Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-21T15:21:33.413Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  20 August 2021

Raf Bocklandt
Affiliation:
Universiteit van Amsterdam
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abouzaid, M., Auroux, D., Efimov, A. I., Katzarkov, L. and Orlov, D., Homological mirror symmetry for punctured spheres. J. Amer. Math. Soc., 26 (2013), 10511083.Google Scholar
Abouzaid, M., Auroux, D. and Katzarkov, L., Lagrangianfibrations on blowups of toric varieties and mirror symmetry for hypersurfaces. Publ. Math. Inst. HautesÉtudes Sci., 123 (2016), 199282.Google Scholar
Assem, I., Brüstle, T., Charbonneau-Jodoin, G. and Plamondon, P.-G., Gentle algebras arising from surface triangulations. Algebra Number Theory, 4 (2010), 201229.Google Scholar
Abouzaid, M., On the Fukaya categories of higher genus surfaces. Adv. Math., 217 (2008), 11921235.CrossRefGoogle Scholar
Abouzaid, M., Morse homology, tropical geometry, and homological mirror symmetry for toric varieties. Selecta Math. (N.S.), 15 (2009), 189270.Google Scholar
Abouzaid, M., A geometric criterion for generating the Fukaya category. Publ. Math. Inst. HautesÉtudes Sci., 112 (2010), 191240.Google Scholar
Abouzaid, M., A cotangent fibre generates the Fukaya category. Adv. Math., 228 (2011), 894939.Google Scholar
Abrams, L., Two-dimensional topological quantum field theories and Frobenius algebras. J. Knot Theory Ramifications, 5 (1996), 569587.Google Scholar
Anderson, F. W. and Fuller, K. R., Rings and Categories of Modules, Graduate Texts in Mathematics, vol. 13. Springer, New York-Heidelberg, 1974.Google Scholar
Hügel, L. Angeleri, Happel, D. and Krause, H., eds, Handbook of Tilting Theory, London Mathematical Society Lecture Note Series, vol. 332. Cambridge University Press, Cambridge, 2007.Google Scholar
Auroux, D., Katzarkov, L. and Orlov, D., Mirror symmetry for delPezzo surfaces: vanishing cycles and coherent sheaves. Invent. Math., 166 (2006), 537582.Google Scholar
Arnol’d, V. I., On a characteristic class entering into conditions of quantization. Funkcional. Anal. iPriložen., 1 (1967), 114.Google Scholar
Auslander, M., Reiten, I. and Smalø, S. O., Representation Theory of Artin Algebras, Cambridge Studies in Advanced Mathematics, vol. 36. Cambridge University Press, Cambridge, 1997. Corrected reprint of the 1995 original.Google Scholar
Assem, I. and Skowroński, A., Iterated tilted algebras of type Ãn. Math. Z., 195 (1987), 269290.CrossRefGoogle Scholar
Abouzaid, M. and Seidel, P., An open string analogue of Viterbofunctoriality. Geom. Topol., 14 (2010), 627718.Google Scholar
Aspinwall, P. S., D-branes on Calabi-Yau manifolds. In Progress in String Theory. World Sci. Publ., Hackensack, NJ, 2005, pp. 1152.Google Scholar
Artin, M., Tate, J. and Van den Bergh, M., Some algebras associated to automor-phisms of elliptic curves. In The Grothendieck Festschrift, Vol. I, Progress in Mathematics, vol. 86. Birkhäuser Boston, Boston, MA, 1990, pp. 3385.Google Scholar
Atiyah, M., Topological quantum field theories. Publ. Math., Inst. HautesÉtud. Sci., 68 (1988), 175186.Google Scholar
Auroux, D., Mirror symmetry and T-duality in the complement of an anticanon-ical divisor. J. Gökova Geom. Topol. GGT, 1 (2007), 5191.Google Scholar
Auroux, D., A beginner's introduction to Fukaya categories. In Contact and Symplectic Topology, Bolyai Society Mathematical Studies, vol. 26. JánosBolyai Math. Soc., Budapest, 2014, pp. 85136.Google Scholar
Bardzell, M. J., The alternating syzygy behavior of monomial algebras. J. Algebra, 188 (1997), 6989.Google Scholar
Batyrev, V. V., Dual polyhedra and mirror symmetry for Calabi-Yauhypersurfaces in toric varieties. J. Algebraic Geom., 3 (1994), 493535.Google Scholar
Batyrev, V. V. and Borisov, L. A., Mirror duality and string-theoretic Hodge numbers. Invent. Math., 126 (1996), 183203.Google Scholar
Batyrev, V. V. and Borisov, L. A., On Calabi-Yau complete intersections in toric varieties. In Higher-Dimensional Complex Varieties (Trento, 1994). De Gruyter, Berlin, 1996, pp. 3965.Google Scholar
Batyrev, V. V., Ciocan-Fontanine, I., Kim, B. and van Straten, D., Conifold transitions and mirror symmetry for Calabi-Yau complete intersections in Grass-mannians. Nuclear Phys. B, 514 (1998), 640666.Google Scholar
Beilinson, A. A., The derived category of coherent sheaves on Pn. Selecta Math. Soviet., 3 (1983/84), 233237. Selected translations.Google Scholar
Beilinson, A., Ginzburg, V. and Soergel, W., Koszul duality patterns in representation theory. J. Amer. Math. Soc., 9 (1996), 473527.Google Scholar
Banyaga, A. and Hurtubise, D., Lectures on Morse Homology, Kluwer Texts in the Mathematical Sciences, vol. 29. Kluwer Academic Publishers Group, Dordrecht, 2004.Google Scholar
Bender, M. and Mozgovoy, S., Crepant resolutions and branetilings II: Tilting bundles. arXiv:0909.2013, 2009.Google Scholar
Bayer, A., Macrì, E. and Stellari, P., The space of stability conditions on abelian threefolds, and on some Calabi-Yauthreefolds. Invent. Math., 206 (2016), 869933.Google Scholar
Bökstedt, M. and Neeman, A., Homotopy limits in triangulated categories. Comp. Math., 86 (1993), 209234.Google Scholar
Bondal, A. and Orlov, D., Reconstruction of a variety from the derived category and groups of autoequivalences. Comp. Math., 125 (2001), 327344.Google Scholar
Bocklandt, R., Consistency conditions for dimer models. Glasg. Math. J., 54 (2012), 429447.Google Scholar
Bocklandt, R., Generating toricnoncommutativecrepant resolutions. J. Algebra, 364 (2012), 119147.Google Scholar
Bocklandt, R., A dimer ABC. Bull. Lond. Math. Soc., 48 (2016), 387451.Google Scholar
Bocklandt, R., Noncommutative mirror symmetry for punctured surfaces. Trans. Amer. Math. Soc., 368 (2016), 429469. With an appendix by Mohammed Abouzaid.Google Scholar
Bocklandt, R., Strebel differentials and stable matrix factorizations. arXiv:1612.06800, 2016.Google Scholar
Bondal, A., Derived categories of toric varieties. In Convex and Algebraic Geometry, Oberwolfach Conference Reports, vol. 3. EMS Publishing House, Zürich, 2006, pp. 284286.Google Scholar
Bridgeland, T., Stability conditions on triangulated categories. Ann. of Math. (2), 166 (2007), 317345.Google Scholar
Bridgeland, T., Stability conditions on K3 surfaces. Duke Math. J., 141 (2008), 241291.CrossRefGoogle Scholar
Brion, M., Representations of quivers. In Geometric Methods in Representation Theory. I, SéminairesetCongrès, vol. 24. Soc. Math. France, Paris, 2012, pp. 103144.Google Scholar
Broomhead, N., Dimer models and Calabi-Yau algebras. Mem. Amer. Math. Soc., 211 (2012).Google Scholar
Balmer, P. and Schlichting, M., Idempotent completion of triangulated categories. J. Algebra, 236 (2001), 819834.Google Scholar
Bridgeland, T. and Smith, I., Quadratic differentials as stability conditions. Publ. Math. Inst. HautesÉtudes Sci., 121 (2015), 155278.Google Scholar
Bott, R. and Tu, L. W., Differential Forms in Algebraic Topology, Graduate Texts in Mathematics, vol. 82. Springer, New York-Berlin, 1982.Google Scholar
Buchweitz, R.-O., Maximal Cohen-Macaulay modules and Tate-cohomology over Gorenstein rings. University of Hannover, 1987. https://tspace.library.utoronto.ca/bitstream/1807/16682/1/maximal_cohen-macaulay_modules_1986.pdfGoogle Scholar
Crawley-Boevey, W., More lectures on representations of quivers. Preprint, University of Leeds, 1992. http://ambio1.leeds.ac.uk/pure/staff/crawley_b/morequivlecs.pdfGoogle Scholar
Crawley-Boevey, W., DMV lectures on representations of quivers, preprojective algebras and deformations of quotient singularities. Preprint, University of Leeds, 1999. www.math.uni-bielefeld.de/˜wcrawley/dmvlecs.pdfGoogle Scholar
Coates, T., Corti, A., Galkin, S., Golyshev, V. and Kasprzyk, A., Mirror symmetry and Fano manifolds. In European Congress of Mathematics. Eur. Math. Soc., Zürich, 2013, pp. 285300.Google Scholar
Caldararu, A., Costello, K. and Tu, J., Categorical enumerative invariants, I: String vertices. arXiv:2009.06673, 2020.Google Scholar
Candelas, P., de la Ossa, X. C., Green, P. S. and Parkes, L., A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory. Nuclear Phys. B, 359 (1991), 2174.Google Scholar
Cannas da Silva, A., Lectures on Symplectic Geometry, Lecture Notes in Mathematics, vol. 1764. Springer, Berlin, 2001.Google Scholar
Cieliebak, K., Floer, A. and Hofer, H., Symplectic homology. II. A general construction. Math. Z., 218 (1995), 103122.Google Scholar
Chantraine, B., An introduction to Fukaya categories. Preprint, University of Nantes, 2014. www.math.sciences.univ-nantes.fr/∼chantraine-b/en/FukayaCategory.pdfGoogle Scholar
Cho, C.-H., Hong, H. and Lau, S.-C., Localized mirror functor for Lagrangian immersions, and homological mirror symmetry for . J. Differential Geom., 106 (2017), 45126.Google Scholar
Cox, D. A. and Katz, S., Mirror Symmetry and Algebraic Geometry, Mathematical Surveys and Monographs, vol. 68. American Mathematical Society, Providence, RI, 1999.Google Scholar
Cox, D. A., Little, J. B. and Schenck, H. K., Toric Varieties, Graduate Studies in Mathematics, vol. 124. American Mathematical Society, Providence, RI, 2011.Google Scholar
Costello, K., Topological conformal field theories and Calabi-Yau categories. Adv. Math., 210 (2007), 165214.Google Scholar
Cox, D. A., Mirror symmetry and polar duality of polytopes. Symmetry, 7 (2015), 16331645.Google Scholar
Căldăraru, A. and Tu, J., Curved A algebras and Landau-Ginzburg models. New York J. Math., 19 (2013), 305342.Google Scholar
Caldararu, A. and Tu, J., Computing a categorical Gromov-Witten invariant.arXiv:1706.09912, 2019.Google Scholar
Collinucci, A. and Wyder, T., Introduction to topological string theory. Report No. KUL-TF-07/24, University of Leuven, 2007.Google Scholar
Davison, B., Consistency conditions for branetilings. J. Algebra, 338 (2011), 123.Google Scholar
Deligne, P., Etingof, P., Freed, D. S., Jeffrey, L. C., Kazhdan, D., Morgan, J. W., Morrison, D. R. and Witten, E., eds, Quantum Fields and Strings: A Course for Mathematicians. Vols. 1, 2. American Mathematical Society, Providence, RI; Institute for Advanced Study (IAS), Princeton, NJ, 1999. Material from the Special Year on Quantum Field Theory held at the Institute for Advanced Study, Princeton, NJ, 19961997.Google Scholar
Dyckerhoff, T. and Kapranov, M., Triangulated surfaces in triangulated categories. J. Eur. Math. Soc. (JEMS), 20 (2018), 14731524.Google Scholar
Dolbeault, P., Sur la cohomologie des variétésanalytiques complexes. C. R. Acad. Sci. Paris, 236 (1953), 175177.Google Scholar
Drinfeld, V., DG quotients of DG categories. J. Algebra, 272 (2004), 64391.CrossRefGoogle Scholar
Dugger, D., A primer on homotopycolimits. Preprint, University of Oregon, 2008. https://pages.uoregon.edu/ddugger/hocolim.pdfGoogle Scholar
Dyckerhoff, T., Compact generators in categories of matrix factorizations. Duke Math. J., 159 (2011), 223274.Google Scholar
Efimov, A. I., A proof of the Kontsevich-Soibelman conjecture. Mat. Sb., 202 (2011), 6584.Google Scholar
Efimov, A. I., Homological mirror symmetry for curves of higher genus. Adv. Math., 230 (2012), 493530.Google Scholar
Eisenbud, D. and Harris, J., The Geometry of Schemes, Graduate Texts in Mathematics, vol. 197. Springer, New York, 2000.Google Scholar
Eisenbud, D., Homological algebra on a complete intersection, with an application to group representations. Trans. Amer. Math. Soc., 260 (1980), 3564.Google Scholar
Eisenbud, D., Commutative Algebra, Graduate Texts in Mathematics, vol. 150. Springer, New York, 1995. With a view toward algebraic geometry.Google Scholar
Ellingsrud, G. and Strømme, S. A., Bott's formula and enumerative geometry. J. Amer. Math. Soc., 9 (1996), 175193.Google Scholar
Fantechi, B., Stacks for everybody. In European Congress of Mathematics, Vol.I (Barcelona, 2000), Progress in Mathematics, vol. 201. Birkhäuser, Basel, 2001, pp. 349359.Google Scholar
Fang, B., Homological mirror symmetry is T-duality for Pn. Commun. Number Theory Phys., 2 (2008), 719742.Google Scholar
Floer, A., Hofer, H. and Wysocki, K., Applications of symplectic homology. I. Math. Z., 217 (1994), 577606.Google Scholar
Floer, A., Morse theory for Lagrangian intersections. J. Differential Geom., 28 (1988), 513547.Google Scholar
Fang, B., Liu, C.-C. M., Treumann, D. and Zaslow, E., T-duality and equivariant homological mirror symmetry for toric varieties. arXiv:0811.1228, 2008.Google Scholar
Fang, B., Liu, C.-C. M., Treumann, D. and Zaslow, E., The coherent-constructible correspondence and homological mirror symmetry for toric varieties. In Geometry and Analysis. No. 2, Advanced Lectures in Mathematics, vol. 18. Int. Press, Somerville, MA, 2011, pp. 337.Google Scholar
Fukaya, K., Oh, Y.-G., Ohta, H. and Ono, K., Canonical models of filtered A-algebras and Morse complexes. In New Perspectives and Challenges in Symplectic Field Theory, CRM Proceedings and Lecture Notes, vol. 49. American Mathematical Society, Providence, RI, 2009, pp. 201227.Google Scholar
Fukaya, K., Oh, Y.-G., Ohta, H. and Ono, K., Lagrangian Intersection Floer Theory: Anomaly and Obstruction. Part I, AMS/IP Studies in Advanced Mathematics, vol. 46. American Mathematical Society, Providence, RI; International Press, Somerville, MA, 2009.Google Scholar
Fukaya, K., Oh, Y.-G., Ohta, H. and Ono, K., Lagrangian Intersection Floer Theory: Anomaly and Obstruction. Part II, AMS/IP Studies in Advanced Mathematics, vol. 46. American Mathematical Society, Providence, RI; International Press, Somerville, MA, 2009.Google Scholar
Fulton, W. and Pandharipande, R., Notes on stable maps and quantum cohomology. In Algebraic Geometry—Santa Cruz 1995, Proceedings of Symposia in Pure Mathematics, vol. 62. American Mathematical Society, Providence, RI, 1997, pp. 4596.Google Scholar
Forsberg, M., Passare, M. and Tsikh, A., Laurent determinants and arrangements of hyperplane amoebas. Adv. Math., 151 (2000), 4570.Google Scholar
Friedman, G., Survey article: An elementary illustrated introduction to simplicial sets. Rocky Mountain J. Math., 42 (2012), 353423.Google Scholar
Fuller, K. R., Biserial rings. In Ring Theory (Proc. Conf., Univ. Waterloo, Waterloo, 1978), Lecture Notes in Mathematics, vol. 734. Springer, Berlin, 1979, pp. 6490.Google Scholar
Fulton, W., Introduction to Toric Varieties, Annals of Mathematics Studies, vol. 131. Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry.Google Scholar
Getzler, E., Batalin-Vilkovisky algebras and two-dimensional topological field theories. Comm. Math. Phys., 159 (1994), 265285.Google Scholar
Griffiths, P. and Harris, J., Principles of Algebraic Geometry. Wiley Classics Library. John Wiley & Sons, New York, 1994. Reprint of the 1978 original.Google Scholar
Givental, A. B., EquivariantGromov-Witten invariants. Int. Math. Res. Not. IMRN, 2015 (1996), 613663.Google Scholar
Getzler, E. and Jones, J. D. S., A-algebras and the cyclic bar complex. Illinois J. Math., 34 (1990), 256283.Google Scholar
Gammage, B. and Nadler, D., Mirror symmetry for honeycombs. Trans. Amer. Math. Soc., 373 (2020), 71107.Google Scholar
Ganatra, S., Pardon, J. and Shende, V., Microlocal Morse theory of wrapped Fukaya categories. arXiv:1809.08807, 2018.Google Scholar
Ganatra, S., Pardon, J. and Shende, V., Structural results in wrapped Floer theory. arXiv:1809.03427, 2018.Google Scholar
Gabriel, P. and Roĭter, A. V., Representations of Finite-Dimensional Algebras, Encyclopaedia of Mathematical Sciences, vol. 73. Springer, Berlin, 1992. With a chapter by B. Keller.Google Scholar
Grothendieck, A., Sur la classification des fibrésholomorphessur la sphère de Riemann. Amer. J. Math., 79 (1957), 121138.Google Scholar
Grothendieck, A., Groupes de classes des catégoriesabéliennesettriangulées. Complexes parfaits. In Séminaire de GéométrieAlgébrique du Bois-Marie 1965–66 SGA 5. Springer, 1977, pp. 351371.Google Scholar
Gromov, M., Pseudo holomorphic curves in symplectic manifolds. Invent. Math., 82 (1985), 307347.Google Scholar
Gross, M., Special Lagrangianfibrations. I. Topology. In Integrable Systems and Algebraic Geometry (Kobe/Kyoto, 1997). World Sci. Publ., River Edge, NJ, 1998, pp. 156193.Google Scholar
Gross, M., Examples of special Lagrangianfibrations. In Symplectic Geometry and Mirror Symmetry (Seoul, 2000). World Sci. Publ., River Edge, NJ, 2001, pp. 81109.Google Scholar
Gross, M., Special Lagrangianfibrations. II. Geometry. A survey of techniques in the study of special Lagrangianfibrations. In Winter School on Mirror Symmetry, Vector Bundles and LagrangianSubmanifolds (Cambridge, MA, 1999), AMS/IP Studies in Advanced Mathematics, vol. 23. American Mathematical Society, Providence, RI, 2001, pp. 95150.Google Scholar
Gross, M. and Siebert, B., Mirror symmetry via logarithmic degeneration data. I. J. Differential Geom., 72 (2006), 169338.Google Scholar
Gross, M. and Siebert, B., Mirror symmetry via logarithmic degeneration data, II. J. Algebraic Geom., 19 (2010), 679780.Google Scholar
Gelfand, I. M., Zelevinskiĭ, A. V. and Kapranov, M. M., A-discriminants and Cayley-Koszul complexes. Dokl. Akad. Nauk SSSR, 307 (1989), 13071311.Google Scholar
Habermann, M., Homological mirror symmetry for invertible polynomials in two variables. arXiv:2003.01106, 2020.Google Scholar
Happel, D., Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras, London Mathematical Society Lecture Note Series, vol. 119. Cambridge University Press, Cambridge, 1988.Google Scholar
Hartshorne, R., Algebraic Geometry, Graduate Texts in Mathematics, vol. 52. Springer, New York-Heidelberg, 1977.Google Scholar
Hatcher, A., On triangulations of surfaces. Topology Appl., 40 (1991), 189194.Google Scholar
Hatcher, A., Algebraic Topology. Cambridge University Press, Cambridge, 2002.Google Scholar
Hille, L. and de la Peña, J. A., Stable representations of quivers. J. Pure Appl. Algebra, 172 (2002), 205224.CrossRefGoogle Scholar
Hitchin, N., Lectures on special Lagrangiansubmanifolds. In Winter School on Mirror Symmetry, Vector Bundles and LagrangianSubmanifolds (Cambridge, MA, 1999), AMS/IP Studies in Advanced Mathematics, vol. 23. American Mathematical Society, Providence, RI, 2001, pp. 151182.Google Scholar
Hori, K., Katz, S., Klemm, A., Pandharipande, R., Thomas, R., Vafa, C., Vakil, R. and Zaslow, E., Mirror Symmetry, Clay Mathematics Monographs, vol. 1. American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2003. With a preface by Vafa.Google Scholar
Haiden, F., Katzarkov, L. and Kontsevich, M., Flat surfaces and stability structures. Publ. Math. Inst. HautesÉtudes Sci., 126 (2017), 247318.Google Scholar
Hochschild, G., Kostant, B. and Rosenberg, A., Differential forms on regular affine algebras. Trans. Amer. Math. Soc., 102 (1962), 383408.Google Scholar
Huybrechts, D. and Lehn, M., The Geometry of Moduli Spaces of Sheaves, 2nd ed., Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2010.Google Scholar
Hazewinkel, M. and Martin, C. F, A short elementary proof of Grothendieck's theorem on algebraic vectorbundles over the projective line. J. Pure Appl. Algebra, 25 (1982), 207211.Google Scholar
Hochschild, G., On the cohomology groups of an associative algebra. Ann. of Math. (2), 46 (1945), 5867.Google Scholar
Hille, L. and Perling, M., Tilting bundles on rational surfaces and quasi-hereditary algebras. Ann. Inst. Fourier (Grenoble), 64 (2014), 625644.Google Scholar
Hanany, A. and Seong, R.-K., Branetilings and specular duality. J. High Energy Phys., 2012 (2012), 107.Google Scholar
Henneaux, M. and Teitelboim, C., BRST cohomology in classical mechanics. Comm. Math. Phys., 115 (1988), 213230.Google Scholar
Hutchings, M., Lecture notes on Morse homology (with an eye towards Floer theory and pseudoholomorphic curves). Preprint, Berkeley, 2002. https://math.berkeley.edu/˜hutching/teach/276-2010/mfp.psGoogle Scholar
Huybrechts, D., Fourier-Mukai Transforms in Algebraic Geometry. Oxford Mathematical Monographs. Clarendon Press, Oxford, 2006.Google Scholar
Ishii, A. and Ueda, K., On moduli spaces of quiver representations associated with dimer models. In Higher Dimensional Algebraic Varieties and Vector Bundles, RIMS KôkyûrokuBessatsu, B9. Res. Inst. Math. Sci. (RIMS), Kyoto, 2008, pp. 127141.Google Scholar
Ishii, A. and Ueda, K., A note on consistency conditions on dimer models. In Higher Dimensional Algebraic Geometry, RIMS KôkyûrokuBessatsu, B24. Res. Inst. Math. Sci. (RIMS), Kyoto, 2011, pp. 143164.Google Scholar
Ishii, A. and Ueda, K., Dimer models and the special McKay correspondence. Geom. Topol., 19 (2015), 34053466.Google Scholar
Joyce, D., Lectures on Calabi-Yau and special Lagrangian geometry. arXiv:math/0108088, 2001.Google Scholar
Joyce, D., Singularities of special Lagrangianfibrations and the SYZ conjecture. Comm. Anal. Geom., 11 (2003), 859907.Google Scholar
Joyce, D. D., Riemannian Holonomy Groups and Calibrated Geometry, Oxford Graduate Texts in Mathematics, vol. 12. Oxford University Press, Oxford, 2007.Google Scholar
Kadeishvili, T. V., The algebraic structure in the homology of an A(∞)-algebra. Soobshch. Akad. NaukGruzin. SSR, 108 (1982, 1983), 249252.Google Scholar
Kasteleyn, P. W., Dimer statistics and phase transitions. J. Mathematical Phys., 4 (1963), 287293.Google Scholar
Keller, B., Introduction to A-infinity algebras and modules. Homology Homotopy Appl., 3 (2001), 135.Google Scholar
Keller, B., Derived invariance of higher structures on the Hochschild complex. Preprint, 2003. https://webusers.imj-prg.fr/∼bernhard.keller/publ/dih.pdfGoogle Scholar
Keller, B., A-infinity algebras, modules and functor categories. In Trends in Representation Theory of Algebras and Related Topics, Contemporary Mathematics, vol. 406. American Mathematical Society, Providence, RI, 2006, pp. 6793.Google Scholar
Keller, B., Derived categories and tilting. In Handbook of Tilting Theory, London Mathematical Society Lecture Note Series, vol. 332. Cambridge University Press, Cambridge, 2007, pp. 49104.CrossRefGoogle Scholar
Kenyon, R., An introduction to the dimer model. In School and Conference on Probability Theory, ICTP Lecture Notes, XVII. Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004, pp. 267304.Google Scholar
King, A. D., Moduli of representations of finite-dimensional algebras. Quart. J. Math. Oxford Ser. (2), 45 (1994), 515530.Google Scholar
Kapustin, A., Katzarkov, L., Orlov, D. and Yotov, M., Homological mirror symmetry for manifolds of general type. Cent. Eur. J. Math., 7 (2009), 571605.Google Scholar
Knörrer, H., Cohen-Macaulay modules on hypersurface singularities I. Invent. Math., 88 (1987), 153164.Google Scholar
Kontsevich, M., Homological algebra of mirror symmetry. In Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994). Birkhäuser, Basel, 1995, pp. 120139.Google Scholar
Kontsevich, M., Triangulated categories and geometry. Course at the ÉcoleNormaleSupérieure, Paris, notes taken by J. Bellaıche, 1998.Google Scholar
Kontsevich, M., Deformation quantization of Poisson manifolds. Lett. Math. Phys., 66 (2003), 157216.Google Scholar
Kontsevich, M., Symplectic geometry of homological algebra. Preprint, IHES, 2009. www.ihes.fr/˜/maxim/TEXTS/Symplectic_AT2009.pdfGoogle Scholar
Kontsevich, M. and Rosenberg, A. L., Noncommutative smooth spaces. In The Gelfand Mathematical Seminars, 1996–1999, Gelfand Math. Sem. Birkhäuser Boston, Boston, MA, 2000, pp. 85108.Google Scholar
Kontsevich, M. and Soibelman, Y., Homological mirror symmetry and torus fibrations. In Symplectic Geometry and Mirror Symmetry (Seoul, 2000). World Sci. Publ., River Edge, NJ, 2001, pp. 203263.Google Scholar
Kontsevich, M. and Soibelman, Y., Deformation theory. Livre enpréparation, 2002. https://people.maths.ox.ac.uk/beem/papers/kontsevich_soibelman_deformation_theory_1.pdfGoogle Scholar
Kashiwara, M. and Schapira, P., Categories and sheaves. Grundlehren der Mathe-matischenWissenschaften [Fundamental Principles of Mathematical Sciences], vol. 332. Springer, Berlin, 2006.Google Scholar
Kontsevich, M. and Soibelman, Y., Stability structures, motivic Donaldson-Thomas invariants and cluster transformations.arXiv:0811.2435, 2008.Google Scholar
Kontsevich, M. and Soibelman, Y., Notes on A-algebras, A-categories and non-commutative geometry. In Homological Mirror Symmetry, Lecture Notes in Physics, vol. 757. Springer, Berlin, 2009, pp. 153219.Google Scholar
Lam, T. Y., Lectures on Modules and Rings, Graduate Texts in Mathematics, vol. 189. Springer, New York, 1999.Google Scholar
Le Bruyn, L., Noncommutative Geometry and Cayley-Smooth Orders, Pure and Applied Mathematics (Boca Raton), vol. 290. Chapman & Hall/CRC, Boca Raton, FL, 2008.Google Scholar
Lowen, W. and Van den Bergh, M., The curvature problem for formal and infinitesimal deformations.arXiv:1505.03698, 2015.Google Scholar
Lau, S., Cho, C.-H. and Hong, H., Noncommutative homological mirror functor. Mem. Amer. Math. Soc., 2019.Google Scholar
Lee, H. M., Homological Mirror Symmetry for Open Riemann Surfaces from Pair-of-Pants Decompositions. ProQuest LLC, Ann Arbor, MI, 2015. Thesis (Ph.D.)–University of California, Berkeley.Google Scholar
Labardini-Fragoso, D., Quivers with potentials associated to triangulated surfaces. Proc. Lond. Math. Soc. (3), 98 (2009), 797839.Google Scholar
Lipman, J., Notes on derived functors and Grothendieck duality. In Foundations of Grothendieck Duality for Diagrams of Schemes, Lecture Notes in Mathematics, vol. 1960. Springer, Berlin, 2009, pp. 1259.CrossRefGoogle Scholar
Lian, B. H., Liu, K. and Yau, S.-T., Mirror principle. I. Asian J. Math., 1 (1997), 729763.Google Scholar
Lunts, V. A. and Orlov, D. O., Uniqueness of enhancement for triangulated categories. J. Amer. Math. Soc., 23 (2010), 853908.Google Scholar
Loday, J.-L., Cyclic Homology, vol. 301. Springer, 2013.Google Scholar
Lekili, Y. and Perutz, T., Fukaya categories of the torus and Dehn surgery. Proc. Natl. Acad. Sci. USA, 108 (2011), 81068113.Google Scholar
Lekili, Y. and Perutz, T., Arithmetic mirror symmetry for the 2-torus. arXiv:1211.4632, 2012.Google Scholar
Lin, K. H. and Pomerleano, D., Global matrix factorizations. Math. Res. Lett., 20 (2013), 91106.Google Scholar
Lekili, Y. and Polishchuk, A., Arithmetic mirror symmetry for genus 1 curves with n marked points. Selecta Math. (N.S.), 23 (2017), 18511907.Google Scholar
Lekili, Y. and Polishchuk, A., Auslander orders over nodal stacky curves and partially wrapped Fukaya categories. J. Topol., 11 (2018), 615644.Google Scholar
Lekili, Y. and Polishchuk, A., Derived equivalences of gentle algebras via Fukaya categories. Math. Ann., 376 (2020), 187225.Google Scholar
Lu, D.-M., Palmieri, J. H., Wu, Q.-S. and Zhang, J. J., Koszul equivalences in A-algebras. New York J. Math., 14 (2008), 325378.Google Scholar
Lu, D.-M., Palmieri, J. H., Wu, Q.-S. and Zhang, J. J., A-infinity structure on Ext-algebras. J. Pure Appl. Algebra, 213 (2009), 20172037.Google Scholar
Lekili, Y. and Ueda, K., Homological mirror symmetry for K3 surfaces via moduli of A-structures. arXiv:1806.04345, 2018.Google Scholar
Markl, M., Transferring A (strongly homotopy associative) structures. Rend. Circ. Mat. Palermo (2) Suppl., 79 (2006), 139151.Google Scholar
Massey, W. S., Some higher order cohomology operations. In Symposium Internacional de TopologíaAlgebraica International Symposium on Algebraic Topology. Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, pp. 145154.Google Scholar
Massey, W. S., A Basic Course in Algebraic Topology, Graduate Texts in Mathematics, vol. 127. Springer, New York, 1991.Google Scholar
Maslov, V. P, Bouslaev, V. C. and Arnol’d, V. I., Théorie des perturbations et méthodesasymptotiques, Dunod, Paris, 1972.Google Scholar
Merkulov, S. A., Strong homotopy algebras of a Kähler manifold. Int. Math. Res. Not. IMRN, 1999 (1999), 153164.Google Scholar
Mikhalkin, G., Amoebas of algebraic varieties and tropical geometry. In Different Faces of Geometry, International Mathematical Series (N. Y.), vol. 3. Kluwer/Plenum, New York, 2004, pp. 257300.Google Scholar
Lane, S. Mac, Categories for the Working Mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5. Springer, New York, 1998.Google Scholar
Morita, K., Duality for modules and its applications to the theory of rings with minimum condition. Sci. Rep. Tokyo KyoikuDaigaku Sect. A, 6 (1958), 83142.Google Scholar
Mori, I., Okawa, S. and Ueda, K., Moduli of noncommutative Hirzebruch surfaces. arXiv:1903.06457, 2019.Google Scholar
Mozgovoy, S., Crepant resolutions and branetilings I: Toric realization. arXiv:0908.3475, 2009.Google Scholar
Mozgovoy, S. and Reineke, M., On the noncommutative Donaldson-Thomas invariants arising from branetilings. Adv. Math., 223 (2010), 15211544.Google Scholar
Maclagan, D. and Sturmfels, B., Introduction to Tropical Geometry, Graduate Studies in Mathematics, vol. 161. American Mathematical Society, Providence, RI, 2015.Google Scholar
McDuff, D. and Salamon, D., Introduction to Symplectic Topology, 3rd ed., Oxford Graduate Texts in Mathematics. Oxford University Press, Oxford, 2017.Google Scholar
Mukai, S., Duality between D(X) and D( ˆX) with its application to Picard sheaves. Nagoya Math. J., 81 (1981), 153175.Google Scholar
Mumford, D., The Red Book of Varieties and Schemes, expanded ed., Lecture Notes in Mathematics, vol. 1358. Springer, Berlin, 1999. Includes the Michigan lectures (1974) on curves and their Jacobians. With contributions by Enrico Arbarello.Google Scholar
Murfet, D., Derived categories of quasi-coherent sheaves. Available at therisingsea.org, 2006.Google Scholar
Murfet, D., Derived categories of sheaves. Available at therisingsea.org, 2006.Google Scholar
Nadler, D., Microlocalbranes are constructible sheaves. Selecta Math. (N.S.), 15 (2009), 563619.Google Scholar
Nadler, D., Fukaya categories as categorical Morse homology. SIGMA Symmetry Integrability Geom. Methods Appl., 10 (2014) Paper 018, 47 pages.Google Scholar
Nadler, D., Cyclic symmetries of An-quiver representations. Adv. Math., 269 (2015), 346363.Google Scholar
Nadler, D., Wrapped microlocal sheaves on pairs of pants. arXiv:1604.00114, 2016.Google Scholar
Nadler, D., Arboreal singularities. Geom. Topol., 21 (2017), 12311274.Google Scholar
Nazarova, L. A. and Roiter, A. V., A problem of I. M. Gel’fand. Funct. Anal. Appl., 7 (1973), 299311.Google Scholar
Narasimhan, M. S. and Seshadri, C. S., Stable and unitary vector bundles on a compact Riemann surface. Ann. of Math. (2), 82 (1965), 540567.Google Scholar
Nohara, Y. and Ueda, K., Homological mirror symmetry for the quintic 3-fold. Geom. Topol., 16 (2012), 19672001.Google Scholar
Nadler, D. and Zaslow, E., Constructible sheaves and the Fukaya category. J. Amer. Math. Soc., 22 (2009), 233286.Google Scholar
Olsson, M., Algebraic Spaces and Stacks, American Mathematical Society Colloquium Publications, vol. 62. American Mathematical Society, Providence, RI, 2016.Google Scholar
Opper, S., Plamondon, P.-G. and Schroll, S., A geometric model for the derived category of gentle algebras. arXiv:1801.09659, 2018.Google Scholar
Orlov, D. O., Derived categories of coherent sheaves and equivalences between them. Uspekhi Mat. Nauk, 58 (2003), 89172.Google Scholar
Orlov, D. O., Triangulated categories of singularities, and equivalences between Landau-Ginzburg models. Mat. Sb., 197 (2006), 117132.Google Scholar
Orlov, D., Derived categories of coherent sheaves and triangulated categories of singularities. In Algebra, Arithmetic, and Geometry: In Honor of Yu. I. Manin. Vol. II, Progress in Mathematics, vol. 270. Birkhäuser Boston, Boston, MA, 2009, pp. 503531.Google Scholar
Orlov, D., Matrix factorizations for nonaffine LG-models. Math. Ann., 353 (2012), 95108.Google Scholar
Polishchuk, A., A field guide to A-infinity sign conventions. Preprint. https://pages.uoregon.edu/apolish/ainf-signs.pdfGoogle Scholar
Pridham, J. P., Unifying derived deformation theories. Adv. Math., 224 (2010), 772826.Google Scholar
Pascaleff, J. and Sibilla, N., Topological Fukaya category and mirror symmetry for punctured surfaces. Compos. Math., 155 (2019), 599644.Google Scholar
Polishchuk, A. and Zaslow, E., Categorical mirror symmetry: The elliptic curve. Adv. Theor. Math. Phys., 2 (1998), 443470.Google Scholar
Quillen, D., Projective modules over polynomial rings. Invent. Math., 36 (1976), 167171.Google Scholar
Reineke, M., Moduli of representations of quivers. In Trends in Representation Theory of Algebras and Related Topics, EMS Ser. Congr. Rep. European Mathematical Society, Zürich, 2008, pp. 589637.Google Scholar
Ringel, C. M., The repetitive algebra of a gentle algebra, Bol. Soc. Mat. Mexicana, 3 (1997), 235253.Google Scholar
Rourke, C. P. and Sanderson, B. J., ∆-sets. I. Homotopy theory. Quart. J. Math. Oxford Ser. (2), 22 (1971), 321338.Google Scholar
Rizzardo, A. and Van den Bergh, M., A note on non-unique enhancements. Proc. Amer. Math. Soc., 147 (2019), 451453.Google Scholar
Rizzardo, A. and Van den Bergh, M., A k-linear triangulated category without a model. Ann. of Math. (2), 191 (2020), 393437.Google Scholar
Salamon, D., Lectures on Floer homology. In Symplectic Geometry and Topology, IAS/Park City Mathematics Series, vol. 7. American Mathematical Society, Providence, RI, 1999, pp. 143229.Google Scholar
Schiffler, R., Quiver Representations. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, Cham, 2014.Google Scholar
Segal, G., Lecture notes on topological field theory. Preprint, 1999. http://web.math.ucsb.edu/˜drm/conferences/ITP99/segal/Google Scholar
Segal, G., The definition of conformal field theory. In Topology, Geometry and Quantum Field Theory, London Mathematical Society Lecture Note Series, vol. 308. Cambridge University Press, Cambridge, 2004, pp. 421577.Google Scholar
Segal, E., Equivalence between GIT quotients of Landau-Ginzburg B-models. Comm. Math. Phys., 304 (2011), 411432.Google Scholar
Seidel, P., Fukaya categories and deformations. In Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002). Higher Ed. Press, Beijing, 2002, pp. 351360.Google Scholar
Seidel, P., Fukaya Categories and Picard-Lefschetz Theory. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2008.Google Scholar
Seidel, P., Suspending Lefschetzfibrations, with an application to local mirror symmetry. Comm. Math. Phys., 297 (2010), 515528.Google Scholar
Seidel, P., Homological mirror symmetry for the genus two curve. J. Algebraic Geom., 20 (2011), 727769.Google Scholar
Seidel, P., Homological mirror symmetry for the quartic surface. Mem. Amer. Math. Soc., 236 (2015).Google Scholar
Serre, J.-P., Faisceauxalgébriquescohérents. Ann. of Math. (2), 61 (1955), 197278.Google Scholar
Sheridan, N., Homological mirror symmetry for Calabi-Yauhypersurfaces in projective space. Invent. Math., 199 (2015), 1186.Google Scholar
Sheridan, N., Versality of the relative Fukaya category. Geom. Topol., 24 (2020), 747884.Google Scholar
Shipman, I., A geometric approach to Orlov's theorem. Compos. Math., 148 (2012), 13651389.Google Scholar
Smith, S. P., Non-commutative algebraic geometry. Preprint, Lecture Notes at University of Washington, 2000. https://sites.math.washington.edu/∼smith/Teaching/513nag/ch1.psGoogle Scholar
Smith, I., A symplectic prolegomenon. Bull. Amer. Math. Soc. (N.S.), 52 (2015), 415464.Google Scholar
Sorensen, D., Classification of vector bundles over P1. Preprint. www.derekhsorensen.com/docs/sorensen-classification-vector-bundles.pdfGoogle Scholar
Stasheff, J. D., Homotopy associativity of H-spaces. I, II. Trans. Amer. Math. Soc. 108 (1963), 275292, 293312.Google Scholar
The Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu, 2018.Google Scholar
Sibilla, N., Treumann, D. and Zaslow, E., Ribbon graphs and mirror symmetry. Selecta Math. (N.S.), 20 (2014), 9791002.Google Scholar
Sutherland, T., The modular curve as the space of stability conditions of a CY3 algebra.arXiv:1111.4184, 2011.Google Scholar
Skowroński, A. and Waschbüsch, J., Representation-finite biserial algebras. J. ReineAngew. Math., 345 (1983), 172181.Google Scholar
Swan, R. G., Vector bundles and projective modules. Trans. Amer. Math. Soc., 105 (1962), 264277.Google Scholar
Sylvan, Z., On partially wrapped Fukaya categories. J. Topol., 12 (2019), 372441.Google Scholar
Strominger, A., Yau, S.-T. and Zaslow, E., Mirror symmetry is T-duality. In Winter School on Mirror Symmetry, Vector Bundles and LagrangianSubmanifolds (Cambridge, MA, 1999), AMS/IP Studies in Advanced Mathematics, vol. 23. American Mathematical Society, Providence, RI, 2001, pp. 333347.Google Scholar
Salamon, D. and Zehnder, E., Morse theory for periodic solutions of Hamiltonian systems and the Maslov index. Comm. Pure Appl. Math., 45 (1992), 13031360.Google Scholar
Tabuada, G., Une structure de catégorie de modèles de Quillensur la catégorie des dg-catégories. C. R. Math. Acad. Sci. Paris, 340 (2005), 1519.Google Scholar
Tabuada, G., Finite generation of the numerical Grothendieck group. arXiv:1704.06252, 2017.Google Scholar
Takeda, A. A., Relative stability conditions on Fukaya categories of surfaces. arXiv:1811.10592, 2018.Google Scholar
Tamarkin, D. E., Operadic Proof of M. Kontsevich's Formality Theorem. Pro-Quest LLC, Ann Arbor, MI, 1999. Thesis (Ph.D.)–The Pennsylvania State University.Google Scholar
Toen, B., The homotopy theory of dg-categories and derived Morita theory. Invent. Math., 167 (2007), 615667.Google Scholar
Toen, B., Lectures on dg-categories. In Topics in Algebraic and Topological K-Theory, Lecture Notes in Mathematics, vol. 2008. Springer, Berlin, 2011, pp. 243302.Google Scholar
Tu, J., Homological mirror symmetry and Fourier-Mukai transform. Int. Math. Res. Not. IMRN, 2015 (2015), 579630.Google Scholar
Turaev, V. and Virelizier, A., Monoidal Categories and Topological Field Theory, Progress in Mathematics, vol. 322. Birkhäuser/Springer, Cham, 2017.Google Scholar
Ueda, K., Homological mirror symmetry and simple elliptic singularities. arXiv math/0604361, 2006.Google Scholar
Vakil, R., The rising sea: Foundations of algebraic geometry. Preprint, 2017. http://math.stanford.edu/∼vakil/216blog/FOAGapr2915public.pdfGoogle Scholar
Van den Bergh, M., Calabi-Yau algebras and superpotentials. Selecta Math. (N.S.), 21 (2015), 555603.Google Scholar
van Garrel, M., Overholser, D. P. and Ruddat, H., Enumerative aspects of the Gross-Siebert program. In Calabi-Yau Varieties: Arithmetic, Geometry and Physics. Fields Institute Monographs, vol. 34. Fields Inst. Res. Math. Sci., Toronto, ON, 2015, pp. 337420.Google Scholar
Vonk, M., A mini-course on topological strings. arXiv:hep-th/0504147, 2005.Google Scholar
Weinstein, A., Symplectic manifolds and their Lagrangiansubmanifolds. Adv. Math., 6 (1971), 329346.Google Scholar
Weibel, C. A., An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, vol. 38. Cambridge University Press, Cambridge, 1994.Google Scholar
Weibel, C. A, The K-Book: An Introduction to Algebraic K-Theory, vol. 145. American Mathematical Society, Providence, RI, 2013.Google Scholar
Wendl, C., A beginner's overview of symplectic homology. Preprint. www.mathematik.hu-berlin.de/wendl/pub/SH.pdfGoogle Scholar
Witten, E., Supersymmetry and Morse theory. J. Differential Geometry, 17 (1982), 661692.Google Scholar
Wong, M., Dimer models and Hochschildcohomology. arXiv:1908.03005, 2019.Google Scholar
Zimmermann, A., Representation theory. Algebra and Applications, Springer, Amiens, 2014.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Raf Bocklandt, Universiteit van Amsterdam
  • Book: A Gentle Introduction to Homological Mirror Symmetry
  • Online publication: 20 August 2021
  • Chapter DOI: https://doi.org/10.1017/9781108692458.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Raf Bocklandt, Universiteit van Amsterdam
  • Book: A Gentle Introduction to Homological Mirror Symmetry
  • Online publication: 20 August 2021
  • Chapter DOI: https://doi.org/10.1017/9781108692458.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Raf Bocklandt, Universiteit van Amsterdam
  • Book: A Gentle Introduction to Homological Mirror Symmetry
  • Online publication: 20 August 2021
  • Chapter DOI: https://doi.org/10.1017/9781108692458.017
Available formats
×