Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-11T09:19:12.870Z Has data issue: false hasContentIssue false

7 - Foundations for Generalized Blockmodeling

Published online by Cambridge University Press:  13 January 2010

Patrick Doreian
Affiliation:
University of Pittsburgh
Vladimir Batagelj
Affiliation:
University of Ljubljana
Anuska Ferligoj
Affiliation:
University of Ljubljana
Get access

Summary

In Section 6.1 we stayed within the framework of conventional blockmodeling and showed that structural and regular equivalences induce three special types of blocks: null blocks, complete blocks, and regular (one covered for both rows and columns) blocks. We also noted that different definitions of equivalence can lead to different identified blockmodels. In Section 6.2 we turned our attention toward generalizing blockmodeling by replacing indirect methods with direct methods and using optimization methods to delineate blockmodels and fit them to data. The next step, taken here, in our generalizing process is to expand the permitted types of ideal blocks. In doing this, we note, as we did in Section 4.3, that a partition determines an equivalence relation and vice versa. So, rather than specify new types of equivalences and derive their permitted block types, we simply expand the block types, knowing that partitions in terms of these new block types will determine new equivalences.

By proceeding in this fashion, we are making a subtle change in thinking about equivalences that signals, and emphasizes, a complete break with the indirect approach to establishing blockmodels. By focusing on the block types alone, we dispense with the need to measure the extent to which pairs of units are equivalent. Such measures become irrelevant: We focus instead on identifying and fitting block types. This is done empirically within the direct approach outlined in the previous chapter.

Network analysts often have some theoretical knowledge concerning the structure of the clusterings of units and of the structure of ties between positions (e.g., core periphery, hierarchy). This kind of information can be used to constrain clusterings and to specify blockmodels in advance.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×