Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-07T20:15:14.591Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  30 August 2017

Alberto A. García-Díaz
Affiliation:
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV)
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anninos, D., Li, W., Padi, M., Song, W., and Strominger, A. (2009). “Warped AdS 3 black holes,” JHEP 0903, 130, arXiv:0807.3040.CrossRefGoogle Scholar
Aragone, C. (1987). “Topologically massive gravity in the dreibein light-front gauge,” Class. Quant. Grav. 4, L1.CrossRefGoogle Scholar
Ayón-Beato, E., Cataldo, M., and Garcia, A. A. (2005). “Electromagnetic fields in stationary cyclic symmetric 2+1 gravity”, In Proceedings of the 10th. PASCOS04 and Pran Nath Fest, Eds. G., Alverson, E., Barberi, P., Nath, M.T., Vaughn (World Scientific, 2005), p.359.Google Scholar
Ayón-Beato, E., Garcia, A. A., Macias, A., and Perez-Sanchez, J. M. (2000). “Note on scalar fields nonminimally coupled to (2+1) gravity,” Phys. Lett. B495, 164 [gr-qc/0101079].CrossRefGoogle Scholar
Ayón-Beato, E. and Hassaïne, M. (2005). “pp–waves of conformal gravity with selfinteracting source,” Annals Phys. 317, 175. hep-th/0409150.CrossRefGoogle Scholar
Ayón-Beato, E. and Hassaïne, M. (2006). “Exploring AdS waves via nonminimal coupling,” Phys. Rev. D 73, 104001. hep-th/0512074.Google Scholar
Ayón-Beato, E., Martinez, C., and Zanelli, J. (2004). “Birkhoff's theorem for threedimensional AdS gravity,” Phys. Rev. D70, 044027. [hep-th/0403227].Google Scholar
Bañados, M., Henneaux, M. Teitelboim, C., and Zanelli, J. (1993). “Geometry of the (2+1) black hole,” Phys. Rev. D48, 1506. [gr-qc/9302012].Google Scholar
Bañados, M., Teitelboim, C., and Zanelli, J. (1992). “The black hole in threedimensional spacetime,” Phys. Rev. Lett. 69, 1849. [hep-th/9204099].CrossRefGoogle Scholar
Barrow, J. D., Burd, A. B., and Lancaster, D. (1986). “Three-dimensional classical spacetimes,” Class. Quant. Grav. 3, 551–567.CrossRefGoogle Scholar
Barrow, J. D., Shaw, D. J., and Tsagas, C. G. (2006). “Cosmology in three dimensions: Steps towards the general solution,” Class. Quant. Grav. 23, 5291. [gr-qc/0606025].CrossRefGoogle Scholar
Bouchareb, A. and Clément, G. (2007). “Black hole mass and angular momentum in topologically massive gravity,” Class. Quant. Grav. 24, 5581. arXiv:0706.0263.CrossRefGoogle Scholar
Brown, J. D., Creighton, J., and Mann, R. B. (1994). “Temperature, energy and heat capacity of asymptotically anti-de Sitter black holes,” Phys. Rev. D50, 6394. [grqc/ 9405007].Google Scholar
Brown, J. D. and York Jr., J. W. (1993). “Quasilocal energy and conserved charges derived from the gravitational action”, Phys. Rev. D47, 1407.
Carlip, S. (1998). Quantum Gravity in 2+1 Dimensions, Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Carlip, S., Deser, S., Waldron, A., and Wise, D. K. (2008). “Topologically massive AdS gravity,” Phys. Lett. B666, 272. arXiv:0807.0486.CrossRefGoogle Scholar
Carlip, S., Deser, S., Waldron, A., and Wise, D. K. (2009). “Cosmological topologically massive gravitons and photons,” Class. Quant. Grav. 26, 075008.CrossRefGoogle Scholar
Cataldo, M. (2002). “Azimuthal electric field in a static rotationally symmetric (2+1)- dimensional space-time,” Phys. Lett. B529, 143. [gr-qc/0201047].CrossRefGoogle Scholar
Cataldo, M. (2004). “Rotating perfect fluids in (2+1)–dimensional Einstein gravity,” Phys. Rev. D69, 064015.Google Scholar
Cataldo, M., Crisostomo, J., del Campo, S., and Salgado, P. (2004). “On magnetic solution to (2+1) Einstein–Maxwell gravity,” hep-th/0401189.
Cataldo, M., Cruz, N., del Campo, S., and Garcia, A. (2000). “(2+1)–dimensional black hole with Coulomb-like field,” Phys. Lett. B484, 154. [hep-th/0008138].CrossRefGoogle Scholar
Cataldo, M., del Campo, S., and Garcia, A. (2001). “BTZ black hole from (3+1) gravity,” Gen. Rel. Grav. 33, 1245. [gr-qc/0004023].CrossRefGoogle Scholar
Cataldo, M., and García, A. (1999). “Three dimensional black hole coupled to the Born–Infeld electrodynamics,” Phys. Lett. B456, 28.CrossRefGoogle Scholar
Cataldo, M. and Garcia, A. (2000). “Regular (2+1)-dimensional black holes within nonlinear electrodynamics,” Phys. Rev. D61, 084003. [hep-th/0004177].Google Scholar
Cataldo, M. and Salgado, P. (1996). “Static Einstein–Maxwell solutions in (2+1)- dimensions,” Phys. Rev. D54, 2971.Google Scholar
Cavaglia, M. (1999). “The Birkhoff theorem for topologically massive gravity,” Grav. Cosmol. 5, 101. gr-qc/9904047.Google Scholar
Chan, K. C. K. (1996). “Comment on the calculation of the angular momentum for the (anti)selfdual charged spinning BTZ black hole,” Phys. Lett. B373, 296. [grqc/ 9509032].CrossRefGoogle Scholar
Chan, K. C. K. (1997). “Modifications of the BTZ black hole by a dilaton and scalar,” Phys. Rev. D55, 3564. [gr-qc/9603038].Google Scholar
Chan, K. C. K. and Mann, R. B. (1994). “Static charged black holes in (2+1)- dimensional dilaton gravity,” Phys. Rev. D50, 6385, [Erratum: Phys. Rev. D52, 2600. (1995)]. [gr-qc/9404040].Google Scholar
Chan, K. C. K. and Mann, R. B. (1996). “Spinning black holes in (2+1)-dimensional string and dilaton gravity,” Phys. Lett. B371, 199. [gr-qc/9510069].CrossRefGoogle Scholar
Chow, D. D. K., Pope, C. N., and Sezgin, E. (2010a). “Classification of solutions in topologically massive gravity,” Class. Quant. Grav. 27, 105001.CrossRefGoogle Scholar
Chow, D. D. K., Pope, C. N., and Sezgin, E. (2010b). “Kundt spacetimes as solutions of topologically massive gravity,” Class. Quant. Grav. 27, 105002.CrossRefGoogle Scholar
Clément, G. (1976). “Field-theoretic extended particles in two space dimensions,” Nucl. Phys. B114, 437.CrossRefGoogle Scholar
Clément, G. (1985a). “Stationary solutions in three-dimensional general relativity,” Int. J. Theor. Phys. 24, 267.CrossRefGoogle Scholar
Clément, G. (1992a). “Stationary rotationally symmetric solutions in topologically massive gravity”, Class. Quant. Grav. 9, 2615.CrossRef
Clément, G. (1992b). “Localised solutions in topologically massive gravity,” Class. Quant. Grav. 9, S35.CrossRefGoogle Scholar
Clément, G. (1993). “Classical solutions in three-dimensional Einstein–Maxwell cosmological gravity,” Class. Quant. Grav. 10, L49.CrossRefGoogle Scholar
Clément, G. (1994). “Particle-like solutions to topologically massive gravity,” Class. Quant. Grav. 11, L115, gr-qc/9404004.CrossRefGoogle Scholar
Clément, G. (1996). “Spinning charged BTZ black holes and selfdual particle-like solutions,” Phys. Lett. B367, 70. [gr-qc/9510025].CrossRefGoogle Scholar
Coley, A., Hervik, S., and Pelavas, N. (2006). “On spacetimes with constant scalar invariants,” Class. Quant. Grav. 23, 3053. gr-qc/0509113.CrossRefGoogle Scholar
Coley, A., Hervik, S., and Pelavas, N. (2008). “Lorentzian spacetimes with constant curvature invariants in three dimensions,” Class. Quant. Grav. 25, 025008. arXiv:0710.3903.CrossRefGoogle Scholar
Coley, A., Hervik, S., and Pelavas, N. (2009). “Lorentzian spacetimes with constant curvature invariants in four dimensions,” Class. Quant. Grav. 26, 125011. arXiv:0904.4877.CrossRefGoogle Scholar
Coley, A., Hervik, S., Papadopoulos, G. O., and Pelavas, N. (2009). “Kundt spacetimes,” Class. Quant. Grav. 26, 105016. arXiv:0901.0394.CrossRefGoogle Scholar
Collas, P. (1977). “General relativity in two-and three-dimensional space-times,” Am. J. Phys. 45, 833.CrossRefGoogle Scholar
Cornish, N. J. and Frankel, N. E. (1991). “Gravitation in (2+1)–dimensions,” Phys. Rev. D43, 2555.Google Scholar
Cornish, N. J. and Frankel, N. E. (1994). “Gravitation versus rotation in (2+1)– dimensions,” Class. Quant. Grav. 11, 723. [gr-qc/9306012].CrossRefGoogle Scholar
Coussaert, O. and Henneaux, M. (1994b). “Self-dual solutions of the 2 + 1 Einstein gravity with a negative cosmological constant,” [hep-th9407181].
Cruz, N. and Martínez, C. (2000). “Cosmological scaling solutions of minimally coupled scalar fields in three dimensions” Class. Quant. Grav. 17, 2867.CrossRef
Cruz, N. and Zanelli, J. (1995). “Stellar equilibrium in (2+1)-dimensions,” Class. Quant. Grav. 12, 975 [gr-qc/9411032].CrossRefGoogle Scholar
Dereli, T. and Sarioğlu, O. (2001). “Supersymmetric solutions to topologically massive gravity and black holes in three dimensions,” Phys. Rev. D 64, 027501. gr-qc/0009082.Google Scholar
Dereli, T. and Tucker, R. W. (1988). “Gravitational interactions in 2 + 1 dimensions,” Class. Quant. Grav. 5, 951.CrossRefGoogle Scholar
Deser, S. (1984). “Cosmological topological supergravity,” in Quantum Theory of Gravity, ed. S.M., Christensen, Adam Hilger, London.Google Scholar
Deser, S. and Jackiw, R. (1989). “String sources in (2+1)-dimensional gravity,” Ann. of Phys. 192, 352.CrossRefGoogle Scholar
Deser, S., Jackiw, R., and Pi, S. Y. (2005). “Cotton blend gravity pp waves,” Acta Phys. Polon. B36, 27. [gr-qc/0409011].Google Scholar
Deser, S., Jackiw, R. and Templeton, S. (1982a). “Three-Dimensional Massive Gauge Theories,” Phys. Rev. Lett. 48, 975.CrossRefGoogle Scholar
Deser, S., Jackiw, R., and Templeton, S. (1982b). “Topological massive gauge theories,” Ann. of Phys. 140, 372.CrossRefGoogle Scholar
Deser, S., Jackiw, R. and 't Hooft, G. (1984). “Three-dimensional Einstein gravity: dynamics of flat space,” Ann. of Phys. 152, 220–235.CrossRefGoogle Scholar
Deser, S. and Mazur, P. O. (1985). “Static solutions in D = 3 Einstein–Maxwell theory,” Class. Quant. Grav. 2 L51–L56.CrossRefGoogle Scholar
Deser, S. and Steif, A. R. (1992). “Gravity theories with lightlike sources in D = 3,” Class. Quant. Grav. 9, L153. hep-th/9208018.CrossRefGoogle Scholar
Dias, O. J. C. and Lemos, J. P. S. (2002b). “Rotating magnetic solution in threedimensional Einstein gravity,” JHEP 01(2002), 006. [hep-th/0201058].CrossRefGoogle Scholar
Garbarz, A., Giribet, G., and Vásquez, Y. (2009). “Asymptotically AdS 3 solutions to topologically massive gravity at special values of the coupling constants,” Phys. Rev. D 79, 044036. arXiv:0811.4464.Google Scholar
García, A. (1999). “On the rotating charged BTZ metric,” hep-th/9909111.
García, A. A. (2004). “Stationary circularly symmetric 2+1 rigidly rotating perfect fluid,” Phys. Rev. D69, 124024.Google Scholar
Garcia, A. A. (2009). “Three-dimensional stationary cyclic symmetric Einstein– Maxwell solutions; black holes,” Ann. of Phys. 324, 2004–2050.CrossRefGoogle Scholar
Garcia-Diaz, A. (2014). “Hydrodynamic equilibrium of a static star in the presence of a cosmological constant in 2 + 1 dimensions,” arXiv:1412.5620[gr-qc].
García, A. A. and Campuzano, C. (2003). “All static circularly symmetric perfect fluid solutions of 2+1 gravity,” Phys. Rev. D67, 064014.Google Scholar
García, A., Cataldo, M., and del Campo, S. (2003). “Relationship between (2+1) and (3+1) Friedmann–Robertson–Walker cosmologies,” Phys. Rev. D68, 124022. [hepth/ 0309098].Google Scholar
García, A., Hehl, F. W., Heinicke, C., and Macias, A. (2004). “The Cotton tensor in Riemannian space-times,” Class. Quant. Grav. 21, 1099 [gr-qc/0309008].CrossRefGoogle Scholar
Garcia-Diaz, A. A. (2013). “Three-dimensional stationary cyclic symmetric Einstein– Maxwell solutions; energy,” [gr-qc/0309008].
Garcia-Diaz, A. and Gutierrez-Cano, G. (2014a). “Low energy 2+1 string gravity; black hole solutions,” arXiv:1412.5618[gr-qc].
Garcia-Diaz, A. and Gutierrez-Cano, G. (2014b). “Dilaton minimally coupled to 2+1 Einstein–Maxwell fields: stationary cyclic symmetric black holes,” arXiv:1412.5621 [gr-qc].
Gibbons, G. W., Pope, C. N., and Sezgin, E. (2008). “The general supersymmetric solution of topologically massive supergravity,” Class. Quant. Grav. 25, 205005, arXiv:0807.2613.CrossRefGoogle Scholar
Giddings, S., Abbott, J., and Kuchar, K. (1984). “Einstein's theory in a threedimensional space-time,” Gen. Rel. Grav. 16, 751.CrossRefGoogle Scholar
Gott, J. R. and Alpert, M. (1984). “General relativity in a (2+1)-dimensional spacetime,” Gen. Rel. Grav. 16, 243.CrossRefGoogle Scholar
Gott, J. R., Simon, J. Z., and Alpert, M. (1986). “General relativity in a (2+1)- dimensional space-time: An electrically charged solution,” Gen. Rel. Grav. 18, 1019.CrossRefGoogle Scholar
Gürses, M. (1994). “Perfect fluid sources in 2+1 dimensions,” Class. Quant. Grav. 11, 2585–2587.CrossRefGoogle Scholar
Gürses, M. (2008). “Gödel type metrics in three dimensions,” Gen. Rel. Grav.,42, 1413. arXiv:0812.2576.CrossRefGoogle Scholar
Hall, G. S. and Capocci, M. S. (1999). “Classification and conformal symmetry in three-dimensional space-time,” J. Math. Phys. 40, 1466–1478.CrossRefGoogle Scholar
Hall, G. S., Morgan, T., and Perjés, Z. (1987). “Three-dimensional space-times,” Gen. Rel. Grav. 19, 1137.CrossRefGoogle Scholar
Hirschmann, E. W. and Welch, D. L. (1996). “Magnetic solutions to (2+1) gravity,” Phys. Rev. D53, 5579 [hep-th/9510181].Google Scholar
Horne, J. H. and Horowitz, G. T. (1992). “Exact string solution in three dimensions,” Nucl. Phys. B368, 444.CrossRefGoogle Scholar
Horowitz, G. T. (1992). “The dark side of string theory; Black holes and black strings,” [arXiv:hep-th/9210119].
Horowitz, G. T. (2005). “Creating naked singularities and negative energy,” Phys. Scripta T117, 86. [hep-th/0312123].CrossRefGoogle Scholar
Horowitz, G. T. and Welch, D. L. (1993). “Exact three-dimensional black holes in string theory,” Phys. Rev. Lett. 71, 328. [hep-th/9302126].CrossRefGoogle Scholar
Jackiw, R. (2006). “4-dimensional Einstein gravity extended by a 3-dimensional gravitational Chern–Simons term,” Int. J. Theor. Phys. 45, 1431. [gr-qc/0310115].CrossRefGoogle Scholar
Kamata, M. and Koikawa, T. (1995). “The electrically charged BTZ black hole with self (antiself) dual Maxwell field,” Phys. Lett. B353, 196. [hep-th/9505037].CrossRefGoogle Scholar
Kamata, M. and Koikawa, T. (1997). “2+1-dimensional charged black hole with (anti-) self dual Maxwell field,” Phys. Lett. B391, 196.Google Scholar
Kogan, I. I. (1992). “About some exact solutions for (2+1) gravity coupled to gauge fields,” Mod. Phys. Lett. A7, 2341. [hep-th/9205095].CrossRefGoogle Scholar
Lubo, M., Rooman, M. and Spindel, P. (1999). “(2+1)-dimensional stars,” Phys. Rev. D59, 044012 [gr-qc/9806104].Google Scholar
Macías, A. and Camacho, A. (2005). “Kerr–Schild metric in topological massive (2+1) gravity,” Gen. Rel. Grav. 37, 759.CrossRefGoogle Scholar
Mann, R. B. and Ross, S. F. (1993). “Gravitationally collapsing dust in 2 + 1 dimensions”, Phys. Rev. D47, 3319.Google Scholar
Martinez, E. A. and Shepley, L. (1986). preprint, University of Texas.Google Scholar
Martínez, C., Teitelboim, C. and Zanelli, J. (2000). “Charged rotating black hole in three space-time dimensions,” Phys. Rev. D61, 104013 [hep-th/9912259].Google Scholar
Martínez, C. and Zanelli, J. (1996). “Conformally dressed black hole in (2+1)- dimensions,” Phys. Rev. D 54, 3830. [gr-qc/9604021].Google ScholarPubMed
Matyjasek, J. and Zaslavskii, O. B. (2004). “Extremal limit for charged and rotating (2+1)–dimensional black holes and Bertotti-Robinson geometry,” Class. Quant. Grav. 21, 4283 [gr-qc/0404090].CrossRefGoogle Scholar
Melvin, M. A. (1986). “Exterior solutions for electric and magnetic stars in 2+1 dimensions,” Class. Quant. Grav. 3, 117-131.CrossRefGoogle Scholar
Moussa, K. A., Clément, G., and Leygnac, C. (2003). “The black holes of topologically massive gravity,” Class. Quant. Grav. 20, L277, gr-qc/0303042.CrossRefGoogle Scholar
Nutku, Y. (1993). “Exact solutions of topologically massive gravity with a cosmological constant,” Class. Quant. Grav. 10, 2657.CrossRefGoogle Scholar
Nutku, Y. and Baekler, P. (1989). “Homogeneous, anisotropic three-manifolds of topologically massive gravity,” Annals Phys. 195, 16.CrossRefGoogle Scholar
Ortiz, M. E. (1990). “Homogeneous solutions to topologically massive gravity,” Annals Phys. 200, 345.CrossRefGoogle Scholar
Obukhov, Y. N. (2003). “New solutions in 3-D gravity,” Phys. Rev. D68, 124015. [gr-qc/0310069].Google Scholar
Ölmez, S., Sarioğlu, O., and Tekin, B. (2005). “Mass and angular momentum of asymptotically AdS or flat solutions in the topologically massive gravity,” Class. Quant. Grav. 22, 4355, gr-qc/0507003.CrossRefGoogle Scholar
Peldan, P. (1993). “Unification of gravity and Yang-Mills theory in (2+1)-dimensions,” Nucl. Phys. B395, 239 [gr-qc/9211014].CrossRefGoogle Scholar
Percacci, R., Sodano, P., and Vuorio, I. (1987). “Topologically massive planar universes with constant twist,” Ann. of Phys. 176, 344.CrossRefGoogle Scholar
Rooman, M. and Spindel, P. (1998). “Gödel metric as a squashed anti-de Sitter geometry,” Class. Quant. Grav. 15, 3241 [gr-qc/9804027].CrossRefGoogle Scholar
Saslaw, W. C. (1977). “A relation between the homogeneity of the Universe and the dimensional of space” Mon. Not. R. Astr. Soc. 179, 659.CrossRef
Staruszkiewicz, A. (1963). “Gravitation theory in three-dimensional space,” Acta Phys. Polon. 24, 735.Google Scholar
Torres del Castillo, G. F. and Gómez-Ceballos, L. F. (2003). “Algebraic classification of the curvature of three-dimensional manifolds with indefinite metric,” J. Math. Phys. 44, 4374.CrossRefGoogle Scholar
Vuorio, I. (1985). “Topologically massive planar universe,” Phys. Lett. B163, 91. Gen. Rel. Grav. 23, 181–187.CrossRefGoogle Scholar
Zaslavskii, O. B. (1994). “Thermodynamics of 2+1 black holes,” Class. Quant. Grav. 11, L33–L38.CrossRefGoogle Scholar
Abrahams, A. M. and Evans, C. R. (1993). “Critical behavior and scaling in vacuum axisymmetric gravitational collapse,” Phys. Rev. Lett. 70, 2980.CrossRefGoogle ScholarPubMed
Abramowitz, M. and Stegun, I. (1965). Handbook of Mathematical Functions. New York: Dover Publications Inc.Google Scholar
Adler, R., Bazin, M., and Schiffer, M. (1965). Introduction to General Relativity, McGraw–Hill.Google Scholar
Arnowitt, R., Deser, S., and Misner, C. W. (1962). “The dynamics of General Relativity.” In: Gravitation: An Introduction to Current Research, L., Witten (Ed.). Wiley, New York.Google Scholar
Ashtekar, A., and Krishnan, B. (2004). “Isolated and dynamical horizons and their applications,” Living Rev. Rel. 7, 10.CrossRefGoogle ScholarPubMed
Ayón-Beato, E. and García, A. (1998). “Regular black hole in general relativity coupled to a nonlinear electrodynamics,” Phys. Rev. Lett. 80, 5056.CrossRefGoogle Scholar
Bach, R. (1921). “Zur Weylschen Relativitätstheorie und der Weylschen Erweiterung des Krümmungsbegriffs,” Math. Zeitschr. 9, 110–135.CrossRefGoogle Scholar
Baekler, P., Mielke, E. W., and Hehl, F. W. (1992). “Dynamical symmetries in topological 3D gravity with torsion,” Nuovo Cimento. B107, 91–110.CrossRefGoogle Scholar
Barrow, J. D., and Saich, P. (1993). “Scalar–field cosmologies,” Class. Quant. Grav. 10, 279.CrossRefGoogle Scholar
Bergshoeff, E. A., Hohm, O., and Townsend, P. K. (2009) “Massive gravity in three dimensions,” Phys. Rev. Lett. 102, 201301.CrossRefGoogle ScholarPubMed
Bertotti, I. (1959). “Uniform electromagnetic field in the theory of general relativity,” Phys. Rev. 116, 1331–1333.CrossRefGoogle Scholar
Bini, D., Jantzen, R. T., and Minutti, G. (2001). “The Cotton, Simon–Mars and Cotton–York tensors in stationary spacetimes,” Class. Quant. Grav. 18, 4969.CrossRefGoogle Scholar
Borde, A. (1997). “Regular black holes an topological change,” Phys. Rev. D50, 7615.Google Scholar
Born, M., and Infeld, L. (1934). “On the quantum theory of the electromagnmetic field,” Proc. Roy. Soc. (London) A144, 425.CrossRefGoogle Scholar
Brinkmann, M. W. (1923). “On Riemann spaces conformal to Euclidean spaces,” Proc. Natl. Acad. Sci. U.S. 9, 1.CrossRefGoogle Scholar
Buchdahl, H. A. (1959). “General relativistic fluid spheres,” Phys. Rev. 116, 1027.CrossRefGoogle Scholar
Buscher, T. (1993). “Path integral derivation of quantum duality in nonlinear sigma models,” Phy. Lett. B201, 466.Google Scholar
Carter, B. (1968). “Hamilton–Jacobi and Schrodinger separable solutions of Einstein's equations,”Commun. Math. Phys. 10, 280 (1968), (1968). “A new family of Einstein spaces,” Phys. Lett. A26, 399.CrossRef
Cotton, E. (1899). “Sur les variétés a trois dimensions,” Ann. Fac. d. Sc. Toulouse (II) 1, 385.CrossRefGoogle Scholar
Choptuik, M. W. (1993). “Universality and scaling in gravitational collapse of a massless scalar field,” Phys. Rev. Lett. 70, 9.CrossRefGoogle ScholarPubMed
Christodoulou, D. and Klainerman, S. (1993). The Global Nonlinear Stability of the Minkowski Space. Princeton University Press, Princeton, NJ.Google Scholar
de Rham, C. (2014). “Massive Gravity,” Living Rev.Rel. 17, 7. arXiv:1401.4173 [hep-th].CrossRefGoogle ScholarPubMed
Deser, S. and Gibbons, G. W. (1998). “Born–Infeld–Einstein actions,” Class. Quant. Grav. 15, L35.CrossRefGoogle Scholar
Ehlers, J. (1961). “Beiträge zur realativistischen Mechanik kontinuierlich Medien,” Abh. Mainzer Akad. Wiss., Math.–natuwiss,” No, 11, English Translation: (1993) “Contributions to relativistic mechanics of continuous media,” Gen. Rel. Grav. 25, 1225–1266. See also, (2002). “Relativistic hydrodynamics,” Gen. Rel. Grav. 34, 2171.Google Scholar
Eisenhart, L. P. (1966). Riemannian Geometry, Princeton University Press. Princeton, NJ.Google Scholar
Ellis, G. F. R. and Elst, H. (1999). Theoretical and Observational Cosmology, Ed. ML, Lachieze-Rey (Dordrecht: Kluwer) p. 1.Google Scholar
Ferrando, J. J. and Sáez, A. J. (2002). “On the classification of Type D spacetimes,” [gr-qc/0212086].
Fradkin, E. and Tseytlin, A. (1985). “Nonlinear electrodynamics from quantized strings,” Phys. Lett. B163, 123.CrossRefGoogle Scholar
Frolov, V., Hendy, S., and Larsen, A. L. (1996). “Stationary strings and principal Killing triads in 2+1 gravity,” Nucl. Phys. B 468, 336.CrossRefGoogle Scholar
García, A. A. (1988). “Comments on a paper by Collinson,” Gen. Rel. Grav. 20, 589.Google Scholar
Gibbons, G. W. and Rasheed, D. A. (1995). “Electric–magnetic duality rotations in non-linear electrodynamics,” Nucl. Phys. B454, 185.CrossRefGoogle Scholar
Gubser, S. S., Klebanov, I. R., and Polyakov, A. M. (1998). “Gauge Theory Correlators from Non-Critical String Theory,” Phys. Lett. B428, 105 (arXiv: hep-th/9802109).CrossRefGoogle Scholar
Gundlach, C. (1999). “Critical Phenomena in Gravitational Collapse,” Living Rev. Rel. 2, 4 (arXiv: gr-qc/0001046).CrossRefGoogle ScholarPubMed
Guralnik, G., Iorio, A., Jackiw, R., and Pi, S.-Y. (2003). “Dimensionally reduced gravitational Chern–Simons term and its kink,” Ann. Phys. (NY) 308, 222–236. (arXiv: hep-th/0305117).CrossRefGoogle Scholar
Gürses, M. and Gürsey, Y. (1975). “Conformal uniqueness and various forms of the Schwarzschild interior metric,” Nuovo Cimento 25 B, 786.CrossRefGoogle Scholar
Hayward, S. A. (2008). “Dynamics of black holes,” arXiv:0810.0923 [gr-qc].
Hehl, F. W., McCrea, J. D., Mielke, E. W., and Ne'eman, Y. (1995). “Metric–affine gauge theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance,” Phys. Repts. 258, 1.CrossRefGoogle Scholar
Heinicke, C. (2001). “The Einstein 3-form Gα and its equivalent 1–form Lα in Riemann– Cartan spacetime,” Gen. Relat. Grav. 33, 1115.CrossRefGoogle Scholar
Israel, R. B. (1966). “Singular hypersurfaces and thin shells in General Relativity,” Nuovo Cimento. XLIV B, 1.CrossRefGoogle Scholar
Infeld, L. and Plebański, J. F. (1960). Motion and Relativity, Pergamon Press, New York.Google Scholar
Jackiw, R. S. and Pi, Y. (2003). “Chern–Simons Modification of General Relativity,” arXiv: gr-qc/0308071.
Korn, G. A. and Korn, T. M. (1961). Mathematics Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for References and Review, McGraw–Hill, New York.Google Scholar
Kottler, F. (1918). “ Über die physikalischen Grudlagen der Einsteischen Gravitationstheorie,” Annalen Physik 56, 410.Google Scholar
Kramer, D., Stephani, H., MacCallum, M., and Hertl, E. (1980). Exact Solutions of the Einstein's Field Equations, Deutsch. Ver. der Wiss., Berlin.Google Scholar
Landau, L. and Lifshitz, E. (1970). Théorie des Champs, Mir, Moscow,Google Scholar
Liddle, A. R. and Lyth, D. H. (2000). Cosmological Inflation and Large-Scale Structure, Cambridge University Press.CrossRefGoogle Scholar
Lucchin, F. and Matarrese, S. (1985). “Power–law inflation,” Phys. Rev. D32, 1316.Google Scholar
Madsen, M. S. (1986). “An unusual cosmological solutions for Λϕ4 theory with broken symmetry,” Gen. Rel. and Grav. 18, 879.CrossRefGoogle Scholar
Maldacena, J. (1998). “The large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2, 231 (arXiv: hep-th/9711200).CrossRefGoogle Scholar
Mandal, G., Sengupta, A. M. and Wadia, S. R. (1991). “Classical solutions of 2–dimensional string theory,” Mod. Phys. Lett. A 6 1685.CrossRefGoogle Scholar
Mak, M. K. and Harko, T. (2000). “Maximum mass–radius ratio for compact general relativistc objects in Swarzschild–de Sitter geometry,” Mod. Phys. Lett. A15, 2105.Google Scholar
Maki, T. and Shiraishi, K. (1993). “Multi-black hole solutions in cosmological Einstein– Maxwell dilaton theory,” Class. Quant. Grav. 10, 2171.CrossRefGoogle Scholar
Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation, San Francisco, Freeman.Google Scholar
Ortín, T. (2004). Gravity and Strings, Cambridge University Press.CrossRefGoogle Scholar
Oppenheimer, J. R. and Snyder, H. (1939). “On continued gravitational contraction,” Phys. Rev. 56, 455.CrossRefGoogle Scholar
Oppenheimer, J. R. and Volkoff, G. (1939). “On massive neutron cores,” Phys. Rev. 55, 374.CrossRefGoogle Scholar
Penrose, R. and Rindler, W. (1986). Spinors and Space-Time. 2 Vols. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Plebański, J. F. (1964). “The algebraic structure of the tensor of matter”, Acta Phys. Pol. 26, 963.Google Scholar
Plebański, J. F. (1967). On Conformally Equivalent Riemannian Spaces, Monograph of CINVESTAV-IPN, México.
Plebański, J. F. (1975). “A class of solutions of Einstein–Maxwell equations,” Ann. of Phys. (USA) 90, 196.Google Scholar
Polchinski, J. (1998). String Theory, 2 vols. Cambridge University Press, Cambridge, UK.Google Scholar
Ponce de Leon, J. and Cruz, N. (2000). “Hydrostatic equilibrium of a perfect fluid sphere with exterior higher-dimensional Schwarzschild spacetime,” Gen. Rel. Grav. 32, 1207.CrossRefGoogle Scholar
Robinson, I. (1959). “A solution of the Einstein–Maxwell equations,” Bull. Acad. Polon. Sci., Ser. Math. AStr. Phys. 7, 351.Google Scholar
Salazar, H., García, A., and Plebański, J. F. (1984). “Type D solutions of the Einstein and Born–Infeld nolinear electrodynamics equations,” Nuovo Cimento B84, 65.Google Scholar
Salazar, H., García, A., and Plebański, J. F. (1987). “Duality rotations and type D solutions to Einstein equations with nonlinear electrodynamics sources,” J. Math. Phys. 28, 2171.CrossRefGoogle Scholar
Schouten, J. A. (1954). Ricci Calculus, Springer–Verlag, Berlin.CrossRefGoogle Scholar
Schouten, J. A. (1958). “Über die konforme Abbildung n-dimensionaler Mannigfaltigkeiten mit quadratischer Masbestimmung auf eine Mannigfaltigkeit euklidischer Masbestimmung,” Math. Zeit. 11, 58.CrossRefGoogle Scholar
Stephani, H. (1990). General Relativity–An Introduction to the Theory of Gravitational Field, Cambridge University Press, Sec. Ed.Google Scholar
Stephani, H., Kramer, D., MacCallum, M., Honselaers, C. and Herlt, E. (2003). Exact Solutions to Einstein's Field Equations, Second Edn. Cambridge University Press.CrossRefGoogle Scholar
Straumann, N. (1984). General Relativity and Relativistic Astrophysics, Springer– Verlag, Berlin.CrossRefGoogle Scholar
Tsantilis, E., Puntigam, R. A., and Hehl, F. W. (1996). “A quadratic curvature Lagrangian of Pawlowski and R, aczka: A finger exercise with Math Tensor.” In: Relativity and Scientific Computing, F. W., Hehl, R. A., Puntigam, H., Ruder (Eds.). Springer, Berlin (arXiv: gr-qc/9601002).Google Scholar
Tangherlini, F. R. (1963). “Schwarzschil field in n dimensions and the dimensionality of the space problem,” Il Nuovo Cimento. 27, 636.CrossRefGoogle Scholar
Tonnelat, M. A. (1959). Les principles de la théorie èlectromagnètique et de la relativltè, Masson et Cie, Editeurs, 120 Boulevard Saint Germain, Paris.Google Scholar
Visser, M. (1992). “Dirty black holes: Thermodynamics and horizon structure,” Phys. Rev. D46, 2445.Google Scholar
Wald, R. M. (1984). General Relativity, Chicago, University of Chicago Press.CrossRefGoogle Scholar
Weinberg, S. (1972). Gravitation and Cosmology: Principles and applications of the General Theory of Relativity, Wiley, New York.Google Scholar
Witten, E. (1991). “String theory and black holes,” Phys. Rev. D44, 314.Google Scholar
Witten, E. (1998). “Anti de Sitter space and holography,” Adv. Theor. Math. Phys. 2, 253. (arXiv: hep-th/9802150).CrossRefGoogle Scholar
Weyl, H. (1918). “Reine Infinitesimalgeometrie,” Math. Zeitschr. 2, 384.CrossRefGoogle Scholar
York Jr., J. W. (1971). “Gravitational degrees of freedom and the initial-value problem,” Phys. Rev. Lett. 26, 1656–1658.CrossRefGoogle Scholar
Zarro, C. A. D. (2009). “Buchdahl limit for d–dimensional spherical solutions with a cosmological constant,” Gen. Rel. Grav. 41, 453.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Alberto A. García-Díaz
  • Book: Exact Solutions in Three-Dimensional Gravity
  • Online publication: 30 August 2017
  • Chapter DOI: https://doi.org/10.1017/9781316556566.022
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Alberto A. García-Díaz
  • Book: Exact Solutions in Three-Dimensional Gravity
  • Online publication: 30 August 2017
  • Chapter DOI: https://doi.org/10.1017/9781316556566.022
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Alberto A. García-Díaz
  • Book: Exact Solutions in Three-Dimensional Gravity
  • Online publication: 30 August 2017
  • Chapter DOI: https://doi.org/10.1017/9781316556566.022
Available formats
×