Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-g78kv Total loading time: 0 Render date: 2024-07-28T19:45:43.127Z Has data issue: false hasContentIssue false

6 - Filtering turbulent signals: Plentiful observations

from Part II - Mathematical guidelines for filtering turbulent signals

Published online by Cambridge University Press:  05 March 2012

Andrew J. Majda
Affiliation:
New York University
John Harlim
Affiliation:
North Carolina State University
Get access

Summary

The difficulties in filtering turbulent complex systems are largely due to our incomplete understanding of the dynamical system that underlies the observed signals, which have many spatio-temporal scales and rough turbulent energy spectra near the resolved mesh scale. In this chapter, we develop theoretical criteria as guidelines to address issues for filtering turbulent signals in an idealized context. In particular, we consider the simplest turbulent model discussed in Chapter 5 with plentiful observations, that is, the observations are available at every model grid point.

In this idealized context, we will provide a useful insight into answering several practical issues, including:

  • As the model resolution is increased, there is typically a large computational overhead in propagating the dynamical operator and this restricts the predictions to relatively small ensemble sizes. When is it possible to filter using standard explicit and implicit solvers for the original dynamic equations by using a large time step equal to the observation time (even violating the CFL stability condition with standard explicit schemes) to increase ensemble size, yet still retain statistical accuracy?

  • If plentiful observations are available on refined meshes, what is gained by increasing the resolution of the operational model? How does this depend on the nature of the turbulent spectrum?

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×