbleeds: the Rotterdam Scan Study. Neurology 2008; 70: 1208–14.CrossRefGoogle ScholarPubMed
Jeerakathil, T., Wolf, P. A., Beiser, A. et al. Cerebral microbleeds. Prevalence and associations with cardiovascular risk factors in the Framingham Study. Stroke 2004; 35: 1831–5.CrossRefGoogle ScholarPubMed
O’Donnell, H. C., Rosand, J., Knudsen, K. A. et al. Apolipoprotein E genotype and the risk of recurrent lobar intracerebral hemorrhage. N Engl J Med 2000; 342: 240–5.Google ScholarPubMed
Kablau, M., Kreisel, S. H., Sauer, T. et al. Predictors and early outcome of hemorrhagic transformation after acute ischemic stroke. Cerebrovasc Dis 2011; 32: 334–41.CrossRefGoogle ScholarPubMed
Yaghi, S., Willey, J. Z., Cucchiara, B. et al. Treatment and outcome of hemorrhagic transformation after intravenous alteplase in acute ischemic stroke. A scientific statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2017; 48: e343e361.CrossRefGoogle ScholarPubMed
Arboix, A., Garcia-Eroles, L., Vicens, A. et al. Spontaneous primary intraventricular hemorrhage: clinical features and early outcome. ISRN Neurol 2012; 2012: 498303.CrossRefGoogle ScholarPubMed
Rosand, J., Hylek, E. M., O’Donnell, H. C. et al. Warfarin-associated hemorrhage and cerebral amyloid angiopathy: a genetic and pathologic study. Neurology 2000; 55: 947–51.CrossRefGoogle ScholarPubMed
Hart, R. G.. What causes intracerebral hemorrhage during warfarin therapy? Neurology 2000; 55: 907–8.CrossRefGoogle ScholarPubMed
Flaherty, M. L., Tao, H., Haverbusch, M., et al. Warfarin use leads to larger intracerebral hematomas. Neurology 2008; 71: 1084–9.CrossRefGoogle ScholarPubMed
He, J., Whelton, P. K., Vu, B. et al. Aspirin and risk of hemorrhagic stroke: a meta-analysis of randomized controlled trials. JAMA 1998; 280: 1930–5.CrossRefGoogle ScholarPubMed
García Rodríguez, L. A., Martín-Pérez, M., Hennekens, C. H. et al. Bleeding risk with long-term low-dose aspirin: a systematic review of observational studies. PLoS One 2016; 11: e0160046.CrossRefGoogle ScholarPubMed
ACTIVE Investigators, Connolly, S. J., Pogue, J. et al. Effect of clopidogrel added to aspirin in patients with atrial fibrillation. N Engl J Med 2009; 360: 2066–78.Google ScholarPubMed
Ichimura, S., Horiguchi, T., Inoue, S. et al. Nontraumatic acute subdural hematoma associated with the myelodysplastic/myeloproliferative neoplasms. J Neurosci Rural Pract 2012; 3: 98–9.Google ScholarPubMed
Avis, S. P.. Nontraumatic acute subdural hematoma. A case report and review of the literature. Am J Forensic Med Pathol 1993; 14: 130–4.CrossRefGoogle ScholarPubMed
Martins, W. A., Teixeira, A. B., Frigeri, T. M. et al. Spontaneous subdural hematoma associated to Duret hemorrhage. Interdisciplinary Neurosurg 2015; 2: 1315.CrossRefGoogle Scholar
Patel, P. V., FitzMaurice, E., Nandigam, R. N. et al. Association of subdural hematoma with increased mortality in lobar intracerebral hemorrhage. Arch Neurol 2009; 66: 7984.CrossRefGoogle ScholarPubMed
Kim, B.-W., Jung, Y.-J., Kim, M.-S. et al. Chronic subdural hematoma after spontaneous intracranial hypotension: a case treated with epidural blood patch on C1-2. J Korean Neurosurg Soc 2011; 50: 274–6.CrossRefGoogle ScholarPubMed
Schievink, W. I., Maya, M. M., Pikul, B. K. et al. Spontaneous spinal cerebrospinal fluid leaks as the cause of subdural hematomas in elderly patients on anticoagulation. J Neurosurg 2010; 112: 295–9.CrossRefGoogle ScholarPubMed
Itshayek, E., Rosenthal, G., Fraifeld, S. et al. Delayed post traumatic acute subdural hematoma in elderly patients on anticoagulation. Neurosurgery 2006; 58: E851–6.CrossRefGoogle Scholar
Adhiyaman, V., Asghar, M., Ganeshram, K. N. et al. Chronic subdural haematoma in the elderly. Postgrad Med J 2002; 78: 71–5.CrossRefGoogle ScholarPubMed
Shapey, J., Glancz, L. J., Brennan, P. M.. Chronic subdural haematoma in the elderly: Is it time for a new paradigm in management? Curr Geriatr Rep 2016; 5: 71–7.Google ScholarPubMed
Lindvall, P., Koskinen, L.-O.. Anticoagulants and antiplatelet agents and the risk of development and recurrence of chronic subdural haematomas. J Clin Neurosci 2009; 16: 1287–90.CrossRefGoogle ScholarPubMed
Edlmann, E., Giorgi-Coll, S., Whitfield, P. C. et al. Pathophysiology of chronic subdural haematoma: inflammation, angiogenesis and implications for pharmacotherapy. J Neuroinflammation 2017; 14: 108.CrossRefGoogle ScholarPubMed
Uno, M., Toi, H., Hirai, S.. Chronic subdural hematoma in elderly patients: is this disease benign? Neurol Med Chir (Tokyo) 2017; 57: 402–9.CrossRefGoogle ScholarPubMed
Munro, D., Merritt, H. H.. Surgical pathology of subdural hematoma based on a study of one hundred and five cases. AMA Arch Neurol Psychiatr 1936; 35: 6478.CrossRefGoogle Scholar
van den Bos, D., Zomer, S., Kubat, B.. Dare to date: age estimation of subdural hematomas, literature, and case analysis. Int J Legal Med 2014; 128: 631–40.CrossRefGoogle Scholar
Lomoschitz, F. M., Blackmore, C. C., Mirza, S. K. et al. Cervical spine injuries in patients 65 years old and older: epidemiologic analysis regarding the effects of age and injury mechanism on distribution, type, and stability of injuries. AJR Am J Roentgenol 2002; 178: 573–77.CrossRefGoogle Scholar
Korhonen, N., Kannus, P., Niemi, S. et al. Rapid increase in fall-induced cervical spine injuries among older Finnish adults between 1970 and 2011. Age Ageing 2014; 43: 567–71.CrossRefGoogle ScholarPubMed
Harris, M. B., Reichmann, W. M., Bono, C. M. et al. Mortality in elderly patients after cervical spine fractures. J Bone Joint Surg Am 2010; 92: 567–74.CrossRefGoogle ScholarPubMed
Jabbour, P., Fehlings, M., Vaccaro, A. R., et al. Traumatic spine injuries in the geriatric population. Neurosurg Focus 2008; 25: E16.CrossRefGoogle ScholarPubMed
Touger, M., Gennis, P., Nathanson, N. et al. Validity of a decision rule to reduce cervical spine radiography in elderly patients with blunt trauma. Ann Emerg Med 2002; 40: 287–93.CrossRefGoogle ScholarPubMed
Dolinak, D.. Low force fracture of the odontoid, with discussion of high force cervical fracture. Academic Forensic Pathol 2012; 2: 4657.CrossRefGoogle Scholar
Golob, J. F., Claridge, J. A., Yowler, C. J. et al. Isolated cervical spine fractures in the elderly: a deadly injury. J Trauma 2008; 64: 311–5.CrossRefGoogle ScholarPubMed

Send book to Kindle

To send this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats