Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-27T00:23:44.474Z Has data issue: false hasContentIssue false

Chapter 25 - The Anthropology of Aging

Published online by Cambridge University Press:  11 July 2020

Kim A. Collins
Affiliation:
LifePoint Inc, South Carolina
Roger W. Byard
Affiliation:
University of Adelaide
Get access

Summary

Aging is a universal process defined as the uninterrupted process of normal development over time that leads to a progressive decline in physiological function and ultimately to death [1]. Age can be measured chronologically, socially, or physiologically. Chronological age is measured in calendar days, months, and years since birth and cannot be determined without a known birth date [2].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blau, S., Hill, A.. Pediatric anthropology and odontology. In Collins, K. A., Byard, R. W., eds. Forensic Pathology of Infancy and Childhood. New York: Springer; 2014, pp. 1081–125.Google Scholar
Garvin, H. M., Passalacaqua, N. V., Uhl, N. M., et al. Developments in forensic anthropology: age-at-death estimation. In Dirkmaat, D. C., eds. A Companion to Forensic Anthropology. London: Blackwell; 2012, pp. 202–23.Google Scholar
Schmitt, A., Murail, P., Cunha, E., Rouge, D.. Variability of the pattern of aging on the human skeleton: evidence from bone indicators and implications on age at death estimation. Journal of Forensic Sciences. 2002; 47(6): 1203–9.CrossRefGoogle ScholarPubMed
Couoh, L. R.. Differences between biological and chronological age-at-death in human skeletal remains: a change of perspective. American Journal of Physical Anthropology. 2017; 4: 671–95.Google Scholar
Hartnett-McCann, K., Fulginiti, L., Seidel, A.. Adult age-at-death estimations in unknown decedents: new perspectives on an old problem. In Latham, K., Bartelink, E., Finnegan, M., eds. New Perspectives in Forensic Human Skeletal Identification. London: Elsevier; 2018, pp. 6585.Google Scholar
Uhl, N. M.. Age-at-death estimation. In DiGangi, E. E., Moore, M. K., eds. Research Methods in Human Skeletal Biology. London: Elsevier; 2013, pp. 6390.CrossRefGoogle Scholar
Orimo, H., Ito, H., Suzuki, T., et al. Reviewing the definition of “elderly.Geriatrics & Gerontology International. 2006; 6: 149–58.Google Scholar
Hall, J., Karch, D., Crosby, A.. Elder Abuse Surveillance: Uniform Definitions and Recommended Core Data Elements. Atlanta, GA: National Center for Injury Prevention and Control, Division of Violence Prevention; 2016.Google Scholar
Kowell, P., Dowd, J. E.. Definition of an Older Person. Proposed Working Definition of an Older Person in Africa for the Minimum Data Set (MDS) Project. Geneva: World Health Organisation; 2001.Google Scholar
Weeks, L.. An age-old problem: who is ‘elderly?’ NPR. March 14, 2013. www.npr.org/2013/03/12/174124992/an-age-old-problem-who-is-elderlyGoogle Scholar
Márquez-Grant, N.. An overview of age estimation in forensic anthropology: perspectives and practical considerations. Annals of Human Biology. 2015; 42(4): 306–20.Google Scholar
Blau, S.. It’s all about the context: reflections on the changing role of forensic anthropology in medico-legal death investigations. Australian Journal of Forensic Sciences. 2018; 8(4): 111.CrossRefGoogle Scholar
Hoppa, R. D., Vaupel, J. W., eds. Paleodemography. Cambridge: Cambridge University Press; 2002.Google Scholar
Ritz-Timme, S., Cattaneo, C., Collins, M. J., et al. Age estimation: the state of the art in relation to the specific demands of forensic practise. International Journal of Legal Medicine. 2000; 113(3): 129–36.Google Scholar
Black, S., Aggrawal, A., Payne-James, J., eds. Age Estimation in the Living. Chichester: Wiley-Blackwell; 2010.Google Scholar
Cunha, E., Baccino, E., Martrille, L., et al. The problem of aging human remains and living individuals: a review. Forensic Science International. 2009; 193(1–3): 113.CrossRefGoogle ScholarPubMed
Hackman, L., Black, S.. Age estimation from radiographic images of the knee. Journal of Forensic Sciences. 2013; 58: 732–7.Google Scholar
Beh, P., Payne-James, J.. Clinical and legal requirements for age determination in the living. In Black, S., Aggrawal, A., Payne-James, J., eds. Age Estimation in the Living: The Practitioners Guide. Chichester: Wiley-Blackwell; 2010, pp. 3042.Google Scholar
Anon. World Population Ageing. United Nations; 2015.Google Scholar
Srinivasan, T. N., Suresh, T. R., Rajkumar, S.. Age estimation in the elderly: relevant to geriatric research in developing countries. Indian Journal of Psychiatry. 1993; 35(1): 58–9.Google Scholar
Wheeler, H. E., Kim, S. K.. Genetics and genomics of human ageing. Philosophical Transactions of the Royal Society B: Biological Sciences. 2011; 366(1561): 4350.Google Scholar
Archer, M. S., Bassed, R. B., Briggs, C. A., Lynch, M. J.. Social isolation and delayed discovery of bodies in houses: the value of forensic pathology, anthropology, odontology and entomology in the medico-legal investigation. Forensic Science International. 2005; 151(2–3): 259–65.Google Scholar
Anon. Man dead for months despite govt program. The Australian. January 19, 2008.Google Scholar
James, M., Anderson, J., Putt, J.. Missing Persons in Australia. Research and Public Policy Series No. 86. Canberra: Australian Institute of Criminology; 2008. https://aic.gov.au/publications/rpp/rpp86Google Scholar
Ubelaker, D. H., Thomas, C., Olson, J. E.. The impact of age at death on the lag time of radiocarbon values in human bone. Forensic Science International. 2015; 251: 5660.Google Scholar
Işcan, M. Y., Steyn, M.. The Human Skeleton in Forensic Medicine, 3rd ed. Springfield: Charles C. Thomas; 2013.Google Scholar
Telmon, N., Gaston, A., Chemla, P., et al. Application of the Suchey-Brooks method to three-dimensional imaging of the pubic symphysis. Journal of Forensic Sciences. 2005; 50(3): 507–12.Google Scholar
Sitchon, M. L., Hoppa, R. D.. Assessing age-related morphology of the pubic symphysis from digital images versus direct observation. Journal of Forensic Sciences. 2005; 50(4): 791–5.Google Scholar
Ufuk, F., Agladioglu, K., Karabulut, N.. CT evaluation of medial clavicular epiphysis as a method of bone age determination in adolescents and young adults. Diagnostic and Interventional Radiology. 2016; 22(3): 241–6.Google Scholar
Krämer, J. A., Schmidt, S., Jürgens, K. U., et al. Forensic age estimation in living individuals using 3.0 T MRI of the distal femur. International Journal of Legal Medicine. 2014; 128: 509–14.Google Scholar
Schmidt, S., Schmeling, A., Zwiesigk, P., Pfeiffer, H., Schulz, R.. Sonographic evaluation of apophyseal ossification of the iliac crest in forensic age diagnostics in living individuals. International Journal of Legal Medicine. 2011; 125(2): 271–6.Google Scholar
Rösing, F. W., Graw, M., Marre, B., et al. Recommendations for the forensic diagnosis of sex and age from skeletons. Homo 2007; 58: 7589.Google Scholar
Villa, C., Lynnerups, N.. Age estimation of skeletal remains: principle methods. Research and Reports in Forensic Medical Science. 2014; 4: 39.Google Scholar
Brooks, S., Suchey, J. M.. Skeletal age determination based on the os pubis: a comparison of the Acsadi-Nemeskeri and Suchey-Brooks methods. Human Evolution. 1990; 5: 227–38.Google Scholar
Lovejoy, C. S., Meindle, R. S., Pryzbeck, T. R., Mensforth, R. P.. Chronological metamorphosis of the auricular surface of the ilium: A new method for the determination of adult skeletal age at death. American Journal of Physical Anthropology. 1985; 68(1): 1528.Google Scholar
Buckberry, J., Chamberlain, A. T.. Age estimation from the auricular surface of the ilium: A revised method. American Journal of Physical Anthropology. 2012; 119(3): 231–9.Google Scholar
DiGangi, E. A., Bethard, J. D., Kimmerle, E. H., Konigsberg, L. W.. A new method for estimating age-at-death from the first rib. American Journal of Physical Anthropology. 2008; 138(2): 164–76.Google Scholar
Iscan, M. Y., Loth, S. R., Wright, R. K.. Age estimation from the rib by phase analysis: White males. Journal of Forensic Sciences 1984; 29: 1094–104.Google Scholar
Iscan, M. Y., Loth, S. R., Wright, R. K.. Age estimation from the rib by phase analysis: White females. Journal of Forensic Sciences. 1985; 30: 853–63.Google Scholar
Fanton, L., Gustin, M. P., Paultre, U., Schrag, B., Malicier, D.. Critical study of observation of the sternal end of the right 4th rib. Journal of Forensic Sciences. 2010; 55(2): 467–72.Google Scholar
Loth, S. R., Işcan, M. Y., Scheuerman, E. H.. Intercostal variation at the sternal end of the rib. Forensic Science International. 1994; 65(2): 135–43.Google Scholar
Mann, R. W., Symes, S. A., Bass, W. M.. Maxillary suture obliteration: aging the human skeleton based on intact or fragmentary maxilla. Journal of Forensic Sciences. 1987; 32(1): 148–57.Google Scholar
Meindl, R. S., Lovejoy, C. O.. Ectocranial suture closure: A revised method for the determination of skeletal age at death based on the lateral-anterior sutures. American Journal of Physical Anthropology. 1985; 68(1): 5766.CrossRefGoogle ScholarPubMed
Nawrocki, S. P.. Regression formulae for estimating age at death from cranial suture closure. In: Reichs, K., ed. Forensic Osteology: Advances in the Identification of Human Remains. Springfield, IL: Charles C. Thomas; 1998, pp. 276–92.Google Scholar
Harth, S., Obert, M., Ramsthaler, F., et al. Ossification degrees of cranial sutures determined with flat-panel computed tomography: narrowing the age estimate with extrema. Journal of Forensic Sciences. 2010; 55(3): 690–4.Google Scholar
Garvin, H. M., Passalacqua, N. V.. Current practices by forensic anthropologists in adult skeletal age estimation. Journal of Forensic Sciences. 2012; 57(2): 427–33.CrossRefGoogle ScholarPubMed
Cappella, A., Cummaudo, M., Arrigoni, E., Collini, F., Cattaneo, C.. The issue of age estimation in a modern skeletal population: Are even the more modern current aging methods satisfactory for the elderly? Journal of Forensic Sciences. 2017; 62(1): 12–7.Google Scholar
Rougé-Maillart, C., Vielle, B., Jousset, N., et al. Development of a method to estimate skeletal age at death in adults using the acetabulum and the auricular surface on a Portuguese population. Forensic Science International. 2009; 188(1–3): 91–5.Google Scholar
Stewart, T. D.. The rate of development of vertebral osteoarthritis in American Whites and its significance in skeletal age identification. The Leech. 1958; 28(3–5): 144–51.Google Scholar
Kacar, E., Unlu, E., Beker-Acay, M., et al. Age estimation by assessing the vertebral osteophytes with the aid of 3D CT imaging. Australian Journal of Forensic Sciences. 2016: 110.Google Scholar
Brennaman, A. L., Love, K. R., Bethard, J. D., Pokines, J. T.. A Bayesian approach to age-at-death estimation from osteoarthritis of the shoulder in modern North Americans. Journal of Forensic Sciences. 2017; 62(3): 573–84.Google Scholar
Listi, G. A., Manhein, M. H.. The use of vertebral osteoarthritis and osteophytosis in age estimation. Journal of Forensic Sciences. 2012; 57(6): 1537–40.Google Scholar
Milella, M., Belcastro, M. G., Zollikofer, C. P. E., Mariotti, V.. The effect of age, sex, and physical activity on entheseal morphology in a contemporary Italian skeletal collection. American Journal of Physical Anthropology. 2012; 148: 379–88.Google Scholar
Listi, G. A.. The use of entheseal changes in the femur and os coxa for age assessment. Journal of Forensic Sciences. 2016; 61: 12–8.Google Scholar
Godde, K., Taylor, R. W., Gutierrez, C.. Entheseal changes and demographic/health indicators in the upper extremity of modern Americans: associations with age and physical activity. International Journal of Osteoarchaeology. 2018; 28(3): 285–93.Google Scholar
Garvin, H. M.. Ossification of laryngeal structures as indicators of age. Journal of Forensic Sciences. 2008; 53(5): 1023–7.Google Scholar
Ontell, F. K., Moore, E. H., Shepard, J.-A. O., Shelton, D. K.. The costal cartilages in health and disease. Radiographics. 1997; 17: 571–7.Google Scholar
Forman, J. L., Kent, R. W.. The effect of calcification on the structural mechanics of the costal cartilage. Computer Methods in Biomechanics and Biomedical Engineering in Medicine. 2014; 17(2): 94107.Google Scholar
Ozturk, C. N., Ozturk, C., Bozkurt, M., et al. Dentition, bone loss, and the aging of the mandible. Aesthetic Surgery Journal. 2013; 33(7): 967–74.Google Scholar
Roberts, J., Márquez-Grant, N.. Forensic anthropology. In Márquez-Grant, N., Roberts, J., eds. Forensic Ecology Handbook: From Crime Scene to Court. Wily-Blackwell: Chichester; 2012, pp. 4967.Google Scholar
May, H., Peled, N., Da, G., et al. Hyperostosis frontalis interna: criteria for sexing and aging a skeleton. International Journal of Legal Medicine. 2011; 125: 669–73.Google Scholar
Shrigiriwar, M., Jadhav, V.. Age estimation from physiological changes of teeth by Gustafson’s method. Medicine, Science, and the Law. 2013; 53(2): 6771.Google Scholar
Ramsthaler, F., Kettner, M., Verhoff, M. A.. Validity and reliability of dental age estimation of teeth root translucency based on digital luminance determination. International Journal of Legal Medicine. 2014; 128(1): 171–6.CrossRefGoogle ScholarPubMed
Raju, G. S. S., Keerthi, M., Nandan, S. R. K., et al. Cementum as an age determinant: A forensic view. Journal of Forensic Dental Sciences. 2016; 8(3): 175.Google Scholar
Singh, N., Grover, N., Puri, N., Singh, S., Arora, S.. Age estimation from physiological changes of teeth: A reliable age marker? Journal of Forensic Dental Sciences. 2014; 6(2): 113–21.Google Scholar
Lamendin, H.. Observations on teeth roots in the estimation of age. International Journal of Forensic Dentistry. 1973; 1: 47.Google Scholar
Lamendin, H., Baccino, E., Humbert, J. F., et al. A simple technique for age estimation in adult corpses: the two criteria dental method. Journal of Forensic Sciences. 1992; 37: 1373–9.Google Scholar
Kerley, E. R.. The microscopic determination of age in human bone. American Journal of Physical Anthropology. 1965; 23: 149–64.Google Scholar
Kerley, E. R., Ubelaker, D. H.. Revisions in the microscopic method of estimating age at death in human cortical bone. American Journal of Physical Anthropology 1978; 49: 545–6.Google Scholar
Pfeiffer, S., Heinrich, J., Beresheim, A., Alblas, M.. Cortical bone histomorphology of known-age skeletons from the Kirsten collection, Stellenbosch University, South Africa. American Journal of Physical Anthropology. 2016; 160(1): 137–47.Google Scholar
Stout, S. D.. The use of histomorphology to estimate age. Journal of Forensic Sciences. 1988; 33: 121–5.Google Scholar
Crowder, S. M., Heinrich, J. T., Dominguez, V. M.. Histological age estimation. In Blau, S., Ubelaker, D. H., eds. Handbook of Forensic Anthropology and Archaeology, 2nd ed. London: Routledge; 2016, pp. 293307.Google Scholar
Schmitt, A., Murail, P., Cunha, E., Rougé, D.. Variability of the pattern of aging on the human skeleton: evidence from bone indicators and implications on age at death estimation. Journal of Forensic Sciences. 2002; 47(6): 1203–9.Google Scholar
Robling, A. G., Stout, S. D.. Histomorphology of human cortical bone: applications to age estimation. In Katzenberg, M. A., Saunders, S. R., eds. Biological Anthropology of the Human Skeleton, 2nd ed. Hoboken, NJ: John Wiley & Sons; 2008, pp. 149–82.Google Scholar
Ohtani, S., Kamamoto, K.. Age estimation using the racemization of amino acid in human dentin. Journal of Forensic Sciences. 1991; 36(3): 792800.Google Scholar
Ritz, S., Schutz, H. W.. Aspartic acid racemization in intervertebral discs as an aid to postmortem estimation of age at death. Journal of Forensic Sciences. 1993; 38(3): 633–40.Google Scholar
Alkass, K., Buchholz, B. A., Ohtani, S., et al. Age estimation in forensic sciences: application of combined aspartic acid racemization and radiocarbon analysis. Molecular & Cellular Proteomics. 2010; 9(5): 1022–30.Google Scholar
Carolan, V. A., Gardner, M. L. G., Lucy, D., Pollard, A. M.. Some considerations regarding the use of amino acid racemization in human dentine as an indicator of age at death. Journal of Forensic Sciences. 1997; 42: 10–6.Google Scholar
Franklin, D.. Forensic age estimation in human skeletal remains: current concepts and future directions. Legal Medicine. 2010; 12: 17.Google Scholar
Meissner, C., Ritz-Timme, S.. Molecular pathology and age estimation. Forensic Science International. 2010; 203: 3443.Google Scholar
Bekaert, B., Kamalandua, A., Zapico, S. C., Van de Voorde, W., Decorte, R.. Improved age determination of blood and teeth samples using a selected set of DNA methylation markers. Epigenetics. 2015; 10(10): 922–30.Google Scholar
Zapico, S. C., Ubelaker, D. H.. Relationship between mitochondrial DNA mutations and aging. Estimation of age-at-death. The Journals Of Gerontology Series A, Biological Sciences and Medical Sciences. 2016; 71(4): 445–50.Google Scholar
Gordon, R., Zapico, S. C.. Mitochondrial DNA mutations and aging. In Zapico, S. C., ed. Mechanisms Linking Aging, Diseases and Biological Age Estimation. Boca Raton: CRC Press; 2017, pp. 193200.Google Scholar
Thomas, C., Zapico, S. C.. Epigenetics: its role in aging, diseases and biological age estimation. In: Zapico, S. C., ed. Mechanisms Linking Aging, Diseases and Biological Age Estimation. Boca Raton: CRC Press; 2017, pp. 245–54.Google Scholar
Srettabunjong, S., Satitsri, S., Thongnoppakhun, W., Tirawanchai, N.. The study on telomere length for age estimation in a Thai population. American Journal of Forensic Medicine and Pathology. 2014; 35(2): 148–53.Google Scholar
Saeed, M., Berlin, R. M., Cruz, T. D.. Exploring the utility of genetic markers for predicting biological age. Legal Medicine (Tokyo). 2012; 14(6): 279–85.Google Scholar
Freire-Aradas, A., Phillips, C., Lareu, M. V.. Forensic individual age estimation with DNA: From initial approaches to methylation tests. Forensic Science Review. 2017; 29(2): 121–44.Google Scholar
Merritt, C. E.. Inaccuracy and bias in adult skeletal age estimation: Assessing the reliability of eight methods on individuals of varying body sizes. Forensic Science International. 2017; 275: 315.e111.Google Scholar
Bongiovanni, R.. Effects of parturition on pelvic age indicators. Journal of Forensic Sciences. 2016; 61(4): 1034–40.Google Scholar
Burt, N. M., Sauer, N., Fenton, T.. Testing the Demirjian and the international Demirjian dental aging methods on a mixed ancestry urban American subadult sample from Detroit, MI. Journal of Forensic Sciences. 2011; 56(5): 1296–301.Google Scholar
Mays, S.. The effect of factors other than age upon skeletal age indicators in the adult. Annals of Human Biology. 2015; 42(4): 332–41.Google Scholar
Gilbert, B. M., McKern, T. W.. A method for aging the female os pubis. American Journal of Physical Anthropology. 1973; 38: 31–8.Google Scholar
Ubelaker, D.. Forensic anthropology: Methodology and diversity of applications. In Katzenberg, M. A., Saunders, S. R., eds. Biological Anthropology of the Human Skeleton, 2nd ed. Hoboken, NJ: John Wiley and Sons; 2008, pp. 4169.Google Scholar
Milner, G. R., Boldsen, J. L.. Transition analysis: a validation study with known-age modern American skeletons. American Journal of Physical Anthropology. 2012; 148: 98110.Google Scholar
Lottering, N., MacGregor, D. M., Meredith, M., Alston, C. L., Gregory, L. S.. Evaluation of the Suchey-Brooks method of age estimation in an Australian subpopulation using computed tomography of the pubic symphyseal surface. American Journal of Physical Anthropology. 2013; 150(3): 386–99.Google Scholar
Herrera, M. J., Retamal, R.. Reliability of age estimation from iliac auricular surface in a subactual Chilean sample. Forensic Science International. 2017; 275: 317.e14.Google Scholar
Savall, F., Rerolle, C., Herin, F., et al. Reliability of the Suchey-Brooks method for a French contemporary population. Forensic Science International. 2016; 266: 586.e1–5.Google Scholar
Hens, S. M., Rastelli, E., Belcastro, G.. Age estimation from the human os coxa: a test on a documented Italian collection. Journal of Forensic Sciences. 2008; 53(5): 1040–3.Google Scholar
Pavlović, S., Pereira, C. P., Vargas de Sousa Santos, R. F.. Age estimation in Portuguese population: the application of the London atlas of tooth development and eruption. Forensic Science International. 2017; 272: 97103.Google Scholar
Rissech, C., Wilson, J., Winburn, A. P., Turbón, D., Steadman, D.. A comparison of three established age estimation methods on an adult Spanish sample. International Journal of Legal Medicine. 2012; 126(1): 145–55.Google Scholar
Moraitis, K., Zorba, E., Eliopoulos, C., Fox, S. C.. A test of the revised auricular surface aging method on a modern European population. Journal of Forensic Sciences. 2014; 59(1): 188–94.Google Scholar
Fleischman, J. M.. A comparative assessment of the Chen et al. and Suchey-Brooks pubic aging methods on a North American sample. Journal of Forensic Sciences. 2013; 58(2): 311–23.Google Scholar
Gocha, T. P., Ingvoldstad, M. E., Kolatorowicz, A., et al. Testing the applicability of six macroscopic skeletal aging techniques on a modern Southeast Asian sample. Forensic Science International. 2015; 249: 318.e1–7.Google Scholar
Buckberry, J.. The (mis)use of adult age estimates in osteology. Annals of Human Biology. 2015; 42(4): 323–31.Google Scholar
Baccino, E., Ubelaker, D. H., Hayek, L. A., Zerilli, A.. Evaluation of seven methods of estimating age at death from mature human skeletal remains. Journal of Forensic Sciences. 1999; 44(5): 931–6.CrossRefGoogle ScholarPubMed
Cox, M., Mays, S.. Human Osteology: In Archaeology and Forensic Science. London: Greenwich Medical Media; 2000.Google Scholar
Buikstra, J., Ubelaker, D. H.. Standards for Data Collection from Human Skeletal Remains. Arkansas: Arkansas Archeological Survey; 1994.Google Scholar
O’Connell, L.. Guidance on Recording Age at Death in Adults. Southampton: BABAO and the IFA; 2004.Google Scholar
Gheno, R., Cepparo, J. M., Rosca, C. E., Cotten, A.. Musculoskeletal disorders in the elderly. Journal of Clinical Imaging Science. 2012; 2: 39.Google Scholar
van Schaardenburg, D., Van den Brande, K. J., Ligthart, G. J., Breedveld, F. C., Hazes, J. M.. Musculoskeletal disorders and disability in persons aged 85 and over: a community survey. Annals of the Rheumatic Diseases. 1994; 53(12): 807–11.Google Scholar
Prince, R. L.. Bone disease in older people. In Wass, J. A. H., Stewart, P. M., Amiel, S. A., Davies, M. J., eds. Oxford Textbook of Endocrinology and Diabetes, 2nd ed. Oxford: Oxford University Press; 2011, pp. 1526–34.Google Scholar
Kanis, J. A.. Diagnosis of osteoporosis and assessment of fracture risk. Lancet. 2002; 359: 1929–36.Google Scholar
Rowbotham, S. K., Blau, S., Hislop-Jambrich, J., Francis, V.. Skeletal trauma resulting from fatal low (≤ 3 m) free falls. An analysis of fracture patterns and morphologies. Journal of Forensic Sciences. 2017; 63(4): 1010–20.Google Scholar
Ehara, S., Shimamura, T.. Cervical spine injury in the elderly: imaging features. Skeletal Radiology. 2001; 30(1): 17.Google Scholar
Kart, C. S., Metress, E. K., Metress, S. P.. Human Aging and Chronic Disease. Sudbury: Jones and Bartlett; 1992.Google Scholar
Ortner, D. J.. Identification of Pathological Conditions in Human Skeletal Remains, 2nd ed. London: Academic Press; 2003.Google Scholar
Kennedy, K. A. R.. Markers of occupational stress: conspectus and prognosis of research. International Journal of Osteoarchaeology. 1998; 8(5): 305–10.3.0.CO;2-A>CrossRefGoogle Scholar
Kennedy, K. A. R.. Skeletal markers of occupational stress. In Iscan, M., Kennedy, K., eds. Reconstruction of Life from the Skeleton. New York: Alan R. Liss; 1989, pp. 129–60.Google Scholar
Jurmain, R., Alves Cardoso, F., Henderson, C., Vilotte, S.. Bioarchaeology’s Holy Grail: The reconstruction of activity. In Grauer, A. L., ed. Companion to Paleopathology. New York: Wiley-Blackwell; 2012, pp. 531–52.Google Scholar
Hartnett, K. M.. Analysis of age-at-death estimation using data from a new, modern autopsy sample – part I: pubic bone. Journal of Forensic Sciences. 2010; 55(5): 1145–51.Google Scholar
Berg, G. E.. Pubic bone age estimation in adult women. Journal of Forensic Sciences. 2008; 53(3): 569–77.Google Scholar
Blau, S., Ranson, D., O’Donnell, C.. An Atlas of Skeletal Trauma in Medico-Legal Contexts. London: Elsevier; 2018.Google Scholar
Blau, S.. Body farms. Forensic Science Medicine and Pathology. 2017; 13(4): 484–6.Google Scholar
Dirkmaat, D. C., Cabo, L. L., Ousley, S. D., Symes, S. A.. New perspectives in forensic anthropology. American Journal of Physical Anthropology. 2008; 137: 3352.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×