Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-nptnm Total loading time: 0 Render date: 2024-10-06T17:58:42.330Z Has data issue: false hasContentIssue false

14 - Formal models of categorization: insights from cognitive neuroscience

Published online by Cambridge University Press:  05 June 2012

Emmanuel M. Pothos
Affiliation:
Swansea University
Andy J. Wills
Affiliation:
University of Exeter
Get access

Summary

Introduction

Category-specificity is a salient phenomenon in cognitive neuroscience. It has been reported in a wide variety of contexts and experimental paradigms. Much of the theoretically significant observations come from studies of patients with category-specific deficits and from imaging studies. Here, we will discuss how imaging and patient studies of category-specific phenomena can point to potential limitations of formal models of categorization, and inform their future development. We will point out that these models treat categorization in a domain-general manner. That is, categorization of all objects, irrespective of their domain, proceeds according to an identical mechanism. If the models are to encompass categorization of entities from the elementary categories that appear in neuropsychological studies, for example animals, tools, or conspecifics, without abandoning their domain-generality, a question arises as to how domain-specific phenomena can arise in conjunction with a completely domain-general mechanism of categorization. We will argue that an answer to this question is closely related to the theories of organization of conceptual knowledge that originally arose in the context of neuropsychology. These theories, in our opinion, constrain the possible accounts reconciling the domain-generality of formal models with the domain-specific phenomena known from neuropsychology.

The term ‘categorization’ denotes a set of cognitive mechanisms that involve different memory systems (Smith & Grossman, 2008) and vary as a function of the tasks performed and the strategy employed (Ashby & O'Brien, 2005).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashby, F., & O'Brien, J. (2005). Category learning and multiple memory systems. Trends in Cognitive Science, 9 (2), 83–89.CrossRefGoogle ScholarPubMed
Basso, A., Capitani, E., & Laiacona, M. (1988). Progressive language impairment without dementia: a case with isolated category specific semantic deficit. Journal of Neurology, Neurosurgery and Psychiatry, 51, 1201–1207.CrossRefGoogle Scholar
Bedny, M., Caramazza, A., Grossman, E., Pascual-Leone, A., & Saxe, R. (2008). Concepts are more than precepts: the case of action verbs. Journal of Neuroscience, 28, 11347–11353.CrossRefGoogle Scholar
Blundo, C., Ricci, M., & Miller, L. (2006). Category-specific knowledge deficit for animals in a patient with herpes simplex encephalitis. Cognitive Neuropsychology, 23 (8), 1248–1268.CrossRefGoogle Scholar
Capitani, E., Laiacona, M., Mahon, B., & Caramazza, A. (2003). What are the facts of semantic category-specific deficits? A critical review of the clinical evidence. Cognitive Neuropsychology, 20 (3–6), 213–261.CrossRefGoogle ScholarPubMed
Caramazza, A., Hillis, A. E., Rapp, B. C., & Romani, C. (1990). The multiple semantics hypothesis: multiple confusions? Cognitive Neuropsychology, 7, 161–189.CrossRefGoogle Scholar
Caramazza, A., & Shelton, J. (1998). Domain-specific knowledge systems in the brain the animate-inanimate distinction. Journal of Cognitive Neuroscience, 10 (1), 1–34.CrossRefGoogle ScholarPubMed
Chao, L., Haxby, J. V., & Martin, A. (1999). Attribute-based neural substrates in posterior temporal cortex for perceiving and knowing about objects. Nature Neuroscience, 2, 913–919.CrossRefGoogle ScholarPubMed
Chao, L., Martin, A., & Haxby, J. V. (1999). Are face-responsive regions selective only for faces? NeuroReport, 10 (14), 2945–2950.CrossRefGoogle ScholarPubMed
Cree, G., & McRae, K. (2003). Analyzing the factors underlying the structure and computation of the meaning of chipmunk, cherry, chisel, cheese, and cello (and many other such concrete nouns). Journal of Experimental Psychology: General, 132 (2), 163–201.CrossRefGoogle Scholar
Damasio, H., Tranel, D., Grabowski, T. J., Adolphs, R., & Damasio, A. (2004). Neural systems behind word and concept retrieval. Cognition, 92, 179–229.CrossRefGoogle ScholarPubMed
Devlin, J., Gonnerman, L., Andersen, E., & Seidenberg, M. (1998). Category-specific semantic deficits in focal and widespread brain damage: a computational account. Journal of Cognitive Neuroscience, 10, 77–94.CrossRefGoogle ScholarPubMed
Downing, P., Jiang, Y., Shuman, M., & Kanwisher, N. (2001). A cortical area selective for visual processing of the human body. Science, 293 (5539), 2470–2473.CrossRefGoogle ScholarPubMed
Epstein, R., & Kanwisher, N. (1998). A cortical representation of the local visual environment. Nature, 392 (6676), 598–601.CrossRefGoogle ScholarPubMed
Farah, M., & Rabinowitz, C. (2003). Genetic and environmental influences on the organization of semantic memory in the brain: is ‘living things’ an innate category? Cognitive Neuropsychology, 20 (3–6), 401–408.CrossRefGoogle Scholar
Garrard, P., Patterson, K., Watson, P. C., & Hodges, J. R. (1998). Category-specific semantic loss in dementia of Alzheimer's type: functional-anatomical correlations from cross-sectional analyses. Brain, 121, 633–646.CrossRefGoogle ScholarPubMed
Griffiths, T. L., Canini, K. R., Sanborn, A. N., & Navarro, D. J. (2007). Unifying rational models of categorization via the hierarchical Dirichlet process. Proceedings of the Twenty-Ninth Annual Conference of the Cognitive Science Society. New York: Lawrence Erlbaum.
Hart, J., Berndt, R., & Caramazza, A. (1985). Category-specific naming deficit following cerebral infarction. Nature, 316 (6027), 439–440.CrossRefGoogle ScholarPubMed
Haxby, J., Gobbini, M., Furey, M., Ishai, A., Schouten, J., & Pietrini, P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 293 (5539), 2425–2430.CrossRefGoogle ScholarPubMed
Hillis, A., & Caramazza, A. (1991).Category-specific naming and comprehension impairment: a double dissociation. Brain, 114 (5), 2081–2094.CrossRefGoogle ScholarPubMed
Johansen, M., & Kruschke, J. (2005). Category representation for classification and feature inference. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31 (6), 1433–1458.Google ScholarPubMed
Kanwisher, N., McDermott, J., & Chun, M. (1997). The fusiform face area: a module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17 (11), 4302–4311.CrossRefGoogle ScholarPubMed
Kruschke, J. K. (2008). Models of categorization. In Sun, R. (ed.), The Cambridge Handbook of Computational Psychology (pp. 267–301). New York: Cambridge University Press.Google Scholar
Laiacona, M., Allamano, N., Lorenzi, L., & Capitani, E. (2006). A case of impaired naming and knowledge of body parts: are limbs a separate sub-category? Neurocase, 12 (5), 307–316.CrossRefGoogle ScholarPubMed
Laiacona, M., Barbarotto, R., & Capitani, E. (2005).Animals recover but plant life knowledge is still impaired 10 years after herpetic encephalitis: the long-term follow-up of a patient. Cognitive Neuropsychology, 22 (1), 78–94.CrossRefGoogle ScholarPubMed
Laiacona, M., & Capitani, E. (2001).A case of prevailing deficit of nonliving categories or a case of prevailing sparing of living categories?Cognitive Neuropsychology, 18, 39–70.CrossRefGoogle ScholarPubMed
Lambon Ralph, M. A., Howard, D., Nightingale, G., & Ellis, A. W. (1998). Are living and nonliving category-specific deficits causally linked to impaired perceptual or associative knowledge? Evidence from a category-specific double dissociation. Neurocase, 4, 311–338.CrossRefGoogle Scholar
Love, B., Medin, D., & Gureckis, T. (2004). SUSTAIN: a network model of category learning. Psychological Review, 111 (2), 309–332.CrossRefGoogle ScholarPubMed
Mahon, B., & Caramazza, A. (2009). Concepts and categories: a cognitive neuropsychological perspective. Annual Review of Psychology, 60, 27–51.CrossRefGoogle ScholarPubMed
Martin, A., & Chao, L. (2001). Semantic memory and the brain: structure and processes. Current Opinion Neurobiology, 11 (2), 194–201.CrossRefGoogle ScholarPubMed
Martin, A., & Weisberg, J. (2003). Neural foundations for understanding social and mechanical concepts. Cognitive Neuropsychology, 20, 575–587.CrossRefGoogle ScholarPubMed
Martin, A., Wiggs, C., Ungerleider, L., & Haxby, J. (1996). Neural correlates of category-specific knowledge. Nature, 379 (6566), 649–652.CrossRefGoogle ScholarPubMed
McLaren, I., & Mackintosh, N. (2002). Associative learning and elemental representation: II. Generalization and discrimination. Animal Learning & Behavior, 30 (3), 177–200.CrossRefGoogle ScholarPubMed
Miceli, G., Capasso, R., Daniele, A., Esposito, T., Magarelli, M., & Tomaiuolo, F. (2000). Selective deficit for people's names following left temporal damage: an impairment of domain-specific conceptual knowledge. Cognitive Neuropsychology, 17 (6), 489–516.CrossRefGoogle ScholarPubMed
Minda, J., & Smith, J. (2002). Comparing prototype-based and exemplar-based accounts of category learning and attentional allocation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28 (2), 275–292.Google ScholarPubMed
Mummery, C., Patterson, K., Hodges, J., & Price, C. (1998). Functional neuroanatomy of the semantic system: divisible by what? Journal of Cognitive Neuroscience, 10 (6), 766–777.CrossRefGoogle Scholar
Nosofsky, R., & Zaki, S. (2002). Exemplar and prototype models revisited: response strategies, selective attention, and stimulus generalization. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(5), 924–940.Google ScholarPubMed
Papagno, C., Capasso, R., & Miceli, G. (2009). Reversed concreteness effect for nouns in a subject with semantic dementia. Neuropsychologia, 47 (4), 1138–1148.CrossRefGoogle Scholar
Pietrini, P., Furey, M. L., Ricciardi, E., Gobbini, M. I., Wu, W. H., Cohen, L., Guazzelli, M., & Haxby, J. V. (2004). Beyond sensory images: object-based representation in the human ventral pathway. Proceedings of the National Academy of Sciences of the USA, 101, 5658–5663.CrossRefGoogle ScholarPubMed
Puce, A., Allison, T., Asgari, M., Gore, J., & McCarthy, G. (1996). Differential sensitivity of human visual cortex to faces, letterstrings, and textures: a functional magnetic resonance imaging study. Journal of Neuroscience, 16 (16), 5205–5215.CrossRefGoogle ScholarPubMed
Rehder, B., & Kim, S. (2006). How causal knowledge affects classification: a generative theory of categorization. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32 (4), 659–683.Google ScholarPubMed
Rehder, B., & Murphy, G. (2003). A knowledge-resonance (KRES) model of category learning. Psychonomic Bulletin & Review, 10 (4), 759–784.CrossRefGoogle ScholarPubMed
Rogers, T., & McClelland, J. (2008). Précis of semantic cognition: a parallel distributed processing approach. Behavioral Brain Sciences, 31 (6), 689–749.CrossRefGoogle Scholar
Samson, D., & Pillon, A. (2003). A case of impaired knowledge for fruit and vegetables. Cognitive Neuropsychology, 20 (3–6), 373.CrossRefGoogle ScholarPubMed
Sartori, G., Job, R., & Coltheart, M. (1993). The organization of object knowledge: evidence from neuropsychology. In Meyer, D. E. & Kornblum, S. (eds.), Attention and Performance XIV (Silver Jubilee Volume): Synergies in Experimental Psychology, Artificial Intelligence, and Cognitive Neuroscience (pp. 451–465). Cambridge, MA: MIT Press.Google Scholar
Sartori, G., Lombardi, L., & Mattiuzzi, L. (2005). Semantic relevance best predicts normal and abnormal name retrieval. Neuropsychologia, 43, 754–770.CrossRefGoogle ScholarPubMed
Shelton, J. R., Fouch, E., & Caramazza, A. (1998). The selective sparing of body part knowledge: a case study. Neurocase, Special issue: Category-specific deficits, 4, 339–351.CrossRefGoogle Scholar
Smith, E., & Grossman, M. (2008). Multiple systems of category learning. Neuroscience and Biobehavioral Reviews, 32 (2), 249–264.CrossRefGoogle ScholarPubMed
Spiridon, M., & Kanwisher, N. (2002). How distributed is visual category information in human occipito-temporal cortex? An fMRI study. Neuron, 35 (6), 1157–1165.CrossRefGoogle ScholarPubMed
Tyler, L., & Moss, H. (2001). Towards a distributed account of conceptual knowledge. Trends in Cognitive Science, 5 (6), 244–252.CrossRefGoogle ScholarPubMed
Urgesi, C., Berlucchi, G., & Aglioti, S. (2004). Magnetic stimulation of extrastriate body area impairs visual processing of nonfacial body parts. Current Biology, 14 (23), 2130–2134.CrossRefGoogle ScholarPubMed
Vinson, D. P., Vigliocco, G, Cappa, S., & Siri, S. (2003). The breakdown of semantic knowledge: insights from a statistical model of meaning representation. Brian and Language, 86, 347–365.CrossRefGoogle ScholarPubMed
Warrington, E., & Shallice, T. (1984). Category specific semantic impairments. Brain, 107 (3), 829–854.CrossRefGoogle ScholarPubMed
Zaki, S., Nosofsky, R., Stanton, R., & Cohen, A. (2003). Prototype and exemplar accounts of category learning and attentional allocation: a reassessment. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, (6), 1160–1173.Google ScholarPubMed
Zannino, G. D., Perri, R., Carlesimo, G. A., Pasqualetti, P., & Caltagirone, C. (2002). Category-specific impairment in patients with Alzheimer's disease as a function of disease severity: a cross-sectional investigation. Neuropsychologia, 40, 2268–2279.CrossRefGoogle ScholarPubMed
Zannino, G. D., Perri, R., Pasqualetti, P., Caltagirone, C., & Carlesimo, G. A. (2006). Analysis of the semantic representations of living and nonliving concepts: a normative study. Cognitive Neuropsychology, 23, 515–540.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×