Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-07-05T16:03:05.149Z Has data issue: false hasContentIssue false

9 - Large Habitable Moons

Titan and Europa

from Part IV - Habitability of the Solar System

Published online by Cambridge University Press:  05 December 2012

Chris Impey
Affiliation:
University of Arizona
Jonathan Lunine
Affiliation:
Cornell University, New York
José Funes
Affiliation:
Vatican Observatory, Vatican City
Get access

Summary

Introduction

The “classical” criteria for habitability can be summarized as the presence of liquid water, energy sources to sustain metabolism, and “nutrients” over a period of time long enough to allow the development of life. The concept of a “habitable zone” (HZ) around each star defines where water can be stable at the surface as a result of the equilibrium temperature of the planet in the star's radiation field. Liquid water may exist on the surface of planets orbiting a star at a distance that does not induce tidal lock. But habitability conditions can be found not only on the surfaces of Earth-like planets: a subsurface ocean within a planet or the satellite of a gas giant may be habitable for some life form that may be very different from Earth-like life. Indeed, icy surfaces may cover liquid oceans, move and fracture like plate tectonics, and exsolute the internal material and energy through an interconnected system. With the discovery of planets beyond the Solar System and the search for life in exotic habitats such as Mars, Europa, Titan, and Enceladus, habitability in general needs a better and broader definition.

Liquid water has been recognized as the best solvent for life to emerge and evolve, although other possibilities have been suggested (e.g. Bains 2004). Water, an abundant compound in our galaxy (e.g. Cernicharo and Crovisier 2005), is liquid within a large range of temperatures and pressures and is also a strong polar–nonpolar solvent. This dichotomy is essential for maintaining stable biomolecular and cellular structures (Des Marais et al. 2002). A large number of organisms is capable of living in water. However, in a body of pure water, life will probably never spontaneously originate and evolve. This is because, while there are many organisms living in water, none we know of is capable of living on water alone because life requires other essential elements such as nitrogen and phosphorus in addition to hydrogen and oxygen. Besides, no organism we know of is made entirely of water. So obviously “just water” is not an auspicious place for starting life and evolution in.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bains, W. 2004 Many chemistries could be used to build living systemsAstrobiology 4 137CrossRefGoogle ScholarPubMed
Beghin, C.Canu, P.Karkoschka, E. 2009 New insights on Titan's plasma-driven Schumann resonance inferred from Huygens and Cassini DataPlanetary and Space Science 57 1872CrossRefGoogle Scholar
Blanc, M. 2009 LAPLACE: a mission to Europa and the Jupiter system for ESA's cosmic vision programmeExperimental Astronomy 23 849CrossRefGoogle Scholar
Brown, R. H.Soderblom, L. A.Soderblom, J. M. 2008 The identification of liquid ethane in Titan's Ontario LacusNature 454 607CrossRefGoogle ScholarPubMed
Bulat, S.Alekhina, I.Petit, J. R. 2009 73 173
Carlson, R. W.Anderson, M. S.Johnson, R. E. 1999 Hydrogen peroxide on the surface of EuropaScience 283 2062CrossRefGoogle ScholarPubMed
Cernicharo, J.Crovisier, J. 2005 Water in space: the water world of ISOSpace Science Reviews 119 29CrossRefGoogle Scholar
Clark, K.Stankov, A.Pappalardo, R. T. 2009
Clark, R. N.Curchin, J. M.Barnes, J. W. 2010 115
Coustenis, A.Taylor, F. W. 2008 Series on Atmospheric, Oceanic and Planetary PhysicsSingaporeWorld ScientificGoogle Scholar
Coustenis, A.Salama, A.Schulz, B. 2003 Titan's atmosphere from ISO mid-infrared spectroscopyIcarus 161 383CrossRefGoogle Scholar
Coustenis, A.Achterberg, R. K.Conrath, B. J. 2007 The composition of Titan's stratosphere from Cassini/CIRS mid-infrared spectraIcarus 189 35CrossRefGoogle Scholar
Coustenis, A. 2009 TandEM: Titan and Enceladus missionExperimental Astronomy 23 893CrossRefGoogle Scholar
Coustenis, A.Bampasidis, G.Vinatier, S. 2010 Titan trace gaseous composition from CIRS at the end of the Cassini-Huygens prime missionIcarus 207 461Google Scholar
Coustenis, A.Bampasidis, G.Nixon, C. 2010 68
Delitsky, M. L.McKay, C. P. 2010 The photochemical products of benzene in Titan's upper atmosphereIcarus 207 477CrossRefGoogle Scholar
Des Marais, D. J.Harwit, M. O.Jucks, K. W. 2002 Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planetsAstrobiology 2 153CrossRefGoogle ScholarPubMed
DeWitt, H. L.Trainer, M. G.Pavlov, A. A. 2009 Reduction in haze formation rate on prebiotic Earth in the presence of hydrogenAstrobiology 9 447CrossRefGoogle ScholarPubMed
Flasar, F. M. 1983 Oceans on Titan?Science 221 55CrossRefGoogle ScholarPubMed
Flasar, F. M. 2005 Titan's atmospheric temperatures, winds, and compositionScience 308 975CrossRefGoogle ScholarPubMed
Fortes, A. D. 2000 Exobiological implications of a possible ammonia–water ocean inside TitanIcarus 146 444CrossRefGoogle Scholar
Fortes, A. D.Grindrod, P. M.Trickett, S. K.Vočadlo, L. 2007 Ammonium sulfate on Titan: possible origin and role in cryovolcanismIcarus 188 139CrossRefGoogle Scholar
Fulchignoni, M. 2005 In situ measurements of the physical characteristics of Titan's environmentNature 438 785CrossRefGoogle ScholarPubMed
Hand, K. P.Chyba, C. F.Priscu, J. C. 2009 Astrobiology and the potential for life on EuropaEuropaPappalardo, R. T.McKinnon, W. B.Khurana, K. K.TucsonUniversity of Arizona Press589Google Scholar
Hayes, A.Aharonson, O.Callahan, P. 2008 Hydrocarbon lakes on Titan: distribution and interaction with a porous regolithGeophysical Research Letters 35 09204CrossRefGoogle Scholar
Israel, G.Szopa, C.Raulin, F. 2005 Complex organic matter in Titan's atmospheric aerosols from in situ pyrolysis and analysisNature 438 796CrossRefGoogle ScholarPubMed
Kapitsa, A. P.Ridley, J. K., Q.Robin, G. 1996 A large deep freshwater lake beneath the ice of Central East AntarcticaNature 381 684CrossRefGoogle Scholar
Kasting, J. F.Howard, M. T. 2006 Atmospheric composition and climate on the early EarthPhilosophical Transactions of the Royal Society, Series B: Biological Sciences 361 1733CrossRefGoogle ScholarPubMed
Khare, B. N.Sagan, C.Ogino, H. 1986 Amino acids derived from Titan tholinsIcarus 68 176CrossRefGoogle ScholarPubMed
Kivelson, M. G.Kurana, K. K.Stevenson, D. J. 1999 Europa and Callisto: induced or intrinsic fields in a periodically varying plasma environmentJournal of Geophysical Research 104 4609CrossRefGoogle Scholar
Lammer, H.Bredehoft, J.Coustenis, A. 2009 What makes a planet habitable?Astronomy and Astrophysics Review 17 181CrossRefGoogle Scholar
Leger, A.Selsis, F.Sotin, C. 2004 A new family of planets? Ocean-planetsIcarus 169 499CrossRefGoogle Scholar
Lorenz, R. D.Mitchell, K. L.Kirk, R. L. 2008 Titan's inventory of organic surface materialsGeophysical Research Letters 35 02206CrossRefGoogle Scholar
Lorenz, R. D.Stiles, B. W.Kirk, R. L. 2008 Titan's rotation reveals an internal ocean and changing zonal windsScience 319 1649CrossRefGoogle ScholarPubMed
McKay, C. P.Smith, H. D. 2005 Possibilities for methanogenic life in liquid methane on the surface of TitanIcarus 178 274CrossRefGoogle Scholar
McKay, C. P.Lorenz, R. D.Lunine, J. I. 1999 Analytic solutions for the antigreenhouse effect: Titan and the early EarthIcarus 137 56CrossRefGoogle Scholar
Menor-Salván, C.Ruiz-Bermejo, M.Osuna-Esteban, S. 2008 Synthesis of polycyclic aromatic hydrocarbons and acetylene polymers in ice: a prebiotic scenarioChemistry and Biodiversity 5 2729CrossRefGoogle ScholarPubMed
Nguyen, M. J.Raulin, F.Coll, P. 2007 Carbon isotopic enrichment in Titan's tholins? Implications for Titan's aerosolsPlanetary and Space Science 55 2010CrossRefGoogle Scholar
Niemann, H. B.Atreya, S. K.Bauer, S. J. 2005 The abundances of constituents of Titan's atmosphere from the GCMS instrument on the Huygens probeNature 438 779CrossRefGoogle ScholarPubMed
Owen, T. 2005 Planetary science: Huygens rediscovers TitanNature 438 756CrossRefGoogle ScholarPubMed
Pavlov, A. A.Kasting, J. F.Brown, L. L. 2000 Greenhouse warming by CH4 in the atmosphere of early EarthJournal of Geophysical Research 105 11981CrossRefGoogle ScholarPubMed
Pavlov, A. A.Hurtgen, M. T.Kasting, J. F.Arthur, M. A. 2003 Methane-rich Proterozoic atmosphere?Geology 31 872.0.CO;2>CrossRefGoogle Scholar
Petrenko, V. F.Whitworth, R. W. 1999 Physics of IceOxfordOxford University PressGoogle Scholar
Postberg, F.Schmidt, J.Hillier, J. 2011 A salt-water reservoir as the source of a compositionally stratified plume on EnceladusNature 474 620CrossRefGoogle ScholarPubMed
Rappaport, N.Bertotti, B.Giampieri, G.Anderson, J. D. 1997 Doppler measurements of the quadrupole moments of TitanIcarus 126 313CrossRefGoogle Scholar
Rappaport, N. J.Iess, L.Tortora, P. 2007 Mass and interior of Enceladus from Cassini data analysisIcarus 190 175CrossRefGoogle Scholar
Reh, K.Lunine, J.Matson, D. 2008
Schaefer, L.Fegley, B. 2007 Outgassing of ordinary chondritic material and some of its implications for the chemistry of asteroids, planets, and satellitesIcarus 186 462CrossRefGoogle Scholar
Segura, A.Kaltenegger, L. 2010 Search for habitable planetsAstrobiology: Emergence, Search and Detection of LifeBasiuk, V.Valencia, C. A.American Scientific PublishersGoogle Scholar
Selsis, F.Chazelas, B.Bordé, P. 2007 Could we identify hot ocean-planets with CoRoT, Kepler and Doppler velocimetry?Icarus 191 453CrossRefGoogle Scholar
Stevenson, D. 2000 BristolInstitute of Physics Publishing1823
Stofan, E. R.Elachi, C.Lunine, J. I. 2007 The lakes of TitanNature 445 61CrossRefGoogle ScholarPubMed
Stoker, C. R.Boston, P. J.Mancinelli, R. L. 1990 Microbial metabolism of tholinIcarus 85 241CrossRefGoogle ScholarPubMed
Strobel, D. F. 2010 Molecular hydrogen in Titan's atmosphere: implications of the measured tropospheric and thermospheric mole fractionsIcarus 208 878CrossRefGoogle Scholar
Tobie, G.Grasset, O.Lunine, J. I. 2005 Titan's internal structure inferred from a coupled thermal-orbital modelIcarus 175 496CrossRefGoogle Scholar
Tomasko, M. G. 2005 Rain, winds and haze during the Huygens probe's descent to Titan's surfaceNature 438 765CrossRefGoogle ScholarPubMed
Trainer, M. G.Pavlov, A. A.DeWitt, H. L. 2006 Organic haze on Titan and the early EarthProceedings of the National Academy of Sciences 103 18035CrossRefGoogle ScholarPubMed
Trinks, H.Schröder, W.Biebricher, C. 2005 Ice and the origin of lifeOrigins of Life and Evolution of Biospheres 35 429CrossRefGoogle ScholarPubMed
Wahr, J. M.Zuber, M. T.Smith, D. E.Lunine, J. I. 2006 Journal of Geophysical Research 111
Waite, J. H.Young, D. T.Cravens, T. E. 2007 The process of tholin formation in Titan's upper atmosphereScience 316 870CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×