Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-10-06T16:53:58.435Z Has data issue: false hasContentIssue false

8 - Nonparametric Bayesian models of categorization

Published online by Cambridge University Press:  05 June 2012

Emmanuel M. Pothos
Affiliation:
Swansea University
Andy J. Wills
Affiliation:
University of Exeter
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldous, D. (1985). Exchangeability and related topics. In École d'Été de Probabilités de Saint-Flour, XIII – 1983 (pp. 1–198). Berlin: Springer.Google Scholar
Anderson, J. R. (1990). The Adaptive Character of Thought. Hillsdale, NJ: Erlbaum.Google Scholar
Anderson, J. R. (1991). The adaptive nature of human categorization. Psychological Review, 98 (3), 409–429.CrossRefGoogle Scholar
Antoniak, C. (1974). Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. The Annals of Statistics, 2, 1152–1174.CrossRefGoogle Scholar
Ashby, F. G., & Alfonso-Reese, L. A. (1995). Categorization as probability density estimation. Journal of Mathematical Psychology, 39, 216–233.CrossRefGoogle Scholar
Bishop, C. M. (2006). Pattern Recognition and Machine Learning. New York: Springer.Google Scholar
Doucet, A., Freitas, N., & Gordon, N. (2001). Sequential Monte Carlo Methods in Practice. New York: Springer.CrossRefGoogle Scholar
Escobar, M. D., & West, M. (1995). Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association, 90, 577–588.CrossRefGoogle Scholar
Ferguson, T. (1973). A Bayesian analysis of some nonparametric problems. The Annals of Statistics, 1, 209–230.CrossRefGoogle Scholar
Gilks, W., Richardson, S., & Spiegelhalter, D. J. (eds.) (1996). Markov Chain Monte Carlo in Practice. Boca Raton, FL:Chapman and Hall CRC.Google Scholar
Goodman, N. D., Tenenbaum, J. B., Feldman, J., & Griffiths, T. L. (2008). A rational analysis of rule-based concept learning. Cognitive Science, 32, 108–154.CrossRefGoogle ScholarPubMed
Griffiths, T. L., Canini, K. R., Sanborn, A. N., & Navarro, D. J. (2007). Unifying rational models of categorization via the hierarchical Dirichlet process. In Proceedings of the Twenty-Ninth Annual Conference of the Cognitive Science Society. Hillsdale, NJ: Erlbaum.Google Scholar
Griffiths, T. L., Kemp, C., & Tenenbaum, J. B. (2008a). Bayesian models of cognition. In Sun, R. (ed.), Cambridge Handbook of Computational Cognitive Modeling. Cambridge: Cambridge University Press.Google Scholar
Griffiths, T. L., Sanborn, A. N., Canini, K. R., & Navarro, D. J. (2008b). Categorization as nonparametric Bayesian density estimation. In Chater, N. & Oaksford, M. (eds.), The Probabilistic Mind. Oxford: Oxford University Press.Google Scholar
Grünwald, P. D. (2007). The Minimum Description Length Principle. Cambridge, MA: MIT Press.Google Scholar
Heit, E., & Bott, L. (2000). Knowledge selection in category learning. In Medin, D. L. (ed.), The Psychology of Learning and Motivation (Vol. 39, pp. 163–199). San Diego, CA: Academic Press.Google Scholar
Jaynes, E. T. (2003). Probability Theory: The Logic of Science. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Kemp, C., Perfors, A., & Tenenbaum, J. B. (2007). Learning over hypotheses with hierarchical Bayesian models. Developmental Science, 10, 307–321.CrossRefGoogle Scholar
Kemp, C., & Tenenbaum, J. B. (2008). The discovery of structural form. Proceedings of the National Academy of Sciences, 105, 10687–10692.CrossRefGoogle ScholarPubMed
Kemp, C., Tenenbaum, J. B., Griffiths, T. L., Yamada, T., & Ueda, N. (2006). Learning systems of concepts with an infinite relational model. In Proceedings of the 21st National Conference on Artificial Intelligence (pp. 381–388). Boston, MA: AAAI Press.
Kemp, C., Tenenbaum, J. B., Niyogi, S., & Griffiths, T. L. (2010). A probabilistic model of theory formation. Cognition, 114, 165–196.CrossRefGoogle ScholarPubMed
Kruschke, J. K. (1990). A connectionist model of category learning. Unpublished doctoral dissertation, University of California, Berkeley, CA.Google Scholar
Lee, M. D., & Navarro, D. J. (2005). Minimum description length and psychological clustering models. In Grünwald, P. D., Myung, I. J., & Pitt, M. A. (eds.), Advances in Minimum Description Length: Theory and Applications (pp. 355–384). Cambridge, MA: MIT Press.Google Scholar
Love, B. C., Medin, D. L., & Gureckis, T. M. (2004). SUSTAIN: a network model of category learning. Psychological Review, 111, 309–332.CrossRefGoogle ScholarPubMed
Maas, A. L., & Kemp, C. (2009). One-shot learning with Bayesian networks. Proceedings of the 31st Annual Conference of the Cognitive Science Society. Austin, TX: Cognitive Science Society.Google Scholar
Marr, D. (1982). Vision. San Francisco, CA: W. H. Freeman.Google Scholar
McLachlan, G. J., & Basford, K. E. (1988). Mixture Models. New York: Marcel Dekker.Google ScholarPubMed
Medin, D. L., & Schaffer, M. M. (1978). Context theory of classification learning. Psychological Review, 85, 207–238.CrossRefGoogle Scholar
Murphy, G. L., & Allopenna, P. D. (1994). The locus of knowledge effects in concept learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 904–919.Google ScholarPubMed
Navarro, D. J. (2006). From natural kinds to complex categories. In Proceedings of the 28th Annual Conference of the Cognitive Science Society. Mahwah, NJ: Erlbaum.Google Scholar
Navarro, D. J., & Griffiths, T. L. (2008). Latent features in similarity judgments: a nonparametric Bayesian approach. Neural Computation, 20, 2597–2628.CrossRefGoogle ScholarPubMed
Navarro, D. J., Griffiths, T. L., Steyvers, M., & Lee, M. D. (2006). Modeling individual differences using Dirichlet processes. Journal of Mathematical Psychology, 50, 101–122.CrossRefGoogle Scholar
Neal, R. M. (1998). Markov chain sampling methods for Dirichlet process mixture models (Tech. Rep. No. 9815). Department of Statistics, University of Toronto.Google Scholar
Nosofsky, R. M. (1986). Attention, similarity, and the identification- categorization relationship. Journal of Experimental Psychology: General, 115, 39–57.CrossRefGoogle ScholarPubMed
Nosofsky, R. M. (1998). Optimal performance and exemplar models of classification. In Oaksford, M. & Chater, N. (eds.), Rational Models of Cognition (pp. 218–247). Oxford: Oxford University Press.Google Scholar
Pazzani, M. J. (1991). Influence of prior knowledge on concept acquisition: experimental and computational results. Journal of Experimental Psychology: Learning, Memory, and Cognition, 17, 416–432.Google Scholar
Perfors, A., & Tenenbaum, J. B. (2009). Learning to learn categories. In Proceedings of the 31st Annual Conference of the Cognitive Science Society. Austin, TX: Cognitive Science Society.Google Scholar
Pitman, J. (2002). Combinatorial stochastic processes. Notes for Saint Flour Summer School.
Reed, S. K. (1972). Pattern recognition and categorization. Cognitive Psychology, 3, 393–407.CrossRefGoogle Scholar
Rehder, B., & Murphy, G. L. (2003). A knowledge-resonance (KRES) model of category learning. Psychonomic Bulletin & Review, 10, 759–784.CrossRefGoogle ScholarPubMed
Rosseel, Y. (2002). Mixture models of categorization. Journal of Mathematical Psychology, 46, 178–210.CrossRefGoogle Scholar
Sanborn, A. N., Griffiths, T. L., & Navarro, D. J. (2006). A more rational model of categorization. In Proceedings of the 28th Annual Conference of the Cognitive Science Society. Mahwah, NJ: Erlbaum.Google Scholar
Shafto, P., Kemp, C., Mansinghka, V., Gordon, M., & Tenenbaum, J. B. (2006). Learning cross-cutting systems of categories. In Proceedings of the 28th Annual Conference of the Cognitive Science Society. Mahwah, NJ: Erlbaum.Google Scholar
Shepard, R. N. (1987). Toward a universal law of generalization for psychological science. Science, 237, 1317–1323.CrossRefGoogle Scholar
Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. London: Chapman and Hall.CrossRefGoogle Scholar
Smith, J. D., & Minda, J. P. (1998). Prototypes in the mist: the early epochs of category learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 1411–1436.Google Scholar
Teh, Y., Jordan, M., Beal, M., & Blei, D. (2004). Hierarchical Dirichlet processes. In Advances in Neural Information Processing Systems 17. Cambridge, MA: MIT Press.Google Scholar
Tenenbaum, J. B., & Griffiths, T. L. (2001). Generalization, similarity, and Bayesian inference. Behavioral and Brain Sciences, 24, 629–641.CrossRefGoogle ScholarPubMed
Vanpaemel, W., & Storms, G. (2008). In search of abstraction: the varying abstraction model of categorization. Psychonomic Bulletin & Review, 15, 732–749.CrossRefGoogle ScholarPubMed
Wattenmaker, W. D., Dewey, G. I., Murphy, T. D., & Medin, D. L. (1986). Linear separability and concept learning: context, relational properties, and concept naturalness. Cognitive Psychology, 18, 158–194.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×