Skip to main content Accessibility help
×
Home
Hostname: page-component-768dbb666b-prhj4 Total loading time: 0.522 Render date: 2023-02-06T22:04:36.772Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

2 - Yielding

Published online by Cambridge University Press:  05 June 2013

William F. Hosford
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Of concern in plasticity theory is the yield strength, which is the level of stress that causes appreciable plastic deformation. It is tempting to define yielding as occurring at an elastic limit (the stress that causes the first plastic deformation) or at a proportional limit (the first departure from linearity). However, neither definition is very useful because they both depend on accuracy of strain measurement. The more accurately the strain is measured, the lower is the stress at which plastic deformation and non-linearity can be detected.

To avoid this problem, the onset of plasticity is usually described by an offset yield strength that can be measured with more reproducibility. It is found by constructing a straight line parallel to the initial linear portion of the stress strain curve, but offset from it by a strain of Δe = 0.002 (0.2%). The yield strength is taken as the stress level at which this straight line intersects the stress strain curve (Figure 2.1). The rationale is that if the material had been loaded to this stress and then unloaded, the unloading path would have been along this offset line resulting in a plastic strain of e = 0.002 (0.2%). This method of defining yielding is easily reproduced.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hosford, W. F., Mechanical Behavior of Materials, 2nd ed., Cambridge University Press (2010).Google Scholar
Hosford, W. F. and Caddell, R. M., Metal Forming; Mechanics and Metallurgy, 4th ed., Cambridge University Press (2007).CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Yielding
  • William F. Hosford, University of Michigan, Ann Arbor
  • Book: Fundamentals of Engineering Plasticity
  • Online publication: 05 June 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139775373.003
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Yielding
  • William F. Hosford, University of Michigan, Ann Arbor
  • Book: Fundamentals of Engineering Plasticity
  • Online publication: 05 June 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139775373.003
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Yielding
  • William F. Hosford, University of Michigan, Ann Arbor
  • Book: Fundamentals of Engineering Plasticity
  • Online publication: 05 June 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139775373.003
Available formats
×