Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-12T06:25:00.433Z Has data issue: false hasContentIssue false

13 - Runaway greenhouses and runaway glaciations: how stable is Earth's climate?

Published online by Cambridge University Press:  12 August 2009

James F. Kasting
Affiliation:
Department of Geosciences, Pennsylvania State University, PA
J. T. Kiehl
Affiliation:
National Center for Atmospheric Research, Boulder, Colorado
V. Ramanathan
Affiliation:
Scripps Institution of Oceanography, University of California, San Diego
Get access

Summary

Introduction

Is Earth's climate stable? At some level the answer is almost certainly “yes.” The evidence for this is two-fold. First, the geologic record indicates that liquid water has been present on Earth's surface more or less continuously since about 4 Ga. (“Ga” stands for “giga-aeon,” which means “billions of years ago.”) We say “more or less” because, as discussed below, there appear to have been brief periods in Earth's history when the planet was almost entirely frozen. And, second, life appears to have been present since at least 3.5 Ga (Schopf, 1993) and perhaps 3.9 Ga, if carbon isotopes are admitted as indirect evidence (Mojzsis et al., 1996). This latter requirement overlaps the first one to some extent because all organisms require liquid water during at least part of their life cycle. It is more stringent, however, in that liquid water can exist right up to the critical point (374 °C, 220 bar for pure water), whereas the upper temperature limit for life is ∼ 113 °C. (A common misconception is that liquid water requires temperatures below 100 °C, but this is only the boiling point at one atmosphere pressure. The ocean contains the equivalent of ∼ 270 bar of water vapor and so, like water in a pressure cooker, it would not boil until the temperature exceeded the critical temperature.)

Another way of evaluating Earth's climate stability is to compare Earth to its neighboring planets, Venus and Mars.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×