Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-21T12:49:17.271Z Has data issue: false hasContentIssue false

References and further reading

Published online by Cambridge University Press:  18 December 2009

John C. Avise
Affiliation:
University of California, Irvine
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Evolutionary Pathways in Nature
A Phylogenetic Approach
, pp. 253 - 278
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avise, J. C. 2002. Genetics in the Wild. Washington, D.C.: Smithsonian Institution Press.Google Scholar
Avise, J. C. 2004. Molecular Markers, Natural History, and Evolution (2nd edn). Sunderland, MA: Sinauer.Google Scholar
Baker, A. J. (ed.) 2000. Molecular Methods in Ecology. Oxford: Blackwell.Google Scholar
Darwin, C. 1859. On the Origin of Species. London: John Murray.Google Scholar
Dawkins, R. 2004. The Ancestor's Tale: A Pilgrimage to the Dawn of Evolution. New York: Houghton-Mifflin.Google Scholar
Dobzhansky, T. 1973. Nothing in biology makes sense except in the light of evolution. Am. Biol. Teacher 35: 125–9.CrossRefGoogle Scholar
Felsenstein, J. 2004. Inferring Phylogenies. Sunderland, MA: Sinauer.Google Scholar
Haeckel, E. 1866. Generelle Morphologie der Organismen. Berlin: Georg Reimer.CrossRefGoogle Scholar
Hall, B. G. 2004. Phylogenetic Trees Made Easy (2nd edn). Sunderland, MA: Sinauer.Google Scholar
Hillis, D. M., Moritz, C., and Mable, B. K. (eds) 1996. Molecular Systematics (2nd edn). Sunderland, MA: Sinauer.Google Scholar
Holder, M. and Lewis, P. O. 2003. Phylogeny estimation: traditional and Bayesian approaches. Nature Genet. 4: 275–84.CrossRefGoogle ScholarPubMed
Huelsenbeck, J. P. 2000. MRBAYES: Bayesian Inferences of Phylogeny [software]. Rochester, NY: University of Rochester.Google Scholar
Huelsenbeck, J. P. and Rannala, B. 1997. Phylogenetic methods come of age: testing hypotheses in an evolutionary context. Science 276: 227–232.CrossRefGoogle Scholar
Li, W.-H. 1997. Molecular Evolution. Sunderland, MA: Sinauer.Google ScholarPubMed
Margoliash, E. 1963. Primary structure and evolution of cytochromec. Proc. Natl. Acad. Sci. USA 50: 672–9.CrossRefGoogle ScholarPubMed
Nei, M. and Kumar, S. 2000. Molecular Evolution and Phylogenetics. Oxford:Oxford University Press.Google Scholar
Rokas, A., Williams, B. L., King, N., and Carroll, S. B. 2003. Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425: 798–804.CrossRefGoogle ScholarPubMed
Simpson, G. G. 1945. The principles of classification and a classification of mammals. Bull. Am. Mus. Nat. Hist. 85: 1–350.Google Scholar
Strimmer, K. and Haeseler, A. 1996. Quartet puzzling: A quartet maximum likelihood method for reconstructing tree topologies. Molec. Biol. Evol. 13: 964–9.CrossRefGoogle Scholar
Swofford, D. L. 2000. PAUP*: Phylogenetic Analysis Using Parsimony and Other Methods [software]. Sunderland, MA: Sinauer.
Lanyon, S. M. and Hall, J. G. 1994. Re-examination of barbet monophyly using mitochondrial-DNA sequence data. Auk 111: 389–97.CrossRefGoogle Scholar
Prum, R. O. 1988. Phylogenetic interrelationships of the barbets (Aves: Capitonidae) and toucans (Aves: Ramphastidae) based on morphology with comparisons to DNA-DNA hybridization. Zool. J. Linn. Soc. 92: 313–43.CrossRefGoogle Scholar
Sibley, C. G. and Ahlquist, J. E.. 1986. Reconstructing bird phylogeny by comparing DNA's. Scient. Am. 254(2): 82–3.CrossRefGoogle Scholar
Beer, G. R. 1940. Embryos and Ancestors. Oxford: Clarendon Press.Google Scholar
Boughton, D. A., Collette, B. B., and McCune, A. R.. 1991. Heterochrony in jaw morphology of needlefishes (Teleostei: Belonidae). Syst. Zool. 40: 329–54.CrossRefGoogle Scholar
Collette, B. B. and Parin, N. V.. 1970. Needlefishes (Belonidae) of the Eastern Atlantic Ocean. Atl. Rep. 11: 1–60.Google Scholar
Gould, S. J. 2000. Ontogeny and Phylogeny. Cambridge, MA: Harvard University Press.Google Scholar
Haeckel, E. 1866. Generelle Morphologie der Organismen. Berlin: Georg Reimer.CrossRefGoogle Scholar
Lovejoy, N. R. 2000. Reinterpreting recapitulation: Systematics of needlefishes and their allies (Teleostei: Beloniformes). Evolution 54: 1349–62.CrossRefGoogle Scholar
Collin, R. and Cipriani, R. 2003. Dollo's law and the re-evolution of shell coiling. Proc. R. Soc. Lond. B270: 2551–5.CrossRefGoogle ScholarPubMed
Dollo, L. 1893. Les lois de l'evolution. Bull. Soc. Belge Géol. Pal. Hydr. 7: 164–6.Google Scholar
Gould, S. J. 1970. Dollo on Dollo's law: irreversibility and the status of evolutionary laws. J. Hist. Biol. 3: 189–212.CrossRefGoogle ScholarPubMed
Raff, R. A. 1996. The Shape of Life: Genes, Development, and the Evolution of Animal Form. Chicago: University of Chicago Press.Google Scholar
Vermeij, G. 1987. Evolution and Escalation. Princeton, NJ: Princeton University Press.Google Scholar
Asami, T., Cowie, R. H., and Ohbayashi, K. 1998. Evolution of mirror images by sexually asymmetric mating behavior in hermaphroditic snails. Am. Nat. 152: 225–36.CrossRefGoogle ScholarPubMed
Gittenberger, E. 1988. Sympatric speciation in snails: A largely neglected model. Evolution 42: 826–8.CrossRefGoogle ScholarPubMed
Johnson, M. S., Clarke, B., and Murray, J. 1990. The coil polymorphism in Partula suturalis does not favor sympatric speciation. Evolution 44: 459–64.CrossRefGoogle Scholar
Ueshima, R. and Asami, T. 2003. Single-gene speciation by left-right reversal. Nature 425: 679.CrossRefGoogle ScholarPubMed
Vermeij, G. J. 1975. Evolution and distribution of left-handed and planispiral coiling in snails. Nature 254: 419–20.CrossRefGoogle Scholar
Wagner, D. L. and Liebherr, J. K. 1992. Flightlessness in insects. Trends Ecol. Evol. 7: 216–20.CrossRefGoogle ScholarPubMed
Whiting, M. F., Bradler, S., and Maxwell, T. 2003. Loss and recovery of wings in stick insects. Nature 421: 264–7.CrossRefGoogle ScholarPubMed
Cunningham, C. W., Blackstone, N. W., and Buss, L. W. 1992. Evolution of king crabs from hermit crab ancestors. Nature 355: 539–42.CrossRefGoogle ScholarPubMed
Gould, S. J. 1992. We are all monkey's uncles. Nat. Hist. 101(6): 14–21.Google Scholar
Brochu, C. A. 2001. Crocodylian snouts in space and time: Phylogenetic approaches toward adaptive radiation. Am. Zool. 41: 564–85.Google Scholar
Gatesy, J. and Amato, G. D.. 1992. Sequence similarity of 12S ribosomal segment of mitochondrial DNAs of gharial and false gharial. Copeia 1992: 241–3.CrossRefGoogle Scholar
Graybeal, A. 1994. Evaluating the phylogenetic utility of genes: A search for genes informative about deep divergences among vertebrates. Syst. Biol. 43: 174–93.CrossRefGoogle Scholar
Grigg, G. C., Seebacher, F., and Franklin, C. E. (eds) 2001. Crocodilian Biology and Evolution. Chipping Norton, New South Wales, Australia: Surrey Beatty & Sons.Google Scholar
Harshman, J., Huddleston, C. J., Bollback, J. P., Parsons, T. J., and Braun, M. J. 2003. True and false gharials: a nuclear gene phylogeny of Crocodylia. Syst. Biol. 52: 386–402.CrossRefGoogle ScholarPubMed
Hillis, D. M. 1987. Molecular versus morphological approaches to systematics. A. Rev. Ecol. Syst. 18: 23–42.CrossRefGoogle Scholar
Maddison, W. P. 1997. Gene trees in species trees. Syst. Biol. 46: 523–36.CrossRefGoogle Scholar
Norell, M. A. 1989. The higher level relationships of the extant Crocodylia. J. Herpetol. 23: 325–35.CrossRefGoogle Scholar
Caldwell, M. W. and Lee, M. S. Y. 1997. A snake with legs from the marine Cretaceous of the Middle East. Nature 386: 705–9.CrossRefGoogle Scholar
Coates, M. and Ruta, M. 2000. Nice snake, shame about the legs. Trends Ecol. Evol. 15: 503–7.CrossRefGoogle ScholarPubMed
Greer, A. E. 1991. Limb reduction in squamates: identification of the lineages and discussion of the trends. J. Herpetol. 25: 166–73.CrossRefGoogle Scholar
Kearney, M. and Stuart, B. L. 2004. Repeated evolution of limblessness and digging heads in worm lizards revealed by DNA from old bones. Proc. R. Soc. Lond. B271: 1677–83.CrossRefGoogle ScholarPubMed
Lande, R. 1978. Evolutionary mechanisms of limb loss in tetrapods. Evolution 32: 73–92.CrossRefGoogle ScholarPubMed
Pough, F. H. and 5 others 1998. Herpetology. Upper Saddle River, NJ: Prentice-Hall.Google Scholar
Vidal, N. and Hedges, S. B. 2004. Molecular evidence for a terrestrial origin of snakes. Proc. R. Soc. Lond. B (suppl.)271: S226–9.CrossRefGoogle ScholarPubMed
Walls, G. L. 1940. Ophthalmalogical implications for the early history of snakes. Copeia 1940: 1–8.CrossRefGoogle Scholar
Wiens, J. J. and Slingluff, J. L. 2001. How lizards turn into snakes: a phylogenetic analysis of body-form evolution in anguid lizards. Evolution 55: 2303–18.CrossRefGoogle ScholarPubMed
Brinkmann, H., Venkatesh, B., Brenner, S., and Meyer, A. 2004. Nuclear protein-coding genes support lungfish and not the coelacanth as the closest living relatives of land vertebrates. Proc. Natl. Acad. Sci. USA 101: 4900–5.CrossRefGoogle Scholar
Gorr, T., Kleinschmidt, T., and Fricke, H. 1991. Close tetrapod relationship of the coelacanth Latimeria indicated by haemoglobin sequences. Nature 351: 394–7.CrossRefGoogle Scholar
Meyer, A. and Wilson, A. C. 1990. Origin of tetrapods inferred from their mitochondrial DNA affiliation to lungfish. J. Molec. Evol. 31: 359–64.CrossRefGoogle ScholarPubMed
Sharp, P. M., Lloyd, A. T., and Higgins, D. G. 1991. Coelacanth's relationships. Nature 353: 218–19.CrossRefGoogle Scholar
Stock, D. W., Moberg, K. D., Maxson, L. R., and Whitt, G. S. 1991. A phylogenetic analysis of the 18S ribosomal RNA sequence of the coelacanthLatimeria chalumnae. Env. Biol. Fishes 32: 99–117.CrossRefGoogle Scholar
Takezaki, N., Figueroa, F., Zaleska-Rutczynska, Z., Takahata, N., and Klein, J. 2004. The phylogenetic relationships of tetrapod, coelacanth, and lungfish revealed by the sequences of forty-four nuclear genes. Molec. Biol. Evol. 21: 1512–24.CrossRefGoogle ScholarPubMed
Thompson, K. S. 1991. Living Fossil: The Story of the Coelacanth. New York: Norton.Google Scholar
Zardoya, R., Cao, Y., Hasegawa, M., and Meyer, A. 1998. Searching for the closest living relative(s) of tetrapods through evolutionary analyses of mitochondrial and nuclear data. Molec. Biol. Evol. 15: 506–17.CrossRefGoogle ScholarPubMed
Flynn, J. J., Nedbal, M. A., Dragoo, J. W., and Honeycutt, R. L. 2000. Whence the red panda?Molec. Phylogen. Evol. 17: 190–9.CrossRefGoogle ScholarPubMed
O.Brien, S. J. 1987. The ancestry of the giant panda. Scient. Am. 257(5): 102–7.CrossRefGoogle Scholar
O'Brien, S. J., Nash, W. G., Wildt, D. E., Bush, M. E., and Benveniste, R. E. 1985. A molecular solution to the riddle of the giant panda's phylogeny. Nature 317: 140–4.CrossRefGoogle ScholarPubMed
Sarich, V. M. 1973. The giant panda is a bear. Nature 245: 218–20.CrossRefGoogle Scholar
Slattery, J. P. and O'Brien, S. J. 1995. Molecular phylogeny of the red panda(Ailurus fulgens). J. Hered. 86: 413–22.CrossRefGoogle ScholarPubMed
Brown, L. H. and Amadon, D. 1968. Eagles, Hawks and Falcons of the World. London: Country Life.Google Scholar
Bunce, M. and 6 others. 2005. Ancient DNA provides new insights into the evolutionary history of New Zealand's extinct giant eagle. PloS Biology 3: 44–6.CrossRefGoogle ScholarPubMed
Hofreiter, M, Serre, D., Poinar, H. N., Kuch, M., and Pääbo, S. 2001. Ancient DNA. Nature Rev. Genet. 2: 353–9.CrossRefGoogle ScholarPubMed
Nicholls, H. 2005. Ancient DNA comes of age. PloS Biology 3: 192–6.CrossRefGoogle ScholarPubMed
Worthy, T. H. and Holdaway, R. N. 2002. The Lost World of the Moa: Prehistoric Life of New Zealand. Bloomington, IN: Indiana University Press.Google Scholar
Hergé, G. R. 1960. Tintin in Tibet [English version]. Belgium: Casterman.Google Scholar
Matthiessen, P. 1979. The Snow Leopard. London: Chatto & Windus.Google Scholar
Matthiessen, P. and Laird, T. 1995. East of Lo Monhong: In the Land of the Mustang. Boston, MA: Shambala Publishers.Google Scholar
Milinkovitch, M. C., Caccone, A., and Amato, G. 2004. Molecular phylogenetic analyses indicate extensive morphological convergence between the “yeti” and primates. Molec. Phylogen. Evol. 31: 1–3.Google ScholarPubMed
Dice, L. and Blossom, P. M. 1937. Studies of mammalian ecology in southwestern North America, with special attention to the colors of desert mammals. Publ. Carnegie Inst. Washington 485: 1–25.Google Scholar
Hoekstra, H. E. and Nachman, M. W. 2003. Different genes underlie adaptive melanism in different populations of rock pocket mice. Molec. Ecol. 12: 1185–94.CrossRefGoogle ScholarPubMed
Nachman, M. W., Hoekstra, H. E., and D'Agostino, S. L. 2003. The genetic basis of adaptive melanism in pocket mice. Proc. Natl. Acad. Sci. USA 100: 5268–73.CrossRefGoogle ScholarPubMed
Andersson, M. 1994. Sexual Selection. Princeton, NJ: Princeton University Press.Google Scholar
Badyaev, A. V. and Hill, G. E. 2003. Avian sexual dichromatism in relation to phylogeny and ecology. A. Rev. Ecol. Evol. Syst. 34: 27–49.CrossRefGoogle Scholar
Burns, K. J. 1998. A phylogenetic perspective on the evolution of sexual dichromatism in tanagers (Thraupidae): The role of female versus male plumage. Evolution 52: 1219–24.CrossRefGoogle ScholarPubMed
Kimball, R. T., Braun, E. L., Ligon, J. D., Lucchini, V., and Randi, E. 2001. A molecular phylogeny of the peacock-pheasants (Galliformes: Polyplectron spp) indicates loss and reduction of ornamental traits and display behaviors. Biol. J. Linn. Soc. 73: 187–98.Google Scholar
Kimball, R. T. and Ligon, J. D. 1999. Evolution of avian plumage dichromatism from a proximate perspective. Am. Nat. 154: 182–93.CrossRefGoogle Scholar
Owens, I. P. F. and Short, R. V. 1995. Hormonal basis of sexual dimorphism in birds: implications for new theories of sexual selection. Trends Ecol. Evol. 10: 44–7.CrossRefGoogle ScholarPubMed
Peterson, A. T. 1996. Geographic variation in sexual dichromatism in birds. Bull. Br. Ornithol. Club 116: 156–72.Google Scholar
Price, T. and Birch, G. L. 1996. Repeated evolution of sexual color dimorphism in passerine birds. Auk 133: 842–8.CrossRefGoogle Scholar
Wiens, J. 2001. Widespread loss of sexually selected traits: how the peacock lost its spots. Trends Ecol. Evol. 16: 517–23.CrossRefGoogle Scholar
Delacour, J. and Mayr, E. 1945. The family Anatidae. Wilson Bull. 57: 2–55.Google Scholar
Omland, K. E. 1997. Examining two standard assumptions of ancestral reconstructions: repeated loss of dichromatism in dabbling ducks (Anatini). Evolution 51: 1636–46.CrossRefGoogle Scholar
Sibley, C. G. 1957. The evolutionary and taxonomic significance of sexual dimorphism and hybridization in birds. Condor 59: 166–87.CrossRefGoogle Scholar
Allen, E. S. and Omland, K. E. 2003. Novel intron phylogeny supports plumage convergence in orioles (Icterus). Auk 120: 961–9.CrossRefGoogle Scholar
Endler, J. A. and Théry, M. 1996. Interacting effects of lek placement, display behavior, ambient light, and color patterns in three Neotropical forest-dwelling birds. Am. Nat. 148: 421–52.CrossRefGoogle Scholar
Hoekstra, H. E. and Price, T. 2004. Parallel evolution is in the genes. Science 303: 1779–81.CrossRefGoogle ScholarPubMed
Mundy, N. I. and 5 others 2004. Conserved genetic basis of a quantitative plumage trait involved in mate choice. Science 303: 1870–3.CrossRefGoogle ScholarPubMed
Omland, K. E. and Lanyon, S. M. 2000. Reconstructing plumage evolution in orioles (Icterus): Repeated convergence and reversal in patterns. Evolution 54: 2119–33.CrossRefGoogle ScholarPubMed
West-Eberhard, M. J. 2003. Developmental Plasticity and Evolution. New York: Oxford University Press.Google Scholar
Diamond, J. 1994. Stinking birds and burning books. Natural History 103(2): 4–12.Google Scholar
Dumbacher, J. P. and Fleischer, R. C. 2001. Phylogenetic evidence for colour pattern convergence in toxic pitohuis: Müllerian mimicry in birds? Proc. R. Soc. Lond. B268: 1971–6.CrossRefGoogle ScholarPubMed
Dumbacher, J. P. and Pruett-Jones, S. 1996. Avian chemical defenses. Curr. Ornithol. 13: 137–74.CrossRefGoogle Scholar
Müller, F. 1879. Ituna and Thyridia: a remarkable case of mimicry in butterflies. Trans. Entomol. Soc. Lond. 1879: ⅹⅹ–ⅹⅹⅸ.Google Scholar
Daly, J. W. and 6 others 2002. Bioactive alkaloids of frog skin: combinatorial bioprospecting reveals that pumiliotoxins have an arthropod source. Proc. Natl. Acad. Sci. USA 99: 13996–4001.CrossRefGoogle ScholarPubMed
Myers, C. W. and Daly, J. W. 1983. Dart-poison frogs. Scient. Am. 248(2): 120–33.CrossRefGoogle ScholarPubMed
Santos, J. C., Coloma, L. A., and Cannatella, D. C. 2003. Multiple, recurring origins of aposematism and diet specialization in poison frogs. Proc. Natl. Acad. Sci. USA 100: 12792–7.CrossRefGoogle ScholarPubMed
Saporito, R. A. and 5 others 2004. Formicine ants: an arthropod source for the pumiliotoxin alkaloids of dendrobatid poison frogs. Proc. Natl. Acad. Sci. USA 101: 8045–50.CrossRefGoogle ScholarPubMed
Symula, R., Schulte, R., and Summers, K. 2001. Molecular phylogenetic evidence for a mimetic radiation in Peruvian poison frogs supports a Müllerian mimicry hypothesis. Proc. R. Soc. Lond. B268: 2415–21.CrossRefGoogle ScholarPubMed
Brower, A. V. Z. 1994. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proc. Natl. Acad. Sci. USA 91: 6491–5.CrossRefGoogle ScholarPubMed
Brower, A. V. Z. 1996. Parallel race formation and the evolution of mimicry in Heliconius butterflies: a phylogenetic hypothesis from mitochondrial DNA sequences. Evolution 50: 195–221.CrossRefGoogle ScholarPubMed
Nijhout, H. F. 1991. The Development and Evolution of Butterfly Wing Patterns. Washington, DC: Smithsonian Institution Press.Google Scholar
Frankie, G. W., Mata, A., and Vinson, S. B. (eds) 2004. Biodiversity Conservation in Costa Rica. Berkeley, CA: University of California Press.Google Scholar
Hebert, P. D. N., Cywinska, A., Ball, S. L., and deWaard, J. R. 2003. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B270: 313–21.CrossRefGoogle ScholarPubMed
Hebert, P. D. N., Penton, E. H., Burns, J. M., Janzen, D. H., and Hallwachs, W. 2004. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterflyAstraptes fulgerator. Proc. Natl. Acad. Sci. USA 101: 14812–17.CrossRefGoogle ScholarPubMed
Tautz, D., Arctander, P., Minelli, A., Thomas, R. H., and Vogler, A. P. 2003. A plea for DNA taxonomy. Trends Ecol. Evol. 18: 70–4.CrossRefGoogle Scholar
Wilson, E. O. 1992. The Diversity of Life. New York: Norton.Google Scholar
Meyer, A. and Zardoya, R. 2003. Recent advances in the (molecular) phylogeny of vertebrates. A. Rev. Ecol. Evol. Syst. 34: 311–38.CrossRefGoogle Scholar
Gill, F. B. 1990. Ornithology (2nd edn). New York: W. H. Freeman & Co.Google Scholar
Bennett, P. M. and Owens, I. P. F. 2002. Evolutionary Ecology of Birds. Oxford: Oxford University Press.Google Scholar
Owens, I. P. F. and Bennett, P. M. 1995. Ancient ecological diversification explains life-history variation among living birds. Proc. R. Soc. Lond. B261: 227–32.CrossRefGoogle Scholar
Sheldon, F. H., Whittingham, L. A., and Winkler, D. W. 1999. A comparison of cytochrome b and DNA hybridization data bearing on the phylogeny of swallows (Aves: Hirundinidae). Molec. Phylogen. Evol. 11: 320–31.CrossRefGoogle Scholar
Winkler, D. W. and Sheldon, F. H. 1993. Evolution of nest construction in swallows (Hirundinidae): A molecular phylogenetic perspective. Proc. Natl. Acad. Sci. USA 90: 5705–7.CrossRefGoogle ScholarPubMed
Aragon, S., M⊘ller, A. P., Soler, J. J. and Soler, M. 1999. Molecular phylogeny of cuckoos supports a polyphyletic origin of brood parasitism. J. Evol. Biol. 12: 495–506.CrossRefGoogle Scholar
Lanyon, S. M. 1992. Interspecific brood parasitism in blackbirds (Icterinae): A phylogenetic perspective. Science 255: 77–9.CrossRefGoogle ScholarPubMed
Sorenson, M. D., Sefc, K. M., and Payne, R. B. 2003. Speciation by host switch in brood parasitic indigobirds. Nature 424: 928–31.CrossRefGoogle ScholarPubMed
Blackburn, D. G. 1992. Convergent evolution of viviparity, matrotrophy and specializations for fetal nutrition in reptiles and other vertebrates. Am. Zool. 32: 313–21.CrossRefGoogle Scholar
Bull, J. J. and Charnov, E. L. 1985. On irreversible evolution. Evolution 39: 1149–55.CrossRefGoogle ScholarPubMed
Dulvy, N. K. and Reynolds, J. D. 1997. Evolutionary transitions among egg-laying, live-bearing and maternal inputs in sharks and rays. Proc. R. Soc. Lond. B264: 1309–15.CrossRefGoogle Scholar
Lee, M. S. and Shine, R. 1998. Reptilian viviparity and Dollo's law. Evolution 52: 1441–50.CrossRefGoogle ScholarPubMed
Neill, W. T. 1964. Viviparity in snakes: some ecological and zoogeographical considerations. Am. Nat. 98: 35–55.CrossRefGoogle Scholar
Rouse, G. and Fitzhugh, K. 1994. Broadcasting fables: is external fertilization really primitive?Zool. Scr. 23: 271–312.CrossRefGoogle Scholar
Surget-Groba, Y. and 13 others 2001. Intraspecific phylogeography of Lacerta vivipara and the evolution of viviparity. Molec. Phylogen. Evol. 18: 449–59.CrossRefGoogle ScholarPubMed
Darwin, C. 1859. On the Origin of Species. London: John Murray.Google Scholar
Mateos, M., Sanjur, O. I., and Vrijenhoek, R. C. 2002. Historical biogeography of the livebearing fish genus Poeciliopsis (Poeciliidae: Cyprinodontiformes). Evolution 56: 972–84.CrossRefGoogle ScholarPubMed
Nilsson, D.-E. and Pelger, S.. 1994. A pessimistic estimate of the time required for an eye to evolve. Proc. R. Soc. Lond. B256: 53–8.CrossRefGoogle ScholarPubMed
Reznick, D. N., Mateos, M., and Springer, M. S. 2002. Independent origins and rapid evolution of the placenta in the fish genusPoeciliopsis. Science 298: 1018–20.Google ScholarPubMed
Rossant, J. and Cross, J. C.. 2001. Placental development: lessons from mouse mutants. Nature Rev. Genet. 2: 538–48.CrossRefGoogle ScholarPubMed
Jones, A. G. and Avise, J. C. 2001. Mating systems and sexual selection in male-pregnant pipefishes and seahorses: insights from microsatellite-based studies of maternity. J. Heredity 92: 150–8.CrossRefGoogle ScholarPubMed
Lourie, S. A., Vincent, A., and Hall, H. J. 1999. Seahorses: An Identification Guide to the World's Species and Their Conservation. London: Project Seahorse.Google Scholar
Vincent, A., Ahnesjö, I., Berglund, A., and Rosenqvist, G. 1992. Pipefishes and seahorses: are they all sex role reversed?Trends Ecol. Evol. 7: 237–41.CrossRefGoogle ScholarPubMed
Wilson, A. B., Ahnesjö, I., Vincent, A., and Meyer, A. 2003. The dynamics of male brooding, mating patterns, and sex roles in pipefishes and seahorses (family Syngnathidae). Evolution 57: 1374–86.CrossRefGoogle ScholarPubMed
Wilson, A. B., Vincent, A., Ahnesjö, I., and Meyer, A. 2001. Male pregnancy in seahorses and pipefishes (family Syngnathidae): rapid diversification of paternal brood pouch morphology inferred from a molecular phylogeny. J. Heredity 92: 159–66.CrossRefGoogle ScholarPubMed
Basolo, A. L. 1990. Female preference predates the evolution of the sword in swordtail fish. Science 250: 808–10.CrossRefGoogle ScholarPubMed
Basolo, A. L. 1995. Phylogenetic evidence for the role of pre-existing bias in sexual selection. Proc. R. Soc. Lond. B259: 307–11.CrossRefGoogle ScholarPubMed
Basolo, A. L. and Alcaraz, G. 2003. The turn of the sword: length increases male swimming costs in swordtails. Proc. R. Soc. Lond. B270: 1631–6.CrossRefGoogle ScholarPubMed
Endler, J. A. and Basolo, A. L. 1998. Sensory ecology, receiver biases and sexual selection. Trends Ecol. Evol. 13: 415–20.CrossRefGoogle ScholarPubMed
Meyer, A., Morrissey, J. M., and Schartl, M. 1994. Recurrent origin of a sexually selected trait in Xiphophorus fishes inferred from a molecular phylogeny. Nature 368: 539–42.CrossRefGoogle ScholarPubMed
Schluter, D., Price, T., Mooers, A., and Ludwig, D. 1997. Likelihood of ancestor states in adaptive evolution. Evolution 51: 1699–711.CrossRefGoogle Scholar
Burggren, W. W. and McMahon, B. R. (eds) 1988. Biology of the Land Crabs. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Hedges, S. B. 1996. Historical biogeography of West Indian vertebrates. A. Rev. Ecol. Syst. 27: 163–96.CrossRefGoogle Scholar
Schubart, C. D., Diesel, R., and Hedges, S. B. 1998. Rapid evolution to terrestrial life in Jamaican crabs. Nature 393: 363–5.CrossRefGoogle Scholar
Als, T. D. and 8 others 2004. The evolution of alternative parasitic life histories in large blue butterflies. Nature 432: 386–90.CrossRefGoogle ScholarPubMed
Hölldobler, B. and Wilson, E. O.. 1990. The Ants. Berlin: Springer.CrossRefGoogle Scholar
Pullin, A.S. (ed.) 1995. Ecology and Conservation of Butterflies. London: Chapman & Hall.CrossRefGoogle Scholar
Thomas, J. A. and Settele, J. 2004. Butterfly mimics of ants. Nature 432: 283–4.CrossRefGoogle ScholarPubMed
Avise, J. C., Quattro, J. M., and Vrijenhoek, R. C. 1992. Molecular clones within organismal clones. Evol. Biol. 26: 225–46.Google Scholar
Dawley, R. M. and Bogart, J. P. (eds) 1989. Evolution and Ecology of Unisexual Vertebrates. Albany, NY: New York State Museum.Google Scholar
Densmore, L. D. III, Moritz, C. C., Wright, J. W., and Brown, W. M. 1989. Mitochondrial-DNA analyses and the origin and relative age of parthenogenetic lizards (genus Cnemidophorus). IV. Nine sexlineatus-group unisexuals. Evolution 43: 969–83.Google ScholarPubMed
Dessauer, H. C. and C. J. Cole 1989. Diversity between and within nominal forms of unisexual teiid lizards. In: Evolution and Ecology of Unisexual Vertebrates, Dawley, R. M. and Bogart, J. P. (eds), pp. 49–71. Albany, NY: New York State Museum.Google Scholar
Moritz, C. C. 1991. The origin and evolution of parthenogenesis in Heteronotia binoei (Gekkonidae): Evidence for recent and localized origins of widespread clones. Genetics 129: 211–19.Google ScholarPubMed
Moritz, C. C. and 9 others 1989. Genetic diversity and the dynamics of hybrid parthenogenesis in Cnemidophorus (Teiidae) and Heteronotia (Gekkonidae). In: Evolution and Ecology of Unisexual Vertebrates, Dawley, R. M. and Bogart, J. P. (eds), pp. 87–112. Albany, NY: New York State Museum.Google Scholar
Quattro, J. M., Avise, J. C., and Vrijenhoek, R. J. 1992. An ancient clonal lineage in the fish genus Poeciliopsis (Atheriniformes: Poeciliidae). Proc. Natl. Acad. Sci. USA 89: 348–52.CrossRefGoogle Scholar
Beardsley, P. M., Yen, A., and Olmstead, R. G. 2003. AFLP phylogeny of Mimulus section Erythranthe and the evolution of hummingbird pollination. Evolution 57: 1397–410.CrossRefGoogle ScholarPubMed
Grant, K.A. and Grant, V.. 1968. Hummingbirds and Their Flowers. New York: Columbia University Press.Google Scholar
Schemske, D. W. and Bradshaw, H. D. Jr. 1999. Pollinator preference and the evolution of floral traits in monkeyflowers (Mimulus). Proc. Natl. Acad. Sci. USA 96: 11910–15.CrossRefGoogle Scholar
Stebbins, G. L. 1970. Adaptive radiation of reproductive characteristics in Angiosperms. I. Pollination mechanisms. A. Rev. Ecol. Syst. 1: 307–26.CrossRefGoogle Scholar
Weller, S. G. and Sakai, A. K. 1999. Using phylogenetic approaches for the analysis of plant breeding system evolution. A. Rev. Ecol. Syst. 30: 167–99.CrossRefGoogle Scholar
Bininda-Emonds, O. R. P., Gittleman, J. L., and Purvis, A. 1999. Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia). Biol. Rev. Camb. Philos. Soc. 74: 143–75.CrossRefGoogle Scholar
Birkhead, T. R. and M⊘ller, A. P. 1993. Sexual selection and the temporal separation of reproductive events: sperm storage data from reptiles, birds and mammals. Biol. J. Linn. Soc. 50: 295–311.CrossRefGoogle Scholar
Lindenfors, P., Dalen, L., and Angerbjörn, A.. 2003. The monophyletic origin of delayed implantation in carnivores and its implications. Evolution 57: 1952–6.CrossRefGoogle ScholarPubMed
Mead, R. A. 1989. The physiology and evolution of delayed implantation in carnivores. In: Carnivore Behavior, Ecology, and Evolution, Gittleman, J. L. (ed.), pp. 437–64. Ithaca, NY: Cornell University Press.Google Scholar
Renfree, M. B. 1978. Embryonic diapause in mammals: a developmental strategy. In: Dormancy and Developmental Arrest, Clutter, M. E. (ed.), pp. 1–46. New York: Academic Press.Google Scholar
Thom, M. D., Johnson, D. D. P., and Macdonald, D. W. 2004. The evolution and maintenance of delayed implantation in the Mustelidae (Mammalia: Carnivora). Evolution 58: 175–83.CrossRefGoogle Scholar
Burk, A., Westerman, M., and Springer, M. 1998. The phylogenetic position of the musky rat-kangaroo and the evolution of bipedal hopping in kangaroos (Macropodidae: Diprotodontia). Syst. Biol. 47: 457–74.CrossRefGoogle Scholar
Marshall, L. G. 1974. Why kangaroos hop. Nature 248: 174–6.CrossRefGoogle Scholar
Szalay, F. S. 1994. The Evolutionary History of Marsupials and an Analysis of Osteological Characters. Cambridge: Cambridge University Press.Google Scholar
Adkins, R. M. and Honeycutt, R. L. 1991. Molecular phylogeny of the superorder Archonta. Proc. Nat. Acad. Sci. USA 88: 10317–21.CrossRefGoogle ScholarPubMed
Bailey, W. J., Slighton, J. L., and Goodman, M. 1992. Rejection of the “flying primate” hypothesis by phylogenetic evidence from the ∊-globin gene. Science 256: 86–9.CrossRefGoogle ScholarPubMed
Baker, R. J., Novacek, M. J., and Simmons, N. B. 1991. On the monophyly of bats. Syst. Zool. 40: 216–31.CrossRefGoogle Scholar
Mindell, D. P., Dick, C. W., and Baker, R. J. 1991. Phylogenetic relationships among megabats, microbats, and primates. Proc. Natl. Acad. Sci. USA 88: 10322–6.CrossRefGoogle ScholarPubMed
Pettigrew, J. D. 1986. Flying primates? Megabats have the advanced pathway from eye to midbrain. Science 231: 1304–6.CrossRefGoogle Scholar
Teeling, E. C. and 5 others 2000. Molecular evidence regarding the origin of echolocation and flight in bats. Nature 403: 188–92.CrossRefGoogle ScholarPubMed
Teeling, E. C. and 5 others 2005. A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307: 580–4.CrossRefGoogle ScholarPubMed
Den, Bussche R. A., Baker, R. J., Huelsenbeck, J. P., and Hillis, D. M. 1998. Base compositional bias and phylogenetic analyses: A test of the “flying DNA” hypothesis. Molec. Phylogen. Evol. 13: 408–16.Google Scholar
DeLong, E. F., Frankel, R. B., and Bazylinski, D. A. 1993. Multiple evolutionary origins of magnetotaxis in bacteria. Science 259: 803–6.CrossRefGoogle ScholarPubMed
Frankel, R. B. and Blakemore, R. P. (eds) 1990. Iron Biominerals. New York: Plenum Press.Google Scholar
Stackebrandt, E. and Goodfellow, M. (eds) 1991. Nucleic Acid Techniques in Bacterial Systematics. New York: Wiley.Google Scholar
Graur, D. and Higgins, D. C. 1994. Molecular evidence for the inclusion of Cetaceans within the order Artiodactyla. Molec. Biol. Evol. 11: 357–64.Google ScholarPubMed
Milinkovitch, M. C. and Thewissen, J. G. M. 1997. Even-toed fingerprints on whale ancestry. Nature 388: 622–3.CrossRefGoogle Scholar
Montgelard, C., Catzeflis, F. M., and Douzery, E. 1997. Phylogenetic relationships of artiodactyls and cetaceans as deduced from the comparison of cytochrome b and 12S rRNA mitochondrial sequences. Molec. Biol. Evol. 14: 550–9.CrossRefGoogle ScholarPubMed
Nikaido, M., Rooney, A. P., and Okada, N. 1999. Phylogenetic relationships among certartiodactyls based on insertions of short and long interspersed elements: Hippopotamuses are the closest extant relatives of whales. Proc. Natl. Acad. Sci. USA 96: 10261–6.CrossRefGoogle Scholar
Leary, M. A. 2001. The phylogenetic position of cetaceans: further combined data analyses, comparisons with the stratigraphic record and a discussion of character optimization. Am. Zool. 41: 487–506.Google Scholar
Shimamura, M. and 8 others 1997. Molecular evidence from retroposons that whales form a clade within even-toed ungulates. Nature 388: 666–70.CrossRefGoogle Scholar
Ursing, B. W. and Arnason, U. 1998. Analyses of mitochondrial genomes strongly support a hippopotamus-whale clade. Proc. R. Soc. Lond. B265: 2251–5.CrossRefGoogle Scholar
Hasegawa, M., Adachi, J., and Milinkovitch, M. C. 1997. Novel phylogeny of whales supported by total molecular evidence. J. Molec. Evol. 44: S117–20.CrossRefGoogle ScholarPubMed
Milinkovitch, M. C. 1995. Molecular phylogeny of cetaceans prompts revision of morphological transformations. Trends Ecol. Evol. 10: 328–34.CrossRefGoogle ScholarPubMed
Nikaido, M. and 10 others 2001. Retroposon analysis of major cetacean lineages: The monophyly of toothed whales and the paraphyly of river dolphins. Proc. Natl. Acad. Sci. USA 98: 7384–9.CrossRefGoogle ScholarPubMed
Berthold, P. 2003. Avian Migration. New York: Springer.CrossRefGoogle Scholar
Outlaw, D. C., Voelker, G., Mila, B., and Girman, D. J. 2003. Evolution of long-distance migration in and historical biogeography of Catharus thrushes: a molecular phylogenetic approach. Auk 120: 299–310.CrossRefGoogle Scholar
Wainwright, P. C. and Turingan, R. G. 1997. Evolution of pufferfish inflation behavior. Evolution 51: 506–18.CrossRefGoogle ScholarPubMed
Winterbottom, R. 1974. The familial phylogeny of the Tetraodontiformes (Acanthopterygii: Pisces) as evidenced by their comparative myology. Smithsonian Contrib. Zool. 155: 1–201.CrossRefGoogle Scholar
Danforth, B. N., Conway, L., and Ji, S. 2003. Phylogeny of eusocial Lasioglossum reveals multiple losses of eusociality within a primitively eusocial clade of bees (Hymenoptera: Halictidae). Syst. Biol. 52: 23–36.CrossRefGoogle Scholar
Duffy, J. E. 1996. Eusociality in a coral-reef shrimp. Nature 381: 512–4.CrossRefGoogle Scholar
Duffy, J. E., Morrison, C. L., and Ríos, R. 2000. Multiple origins of eusociality among sponge-dwelling shrimps (Synalpheus). Evolution 54: 503–16.CrossRefGoogle Scholar
Hamilton, W. D. 1964. The genetical evolution of social behavior I, II. J. Theor. Biol. 7: 1–52.CrossRefGoogle Scholar
Queller, D. C. and Strassmann, J. E. 1998. Kin selection and social insects. BioScience 48: 165–75.CrossRefGoogle Scholar
Sherman, P. W., Jarvis, J. U. M., and Alexander, R. D. (eds) 1991. The Biology of the Naked Mole-Rat. Princeton, NJ: Princeton University Press.Google Scholar
Wilson, E. O. 1975. Sociobiology. Cambridge, MA: Belknap Press.Google Scholar
Chippindale, P. T., Bonett, R. M., Baldwin, A. S., and Wiens, J. J. 2004. Phylogenetic evidence for a major reversal of life-history evolution in plethodontid salamanders. Evolution 58: 2809–22.CrossRefGoogle Scholar
Duellman, W. E. and Trueb, L. 1986. Biology of Amphibians. New York: McGraw-Hill.Google Scholar
Hall, B. K. and Wake, M. H. (eds) 1999. The Origin and Evolution of Larval Forms. San Diego, CA: Academic Press.Google Scholar
Mueller, R. L., Macey, J. R., Jaekel, M., Wake, D. B., and Boore, J. L. 2004. Morphological homoplasy, life history evolution, and historical biogeography of plethodontid salamanders inferred from complete mitochondrial genomes. Proc. Natl. Acad. Sci. USA 101: 13820–5.CrossRefGoogle ScholarPubMed
Porter, M. L. and Crandall, K. A. 2003. Lost along the way: the significance of evolution in reverse. Trends Ecol. Evol. 18: 541–7.CrossRefGoogle Scholar
Pough, F. H., Janis, C. M., and Heiser, J. B. 2001. Vertebrate Life. Upper Saddle River, NJ: Prentice Hall.Google Scholar
Titus, T. A. and Larson, A. 1996. Molecular phylogenetics of desmognathine salamanders (Caudata: Plethodontidae): a reevaluation of evolution in ecology, life history, and morphology. Syst. Biol. 45: 451–71.CrossRefGoogle Scholar
Collin, R. 2004. Phylogenetic effects, the loss of complex characters, and the evolution of development in calyptraeid gastropods. Evolution 58: 1488–502.CrossRefGoogle ScholarPubMed
Hart, M. W., Byrne, M., and Smith, M. J. 1997. Molecular phylogenetic analysis of life-history evolution in asterinid starfish. Evolution 5: 1848–61.CrossRefGoogle Scholar
McHugh, D. and Rouse, G. W. 1998. Life history evolution of marine invertebrates: new views from phylogenetic systematics. Trends Ecol. Evol. 13: 182–6.CrossRefGoogle ScholarPubMed
Reid, D. G. 1990. A cladistic phylogeny of the genus Littorina (Gastropoda): implications for evolution of reproductive strategies and for classification. Hydrobiologia 193: 1–19.CrossRefGoogle Scholar
Schulze, S. R., Rice, S. A., Simon, J. L., and Karl, S. A. 2000. Evolution of poecilogony and the biogeography of North American populations of the polychaete Streblospio. Evolution 54: 1247–59.CrossRefGoogle ScholarPubMed
Strathmann, R. R. 1985. Feeding and nonfeeding larval development and life-history in marine invertebrates. A. Rev. Ecol. Syst. 16: 339–61.CrossRefGoogle Scholar
Villinski, J. T., Villinski, J. C., Byrne, M., and Raff, R. A. 2002. Convergent maternal provisioning and life-history evolution in echinoderms. Evolution 56: 1764–75.CrossRefGoogle ScholarPubMed
Losos, J. B., Jackman, T. R., Larson, A., Queiroz, K., and Rodríguez-Schettino, L. 1998. Contingency and determinism in replicated adaptive radiations of island lizards. Science 279: 2115–18.CrossRefGoogle ScholarPubMed
Losos, J. B. and 8 others 2003. Niche lability in the evolution of a Caribbean lizard community. Nature 423: 542–5.CrossRefGoogle Scholar
Miles, D. B. and Dunham, A. E. 1996. The paradox of the phylogeny: character displacement of analyses of body size in island Anolis. Evolution 50: 594–603.CrossRefGoogle ScholarPubMed
Roughgarden, J. 1995. Anolis Lizards of the Caribbean. Ecology, Evolution, and Plate Tectonics. Oxford: Oxford University Press.Google Scholar
Schoener, T. W. 1969. Size patterns in West Indian Anolis lizards: I. Size and species diversity. Syst. Zool. 18: 386–401.CrossRefGoogle Scholar
Blackledge, T. A. and Cillespie, R. G. 2004. Convergent evolution of behavior in an adaptive radiation of Hawaiian web-building spiders. Proc. Natl. Acad. Sci. USA 101: 16228–33.CrossRefGoogle Scholar
Schluter, D. 2000. The Ecology of Adaptive Radiation. New York: Oxford University Press.Google Scholar
Shear, W. A. 1986. Spiders: Webs, Behavior, and Evolution. Palo Alto, CA: Stanford University Press.Google Scholar
Wagner, W. L. and Funk, V. A. (eds) 1995. Hawaiian Biogeography: Evolution on a Hot Spot Archipelago. Washington, DC: Smithsonian Institution Press.Google Scholar
Ahmadjian, V. 1967. The Lichen Symbiosis. Waltham, MA: Blaisdell.Google Scholar
Gargas, A., DePriest, P. T., Grube, M., and Tehler, A. 1995. Multiple origins of lichen symbioses in fungi suggested by SSU rRNA phylogeny. Science 268: 1492–5.CrossRefGoogle Scholar
Goff, J. (ed.) 1983. Algal Symbiosis. Cambridge: Cambridge University Press.Google Scholar
Grajal, A., Strahl, S. D., ParraDominguez, R. M. G., and Neher, A. 1989. Foregut fermentation in the hoatzin, a neotropical leaf-eating bird. Science 245: 1236–8.CrossRefGoogle ScholarPubMed
Irwin, D. M., Prager, E. M., and Wilson, A. C. 1992. Evolutionary genetics of ruminant lysozymes. Anim. Genet. 23: 193–202.CrossRefGoogle ScholarPubMed
Kornegay, J. R., Schilling, J. W., and Wilson, A. C. 1994. Molecular adaptation of a leaf-eating bird: Stomach lysozyme of the hoatzin. Molec. Biol. Evol. 11: 921–8.Google ScholarPubMed
Stewart, C.-B., Schilling, J. W., and Wilson, A. C. 1987. Adaptive evolution in the stomach lysozymes of foregut fermenters. Nature 330: 401–4.CrossRefGoogle ScholarPubMed
Swanson, K. W., Irwin, D. M., and Wilson, A. C. 1991. Stomach lysozyme gene of the langur monkey: tests for convergence and positive selection. J. Molec. Evol. 33: 418–25.CrossRefGoogle ScholarPubMed
Fry, B. G. and Wüster, W. 2004. Assembling an arsenal: origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences. Molec. Biol. Evol. 21: 870–83.CrossRefGoogle ScholarPubMed
Greene, H. W. 1997. Snakes: The Evolution of Mystery in Nature. Berkeley, CA: University of California Press.Google Scholar
Jackson, K. 2003. The evolution of venom-delivery systems in snakes. Zool. J. Linn. Soc. 137: 337–54.CrossRefGoogle Scholar
Kelly, C. M. R., Barker, N. P., and Willet, M. H. 2003. Phylogenetics of advanced snakes (Caenophidia) based on four mitochondrial genes. Syst. Biol. 52: 439–59.CrossRefGoogle ScholarPubMed
Slowinski, J. B. and Lawson, R. 2002. Snake phylogeny: evidence from nuclear and mitochondrial genes. Molec. Phylogen. Evol. 24: 194–202.CrossRefGoogle ScholarPubMed
Underwood, G. 1997. An overview of venomous snake evolution. In: Venomous Snakes: Ecology, Evolution and Snakebite, Thorpe, R. S., Wüster, W., and Malhotra, A. (eds), pp. 1–13. [Symposium of the Zoological Society of London, No. 70.] Oxford: Clarendon Press.Google Scholar
Vidal, N. 2002. Colubroid systematics: evidence for an early appearance of the venom apparatus followed by extensive evolutionary tinkering. J. Toxicol. Toxin Rev. 21: 21–41.CrossRefGoogle Scholar
Bargelloni, L., Marcato, S., Zane, L., and Patarnello, T. 2000. Mitochondrial phylogeny of notothenioids: a molecular approach to Antarctic fish evolution and biogeography. Syst. Biol. 49: 114–29.CrossRefGoogle ScholarPubMed
Bargelloni, L. and 5 others 1994. Molecular evolution at subzero temperatures: mitochondrial and nuclear phylogenies of fishes from Antarctica (Suborder Notothenioidei), and the evolution of antifreeze glycopeptides. Molec. Biol. Evol. 11: 854–63.Google Scholar
Chen, L., DeVries, A. L., and Cheng, C.-H. C. 1997. Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod. Proc. Natl. Acad. Sci. USA 94: 3817–22.CrossRefGoogle ScholarPubMed
Block, B. A. and Finnerty, R. J. 1994. Endothermy in fishes: A phylogenetic analysis of constraints, predispositions, and selection pressures. Environ. Biol. Fish. 40: 283–302.CrossRefGoogle Scholar
Block, B. A., Finnerty, R. J., Stewart, A. F. R., and Kidd, J. 1993. Evolution of endothermy in fish: Mapping physiological traits on a molecular phylogeny. Science 260: 210–14.CrossRefGoogle ScholarPubMed
Bennett, A. F. and Ruben, J. A.. 1979. Endothermy and activity in vertebrates. Science 206: 649–54.CrossRefGoogle ScholarPubMed
Carey, F. G., Teal, J. M., Kanwisher, J. W., and Lawson, K. D. 1971. Warm-bodied fish. Am. Zool. 11: 137–45.CrossRefGoogle Scholar
Alves-Gomes, J. A., Orti, G., Haygood, M., Heiligenberg, W., and Meyer, A. 1995. Phylogenetic analysis of the South American electric fishes (order Gymnotiformes) and the evolution of their electrogenic system: a synthesis based on morphology, electrophysiology, and mitochondrial sequence data. Molec. Biol. Evol. 12: 298–318.Google ScholarPubMed
Helfman, G. S., Collette, B. B., and Facey, D. E. 1997. The Diversity of Fishes. Malden, MA: Blackwell.Google Scholar
Hopkins, C. D., Comfort, N. C., Bastian, J., and Bass, A. H. 1990. A functional analysis of sexual dimorphism in an electric fish, Hypopomus pinnicaudatus, order Gymnotiformes. Brain Behav. Evol. 35: 350–67.Google Scholar
Lavoué, S., Sullivan, J. P., and Hopkins, C. D. 2003. Phylogenetic utility of the first two introns of the S7 ribosomal protein gene in African electric fishes (Mormyroidea: Teleostei) and congruence with other molecular markers. Biol. J. Linn. Soc. 78: 273–92.CrossRefGoogle Scholar
Moller, P. 1995. Electric Fishes: History and Behavior. London: Chapman & Hall.Google Scholar
SullivanLavoué, J. P. S., Arnegard, M. E., and Hopkins, C. D. 2004. AFLPs resolve phylogeny and reveal mitochondrial introgression within a species flock of African electric fish (Mormyroidea: Teleostei). Evolution 58: 825–41.CrossRefGoogle Scholar
Sullivan, J. P., Lavoué, S., and Hopkins, C. D. 2000. Molecular systematics of the African electric fishes (Mormyroidea: Teleostei) and a model for the evolution of their electric organs. J. Exp. Biol. 203: 665–83.Google Scholar
Bull, J. J. 1983. Evolution of Sex Determining Mechanisms. Menlo Park, CA: Benjamin Cummings.Google Scholar
Charlesworth, B. 1991. The evolution of sex chromosomes. Science 251: 1030–3.CrossRefGoogle ScholarPubMed
Ghiselin, M. T. 1969. The evolution of hermaphroditism among animals. Q. Rev. Biol. 44: 189–208.CrossRefGoogle ScholarPubMed
Graves, J. A. M. and Shetty, S. 2001. Sex from W to Z: Evolution of vertebrate sex chromosomes and sex determining factors. J. Exp. Zool. 290: 449–62.CrossRefGoogle Scholar
Mank, J. E., Promislow, D. E. L., and Avise, J. C. 2005. Evolution of sex-determining mechanisms in teleost fishes. Biol. J. Linn. Soc., in press.Google Scholar
Miya, M. and 11 others 2003. Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. Molec. Phylogen. Evol. 26: 121–38.CrossRefGoogle ScholarPubMed
Ohno, S. 1967. Sex Chromosomes and Sex-linked Genes. New York: Springer-Verlag.CrossRefGoogle Scholar
Saitoh, K., Miya, M., Inoue, J. G., Ishiguro, N. B., and Nishida, M. 2003. Mitochondrial genomics of Ostariophysan fishes: perspectives on phylogeny and biogeography. J. Molec. Evol. 56: 464–72.CrossRefGoogle ScholarPubMed
Solari, A. J. 1994. Sex Chromosomes and Sex Determination in Vertebrates. Boca Raton, FL: CRC Press.Google Scholar
Darwin, C. 1859. On the Origin of Species. London: John Murray.Google Scholar
Gehring, W. J. 2000. Reply to Meyer-Rochow. Trends Genet. 16: 245.CrossRefGoogle ScholarPubMed
Gehring, W. J. 2005. New perspectives on eye development and the evolution of eyes and photoreceptors. J. Heredity 96: 171–84.CrossRefGoogle ScholarPubMed
Gehring, W. J. and Ikeo, K. 1999. Pax6: Mastering eye morphogenesis and eye evolution. Trends Genet. 15: 371–7.Google ScholarPubMed
HalderCallaerts, G. P., and Gehring, W. J. 1995. Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267: 1788–92.CrossRefGoogle ScholarPubMed
Salvini-Plawen, L. and E. Mayr 1961. On the evolution of photoreceptors and eyes. In: Evolutionary Biology, Hecht, M. K., Steere, W. C., and Wallace, B. (eds), pp. 207–63. New York: Plenum Press.Google Scholar
Brusca, R. C. and Brusca, G. J. 2003. Invertebrates. Sunderland, MA: Sinauer.Google Scholar
Finnerty, J. R., Pang, K., Burton, P., Paulson, D., and Martindale, M. Q. 2004. Origins of bilaterial symmetry: Hox and Dpp expression in a sea anemone. Science 304: 1335–7.CrossRefGoogle Scholar
Hadzi, J. 1963. The Evolution of the Metazoa. Oxford: Pergamon Press.CrossRefGoogle Scholar
Nielsen, C. 2001. Animal Evolution: Interrelationships of the Living Phyla. Oxford: Oxford University Press.Google Scholar
Tudge, C. 2000. The Variety of Life. Oxford: Oxford University Press.Google Scholar
Willmer, P. 1990. Invertebrate Relationships: Patterns in Animal Evolution. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Bernstein, C. and Bernstein, H. 1991. Aging, Sex, and DNA Repair. New York: Academic Press.Google Scholar
Eisen, J. A. and Hanawalt, P. C. 1999. A phylogenomic study of DNA repair genes, proteins, and processes. Mutation Res. 435: 171–213.CrossRefGoogle ScholarPubMed
Hanawalt, P. C., Cooper, P. K., Ganesan, A. K., and Smith, C. A. 1979. DNA repair in bacteria and mammalian cells. A. Rev. Biochem. 48: 783–836.CrossRefGoogle ScholarPubMed
Lander, E. S. and 243 others. 2001. Initial sequencing and analysis of the human genome. Nature 409: 860–921.CrossRefGoogle ScholarPubMed
Venter, J. C. and 273 others. 2001. The sequence of the human genome. Science 291: 1304–53.CrossRefGoogle ScholarPubMed
Arnold, M. L. 1997. Natural Hybridization and Evolution. New York: Oxford University Press.Google Scholar
Bushman, F. 2002. Lateral DNA Transfer. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
Herédia, F., Loreto, E. L. S., and Valente, V. L. S. 2004. Complex evolution of gypsy in drosophilid species. Molec. Biol. Evol. 21: 1831–42.CrossRefGoogle ScholarPubMed
Margulis, L. 1995. Symbiosis in Cell Evolution: Microbial Communities in the Archaean and Proterozoic Eons (2nd edn). San Francisco: W. H. Freeman & Co.Google Scholar
Raymond, J., Zhaxybayeva, O., Gogarten, J. P., Gerdes, S. Y., and Blankenship, R. E. 2002. Whole-genome analysis of photosynthetic prokaryotes. Science 298: 1616–20.CrossRefGoogle ScholarPubMed
Rivera, M. C. and Lake, J. A. 2004. The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431: 152–5.CrossRefGoogle ScholarPubMed
Woese, C. R. and Fox, G. E. 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. USA 74: 5088–90.CrossRefGoogle ScholarPubMed
Barkman, T. J., Lim, S.-H., Salleh, K. M., and Nais, J. 2004. Mitochondrial DNA sequences reveal the photosynthetic relatives of Rafflesia, the world's largest flower. Proc. Natl. Acad. Sci. USA 101: 787–92.CrossRefGoogle ScholarPubMed
Bergthorsson, U., Adams, K. L., Thomason, B., and Palmer, J. D. 2003. Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 424: 197–201.CrossRefGoogle ScholarPubMed
Bergthorsson, U., Richardson, A. O., Young, G. J., Goertzen, L. R., and Palmer, J. D. 2004. Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal angiosperm Amborella. Proc. Natl. Acad. Sci. USA 101: 17747–52.CrossRefGoogle ScholarPubMed
Davis, C. C. and Wurdack, K. J. 2004. Host-to-parasite gene transfer in flowering plants: phylogenetic evidence from Malpighiales. Science 305: 676–8.CrossRefGoogle ScholarPubMed
Kuijt, J. 1969. The Biology of Parasitic Flowering Plants. Berkeley, CA: University of California Press.Google Scholar
Mower, J. P., Stefanovic, S., Young, G. J., and Palmer, J. D. 2004. Gene transfer from parasitic to host plants. Nature 432: 165–6.CrossRefGoogle ScholarPubMed
Syvanen, M. and Cado, C. I. (eds) 2002. Horizontal Gene Transfer. London: Academic Press.Google ScholarPubMed
Won, H. and Renner, S. S. 2003. Horizontal gene transfer from flowering plants to Gnetum. Proc. Natl. Acad. Sci. USA 100: 10824–9.CrossRefGoogle Scholar
Hahn, B. H., Shaw, G. M., DeCock, K. M., and Sharp, P. M. 2000. AIDS as a zoonosis: Science and public health implications. Science 287: 607–14.CrossRefGoogle ScholarPubMed
Jenkins, G. M., Rambaut, A., Pybus, O. G., and Holmes, E. C. 2002. Rates of molecular evolution in RNA viruses: A quantitative phylogenetic analysis. J. Molec. Evol. 54: 152–61.CrossRefGoogle ScholarPubMed
Korber, B. and 8 others 2000. Timing the ancestor of the HIV-1 pandemic strains. Science 288: 1789–96.CrossRefGoogle ScholarPubMed
Lemey, P. and 5 others 2003. Tracing the origin and history of the HIV-2 epidemic. Proc. Natl. Acad. Sci. USA 100: 6588–92.CrossRefGoogle ScholarPubMed
Li, W.-H., Tanimura, M., and Sharp, P. M. 1988. Rates and dates of divergence between AIDS virus nucleotide sequences. Molec. Biol. Evol. 5: 313–30.Google ScholarPubMed
Brien, S. J. and Goedert, J. J. 1996. HIV causes AIDS: Koch's postulates fulfilled. Curr. Opin. Immunol. 8: 613–18.CrossRefGoogle Scholar
Ou, C.-Y. and 17 others 1992. Molecular epidemiology of HIV transmission in a dental practice. Science 256: 1165–71.CrossRefGoogle Scholar
Jong, W. W., Zweers, A., and Goodman, M. 1981. Relationships of aardvark to elephants, hyraxes and sea cows from α-crystallin sequences. Nature 292: 538–40.CrossRefGoogle Scholar
Eizirik, E., Murphy, W. J., and Brien, S. J. O' 2001. Molecular dating and biogeography of the early placental mammal radiation. J. Heredity 92: 212–19.CrossRefGoogle ScholarPubMed
Hedges, S. B. 2001. Afrotheria: plate tectonics meets genomics. Proc. Natl. Acad. Sci. USA 98: 1–2.CrossRefGoogle ScholarPubMed
Macdonald, D. 1984. The Encyclopedia of Mammals. New York: Facts on File Publications.Google Scholar
Madsen, O. and 9 others. 2001. Parallel adaptive radiations in two major clades of placental mammals. Nature 409: 610–14.CrossRefGoogle ScholarPubMed
Murphy, W. J. and 5 others 2001. Molecular phylogenetics and the origins of placental mammals. Nature 409: 614–18.CrossRefGoogle ScholarPubMed
Springer, M. S. and 6 others 1997. Endemic African mammals shake the evolutionary tree. Nature 388: 61–4.CrossRefGoogle Scholar
Dijk, M. A. M. and 5 others 2001. Protein sequence signatures support the African clade of mammals. Proc. Natl. Acad. Sci. USA 98: 188–93.CrossRefGoogle ScholarPubMed
Zack, S. P., Penkrot, T. A., Bloch, J. I., and Rose, K. D. 2005. Affinities of ‘hyposodontids’ to elephant shrews and a Holarctic origin of Afrotheria. Nature 434: 497–501.CrossRefGoogle Scholar
Barker, F. K., Cibois, A., Schikler, P., Feinstein, J., and Cracraft, J. 2004. Phylogeny and diversification of the largest avian radiation. Proc. Natl. Acad. Sci. USA 101: 11040–5.CrossRefGoogle ScholarPubMed
Edwards, S. V. and Boles, W. E. 2002. Out of Gondwana: the origin of passerine birds. Trends Ecol. Evol. 17: 347–9.CrossRefGoogle Scholar
Ericson, P. G. P., Johansson, U. S., and Parsons, T. J. 2000. Major divisions of oscines revealed by insertions in the nuclear gene c-myc: a novel gene in avian phylogenetics. Auk 117: 1077–86.CrossRefGoogle Scholar
Ericson, P. G. P. and 6 others 2002. A Gondwanan origin of passerine birds supported by DNA sequences of the endemic New Zealand wrens. Proc. R. Soc. Lond. B269: 235–41.CrossRefGoogle ScholarPubMed
Lovette, I. J. and Bermingham, E. 2002. c-mos variation in songbirds: Molecular evolution, phylogenetic implications, and comparisons with mitochondrial differentiation. Molec. Biol. Evol. 17: 1569–77.CrossRefGoogle Scholar
Sibley, G. C. 1991. Phylogeny and classification of birds from DNA comparisons. Acta XX Congressus Internationalis Ornithologici 1: 111–26.Google Scholar
Sibley, C. G. and Ahlquist, J. E. 1986. Reconstructing bird phylogeny by comparing DNA's. Scient. Am. 254(2): 82–3.CrossRefGoogle Scholar
Sibley, C. G. and Ahlquist, J. E. 1990. Phylogeny and Classification of Birds. New Haven, CT: Yale University Press.Google Scholar
Biju, S. D. and Bossuyt, F. 2003. New frog family from India reveals an ancient biogeographical link with the Seychelles. Nature 425: 711–14.CrossRefGoogle ScholarPubMed
Brown, J. H. and Lomolino, M. V. 1998. Biogeography (2nd edn). Sunderland, MA: Sinauer.Google Scholar
Lourenco, W. R. (ed.) 1996. Biogeography of Madagascar. Paris: Orstom.Google Scholar
Nagy, Z. T., Joger, U., Wink, M., Glaw, F., and Vences, M. 2003. Multiple colonization of Madagascar and Socotra by colubrid snakes: evidence from nuclear and mitochondrial gene phylogenies. Proc. R. Soc. Lond. B270: 2613–21.CrossRefGoogle ScholarPubMed
Pough, F. H. and 5 others 1998. Herpetology. Upper Saddle River, NJ: Prentice-Hall.Google Scholar
Raxworthy, C. J., Forstner, M. R. J., and Nussbaum, R. A. 2002. Chameleon radiation by oceanic dispersal. Nature 415: 784–6.CrossRefGoogle ScholarPubMed
Roos, C., Schmitz, J., and Zischler, H. 2004. Primate jumping genes elucidate strepsirrhine phylogeny. Proc. Natl. Acad. Sci. USA 101: 10650–4.CrossRefGoogle ScholarPubMed
Vences, M. and 6 others 2003. Multiple overseas dispersal in amphibians. Proc. R. Soc. Lond. B270: 2435–42.CrossRefGoogle ScholarPubMed
Avise, J. C. 2000. Phylogeography: The History and Formation of Species. Cambridge, MA: Harvard University Press.Google Scholar
Cann, R. L., Stoneking, M., and Wilson, A. C. 1987. Mitochondrial DNA and human evolution. Nature 325: 31–6.CrossRefGoogle ScholarPubMed
Goldstein, D. B., Linares, A. R., Cavalli-Sforza, L. L., and Feldman, M. W. 1995. Genetic absolute dating based on microsatellites and the origin of modern humans. Proc. Natl. Acad. Sci. USA 92: 6723–7.CrossRefGoogle ScholarPubMed
Hammer, M. F. 1995. A recent common ancestry for human Y chromosomes. Nature 378: 376–8.CrossRefGoogle ScholarPubMed
Ke, Y. and 22 others 2001. African origin of modern humans in East Asia: A tale of 12,000 Y chromosomes. Science 292: 1151–3.CrossRefGoogle ScholarPubMed
Lewin, R. 1993. Human Evolution: An Illustrated Introduction (3rd edn). Oxford: Blackwell Press.Google Scholar
Takahata, N., Lee, S.-H., and Satta, Y. 2001. Testing multi-regionality of modern human origins. Molec. Biol. Evol. 18: 172–83.CrossRefGoogle ScholarPubMed
Fukami, H. and 6 others 2004. Conventional taxonomy obscures deep divergence between Pacific and Atlantic corals. Nature 427: 832–5.CrossRefGoogle ScholarPubMed
Knowlton, N. 1993. Sibling species in the sea. A. Rev. Ecol. Syst. 24: 189–216.CrossRefGoogle Scholar
Mace, G. M., Gittleman, J. L., and Purvis, A. 2003. Preserving the tree of life. Science 300: 1707–9.CrossRefGoogle ScholarPubMed
Marcotte, B. M. 1984. Behaviourally defined ecological resources and speciation in Tisbe (Copepoda: Harpacticoida). J. Crust. Biol.4: 404–16.
Roberts, C. M. 2002. Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295: 1280–4.CrossRefGoogle ScholarPubMed
Veron, J. E. N. 2000. Corals of the World. Townsville, Australia: Australian Institute of Marine Science.Google Scholar
Bossuyt, F. and 13 others 2004. Local endemism within the Western Ghats-Sri Lanka biodiversity hotspot. Science 306: 479–81.CrossRefGoogle ScholarPubMed
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. A. B. da, and Kent, J. 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–8.CrossRefGoogle ScholarPubMed
Somasekaram, T. (ed.) 1997. Atlas of Sri Lanka. Dehiwela, Sri Lanka: Arjuna Consulting.Google Scholar
Baldwin, B. G., Kyhos, D. W., Dvorak, J., and Carr, G. D. 1991. Chloroplast DNA evidence for a North American origin of the Hawaiian silversword alliance (Asteraceae). Proc. Natl. Acad. Sci. USA 88: 1840–3.CrossRefGoogle Scholar
Beverly, S. M. and Wilson, A. C. 1985. Ancient origin for Hawaiian Drosophilinae inferred from protein comparisons. Proc. Natl. Acad. Sci. USA 82: 4753–7.CrossRefGoogle Scholar
Givnish, T. J. and 5 others 1996. The Hawaiian lobelioides are monophyletic and underwent a rapid initial radiation roughly 15 million years ago. Am. J. Bot. 83: 159 [abstract].Google Scholar
Howarth, D. G., Gustafsson, M. H. G., Baum, D. A., and Motley, T. J. 2003. Phylogenetics of the genus Scaevola (Goodeniaceae): Implications for dispersal patterns across the Pacific Basin and colonization of the Hawaiian Islands. Am. J. Bot. 90: 915–23.CrossRefGoogle Scholar
Tarr, C. L. and R. C. Fleischer 1995. Evolutionary relationships of the Hawaiian honeycreepers (Aves, Drepanidinae). In: Hawaiian Biogeography, Wagner, W. L. and Funks, V. A. (eds), pp. 147–59. Washington, DC: Smithsonian Institution Press.Google Scholar
Avise, J. C. 2005. Phylogenetic units and currencies above and below the species level. In: Phylogeny and Conservation, Purvis, A., Brooks, T., and Gittleman, J. (eds), pp. 76–100. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Cronin, M. A., Amstrup, S. C., Garner, G. W., and Vyse, E. R. 1991. Interspecific and intraspecific mitochondrial DNA variation in North American bears (Ursus). Can. J. Zool. 69: 2985–92.CrossRefGoogle Scholar
Leonard, J. A., Wayne, R. K., and Cooper, A. 2000. Population genetics of Ice Age brown bears. Proc. Natl. Acad. Sci. USA 97: 1651–4.CrossRefGoogle ScholarPubMed
Matsuhashi, R., Masuda, R., Mano, T., Murata, K., and Aiurzaniin, Z. 2001. Phylogenetic relationships among worldwide populations of the brown bearUrsus arctos. Zool. Sci. 18: 1137–43.Google Scholar
Paetkau, D., Shields, G. F., and Strobeck, C. 1998. Gene flow between insular, coastal, and interior populations of brown bears in Alaska. Molec. Ecol. 7: 1283–92.CrossRefGoogle ScholarPubMed
Paetkau, D. and 10 others 1999. Genetic structure of the world's polar bear populations. Molec. Ecol. 8: 1571–84.CrossRefGoogle ScholarPubMed
Shields, G. F. and 8 others 2000. Phylogeography of mitochondrial DNA variation in brown bears and polar bears. Molec. Phylogen. Evol. 15: 319–26.CrossRefGoogle ScholarPubMed
Taberlet, P. and Bouvet, J. 1994. Mitochondrial DNA polymorphism, phylogeography, and conservation genetics of the brown bear Ursus arctos in Europe. Proc. R. Soc. Lond. B255: 195–200.CrossRefGoogle Scholar
Talbot, S. L. and Shields, G. F. 1996. Phylogeography of brown bears (Ursus arctos) of Alaska and paraphyly within the Ursidae. Molec. Phylogen. Evol. 5: 477–94.CrossRefGoogle ScholarPubMed
Waits, L. P., Talbot, S. L., Ward, R. H., and Shields, G. F. 1998. Mitochondrial DNA phylogeography of the North American brown bear and implications for conservation. Conserv. Biol. 12: 408–17.CrossRefGoogle Scholar
Avise, J. C. 2000. Phylogeography: The History and Formation of Species. Cambridge, MA: Harvard University Press.Google Scholar
Comstock, K. E. and 6 others 2002. Patterns of molecular genetic variation among African elephant populations. Molec. Ecol. 11: 2489–98.CrossRefGoogle ScholarPubMed
Eggert, L. S., Rasner, C. A., and Woodruff, D. S. 2002. The evolution and phylogeography of the African elephant inferred from mitochondrial DNA sequence and nuclear microsatellite markers. Proc. R. Soc. Lond. B269: 1993–2006.CrossRefGoogle ScholarPubMed
Fernando, P. and 9 others 2003. DNA analysis indicates that Asian elephants are native to Borneo and are therefore a high priority for conservation. PloS Biol. 1: 110–15.CrossRefGoogle ScholarPubMed
Fleischer, D. J. C., Perry, E. A., Muralidharan, K., Stevens, E. E., and Wemmer, C. M. 2001. Phylogeography of the Asian elephant (Elaphus maximus) based on mitochondrial DNA. Evolution 55: 1882–92.CrossRefGoogle Scholar
Roca, A. L., Georgiadis, N., Pecon-Slattery, J., and Brien, S. J. O' 2001. Genetic evidence for two species of elephant in Africa. Science 293: 1473–7.CrossRefGoogle ScholarPubMed
Ashton, K. G. 2002. Do amphibians follow Bergmann's rule? Can. J. Zool. 80: 708–16.CrossRefGoogle Scholar
Ashton, K. G. and Feldman, C. R. 2003. Bergmann's rule in non-avian reptiles: turtles follow it, lizards and snakes reverse it. Evolution 57: 1151–63.CrossRefGoogle Scholar
Ashton, K. G., Tracy, M. C., and Queiroz, A. 2000. Is Bergmann's rule valid for mammals? Am. Nat. 156: 390–415.Google ScholarPubMed
Bergmann, C. 1847. Über die Verhältnisse der Warmeökonomie der Thiere zu ihrer Grosse. Göttinger Studien 1: 595–708.Google Scholar
James, F. C. 1970. Geographic size variation in birds and its relationship to climate. Ecology 51: 365–90.CrossRefGoogle Scholar
Mayr, E. 1963. Animal Species and Evolution. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Meiri, S. and Dayan, T. 2003. On the validity of Bergmann's rule. J. Biogeogr. 30: 331–51.CrossRefGoogle Scholar
Queiroz, A. and Ashton, K. G.. 2004. The phylogeny of a species-level tendency: species heritability and possible deep origins of Bergmann's rule in tetrapods. Evolution 58: 1674–84.CrossRefGoogle ScholarPubMed
Avise, J. C. 2004. Molecular Markers, Natural History, and Evolution (2nd edn). Sunderland, MA: Sinauer.Google Scholar
Brooks, D. R. and McLennan, D. A. 1991. Phylogeny, Ecology, and Behavior. Chicago, IL: University of Chicago Press.Google Scholar
Brooks, D. R. and McLennan, D. A. 2002. The Nature of Diversity. Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
Cunningham, C. W., Omland, K. E., and Oakley, T. D. 1998. Reconstructing ancestral character states: a critical reappraisal. Trends Ecol. Evol. 13: 361–6.CrossRefGoogle ScholarPubMed
Eggleton, P. and Vane-Wright, R. I. (eds) 1994. Phylogenetics and Ecology. London: Academic Press.Google Scholar
Felsenstein, J. 1985. Phylogenies and the comparative method. Am. Nat. 125: 1–15.CrossRefGoogle Scholar
Fisher, D. O. and Owens, I. P. F.. 2004. The comparative method in conservation biology. Trends Ecol. Evol. 19: 391–8.CrossRefGoogle ScholarPubMed
Freckleton, R. P., Harvey, P. H., and Pagel, M. 2002. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160: 712–26.CrossRefGoogle Scholar
Garland, T., Harvey, P. H., and Ives, A. R. 1992. Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst. Biol. 41: 8–32.CrossRefGoogle Scholar
, Hall B. G. 2004. Phylogenetic Trees Made Easy: A How-To Manual (2nd edn). Sunderland, MA: Sinauer.Google Scholar
Harvey, P. H., Leigh, A. J. Brown, Maynard, J. Smith, and Nee, S. (eds) 1996. New Uses for New Phylogenies. Oxford: Oxford University Press.Google Scholar
Harvey, P. H. and Pagel, M. D. 1991. The Comparative Method in Evolutionary Biology. Oxford: Oxford University Press.Google Scholar
Hennig, W. 1966. Phylogenetic Systematics. Chicago, IL: University of Illinois Press.Google Scholar
Huelsenbeck, J. P., Nielsen, R., and Bollback, J. P. 2003. Stochastic mapping of morphological characters. Syst. Biol. 52: 131–58.CrossRefGoogle ScholarPubMed
Kolaczkowski, B. and Thornton, J. W. 2004. Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature 431: 980–4.CrossRefGoogle ScholarPubMed
Maddison, D. R. and Maddison, W. P. 2000. MacClade 4: Analysis of Phylogeny and Character Evolution. Sunderland, MA: Sinauer.Google Scholar
Martins, E. P. (ed.). 1996. Phylogenies and the Comparative Method in Animal Behavior. New York: Oxford University Press.Google Scholar
Martins, E. P. and Hansen, T. F. 1997. Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. Am. Nat. 149: 646–67.CrossRefGoogle Scholar
Page, R. D. M. and Holmes, E. C. 1998. Molecular Evolution: A Phylogenetic Approach. Oxford, MA: Blackwell.Google Scholar
Pagel, M. 1994. Detecting correlated evolution on phylogenies, a general method for the comparative analysis of discrete characters. Proc. R. Soc. Lond B255: 37–45.CrossRefGoogle Scholar
Pagel, M. 1997. Inferring evolutionary processes from phylogenies. Zool. Scr. 26: 331–48.CrossRefGoogle Scholar
Price, T. 1997. Correlated evolution and independent contrasts. Phil. Trans. R. Soc. Lond. B352: 519–29.CrossRefGoogle ScholarPubMed
Purvis, A. and Rambaut, A. 1995. Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analyzing comparative data. Computer Appl. Biosci. 11: 247–51.Google Scholar
Ricklefs, R. E. 1996. Phylogeny and ecology. Trends Ecol. Evol. 11: 229–30.CrossRefGoogle ScholarPubMed
Schluter, D., Price, T., Mooers, A., and Ludwig, D. 1997. Likelihood of ancestor states in adaptive radiation. Evolution 51: 1699–711.CrossRefGoogle ScholarPubMed
Avise, J. C. 2002. Genetics in the Wild. Washington, D.C.: Smithsonian Institution Press.Google Scholar
Avise, J. C. 2004. Molecular Markers, Natural History, and Evolution (2nd edn). Sunderland, MA: Sinauer.Google Scholar
Baker, A. J. (ed.) 2000. Molecular Methods in Ecology. Oxford: Blackwell.Google Scholar
Darwin, C. 1859. On the Origin of Species. London: John Murray.Google Scholar
Dawkins, R. 2004. The Ancestor's Tale: A Pilgrimage to the Dawn of Evolution. New York: Houghton-Mifflin.Google Scholar
Dobzhansky, T. 1973. Nothing in biology makes sense except in the light of evolution. Am. Biol. Teacher 35: 125–9.CrossRefGoogle Scholar
Felsenstein, J. 2004. Inferring Phylogenies. Sunderland, MA: Sinauer.Google Scholar
Haeckel, E. 1866. Generelle Morphologie der Organismen. Berlin: Georg Reimer.CrossRefGoogle Scholar
Hall, B. G. 2004. Phylogenetic Trees Made Easy (2nd edn). Sunderland, MA: Sinauer.Google Scholar
Hillis, D. M., Moritz, C., and Mable, B. K. (eds) 1996. Molecular Systematics (2nd edn). Sunderland, MA: Sinauer.Google Scholar
Holder, M. and Lewis, P. O. 2003. Phylogeny estimation: traditional and Bayesian approaches. Nature Genet. 4: 275–84.CrossRefGoogle ScholarPubMed
Huelsenbeck, J. P. 2000. MRBAYES: Bayesian Inferences of Phylogeny [software]. Rochester, NY: University of Rochester.Google Scholar
Huelsenbeck, J. P. and Rannala, B. 1997. Phylogenetic methods come of age: testing hypotheses in an evolutionary context. Science 276: 227–232.CrossRefGoogle Scholar
Li, W.-H. 1997. Molecular Evolution. Sunderland, MA: Sinauer.Google ScholarPubMed
Margoliash, E. 1963. Primary structure and evolution of cytochromec. Proc. Natl. Acad. Sci. USA 50: 672–9.CrossRefGoogle ScholarPubMed
Nei, M. and Kumar, S. 2000. Molecular Evolution and Phylogenetics. Oxford:Oxford University Press.Google Scholar
Rokas, A., Williams, B. L., King, N., and Carroll, S. B. 2003. Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425: 798–804.CrossRefGoogle ScholarPubMed
Simpson, G. G. 1945. The principles of classification and a classification of mammals. Bull. Am. Mus. Nat. Hist. 85: 1–350.Google Scholar
Strimmer, K. and Haeseler, A. 1996. Quartet puzzling: A quartet maximum likelihood method for reconstructing tree topologies. Molec. Biol. Evol. 13: 964–9.CrossRefGoogle Scholar
Swofford, D. L. 2000. PAUP*: Phylogenetic Analysis Using Parsimony and Other Methods [software]. Sunderland, MA: Sinauer.
Lanyon, S. M. and Hall, J. G. 1994. Re-examination of barbet monophyly using mitochondrial-DNA sequence data. Auk 111: 389–97.CrossRefGoogle Scholar
Prum, R. O. 1988. Phylogenetic interrelationships of the barbets (Aves: Capitonidae) and toucans (Aves: Ramphastidae) based on morphology with comparisons to DNA-DNA hybridization. Zool. J. Linn. Soc. 92: 313–43.CrossRefGoogle Scholar
Sibley, C. G. and Ahlquist, J. E.. 1986. Reconstructing bird phylogeny by comparing DNA's. Scient. Am. 254(2): 82–3.CrossRefGoogle Scholar
Beer, G. R. 1940. Embryos and Ancestors. Oxford: Clarendon Press.Google Scholar
Boughton, D. A., Collette, B. B., and McCune, A. R.. 1991. Heterochrony in jaw morphology of needlefishes (Teleostei: Belonidae). Syst. Zool. 40: 329–54.CrossRefGoogle Scholar
Collette, B. B. and Parin, N. V.. 1970. Needlefishes (Belonidae) of the Eastern Atlantic Ocean. Atl. Rep. 11: 1–60.Google Scholar
Gould, S. J. 2000. Ontogeny and Phylogeny. Cambridge, MA: Harvard University Press.Google Scholar
Haeckel, E. 1866. Generelle Morphologie der Organismen. Berlin: Georg Reimer.CrossRefGoogle Scholar
Lovejoy, N. R. 2000. Reinterpreting recapitulation: Systematics of needlefishes and their allies (Teleostei: Beloniformes). Evolution 54: 1349–62.CrossRefGoogle Scholar
Collin, R. and Cipriani, R. 2003. Dollo's law and the re-evolution of shell coiling. Proc. R. Soc. Lond. B270: 2551–5.CrossRefGoogle ScholarPubMed
Dollo, L. 1893. Les lois de l'evolution. Bull. Soc. Belge Géol. Pal. Hydr. 7: 164–6.Google Scholar
Gould, S. J. 1970. Dollo on Dollo's law: irreversibility and the status of evolutionary laws. J. Hist. Biol. 3: 189–212.CrossRefGoogle ScholarPubMed
Raff, R. A. 1996. The Shape of Life: Genes, Development, and the Evolution of Animal Form. Chicago: University of Chicago Press.Google Scholar
Vermeij, G. 1987. Evolution and Escalation. Princeton, NJ: Princeton University Press.Google Scholar
Asami, T., Cowie, R. H., and Ohbayashi, K. 1998. Evolution of mirror images by sexually asymmetric mating behavior in hermaphroditic snails. Am. Nat. 152: 225–36.CrossRefGoogle ScholarPubMed
Gittenberger, E. 1988. Sympatric speciation in snails: A largely neglected model. Evolution 42: 826–8.CrossRefGoogle ScholarPubMed
Johnson, M. S., Clarke, B., and Murray, J. 1990. The coil polymorphism in Partula suturalis does not favor sympatric speciation. Evolution 44: 459–64.CrossRefGoogle Scholar
Ueshima, R. and Asami, T. 2003. Single-gene speciation by left-right reversal. Nature 425: 679.CrossRefGoogle ScholarPubMed
Vermeij, G. J. 1975. Evolution and distribution of left-handed and planispiral coiling in snails. Nature 254: 419–20.CrossRefGoogle Scholar
Wagner, D. L. and Liebherr, J. K. 1992. Flightlessness in insects. Trends Ecol. Evol. 7: 216–20.CrossRefGoogle ScholarPubMed
Whiting, M. F., Bradler, S., and Maxwell, T. 2003. Loss and recovery of wings in stick insects. Nature 421: 264–7.CrossRefGoogle ScholarPubMed
Cunningham, C. W., Blackstone, N. W., and Buss, L. W. 1992. Evolution of king crabs from hermit crab ancestors. Nature 355: 539–42.CrossRefGoogle ScholarPubMed
Gould, S. J. 1992. We are all monkey's uncles. Nat. Hist. 101(6): 14–21.Google Scholar
Brochu, C. A. 2001. Crocodylian snouts in space and time: Phylogenetic approaches toward adaptive radiation. Am. Zool. 41: 564–85.Google Scholar
Gatesy, J. and Amato, G. D.. 1992. Sequence similarity of 12S ribosomal segment of mitochondrial DNAs of gharial and false gharial. Copeia 1992: 241–3.CrossRefGoogle Scholar
Graybeal, A. 1994. Evaluating the phylogenetic utility of genes: A search for genes informative about deep divergences among vertebrates. Syst. Biol. 43: 174–93.CrossRefGoogle Scholar
Grigg, G. C., Seebacher, F., and Franklin, C. E. (eds) 2001. Crocodilian Biology and Evolution. Chipping Norton, New South Wales, Australia: Surrey Beatty & Sons.Google Scholar
Harshman, J., Huddleston, C. J., Bollback, J. P., Parsons, T. J., and Braun, M. J. 2003. True and false gharials: a nuclear gene phylogeny of Crocodylia. Syst. Biol. 52: 386–402.CrossRefGoogle ScholarPubMed
Hillis, D. M. 1987. Molecular versus morphological approaches to systematics. A. Rev. Ecol. Syst. 18: 23–42.CrossRefGoogle Scholar
Maddison, W. P. 1997. Gene trees in species trees. Syst. Biol. 46: 523–36.CrossRefGoogle Scholar
Norell, M. A. 1989. The higher level relationships of the extant Crocodylia. J. Herpetol. 23: 325–35.CrossRefGoogle Scholar
Caldwell, M. W. and Lee, M. S. Y. 1997. A snake with legs from the marine Cretaceous of the Middle East. Nature 386: 705–9.CrossRefGoogle Scholar
Coates, M. and Ruta, M. 2000. Nice snake, shame about the legs. Trends Ecol. Evol. 15: 503–7.CrossRefGoogle ScholarPubMed
Greer, A. E. 1991. Limb reduction in squamates: identification of the lineages and discussion of the trends. J. Herpetol. 25: 166–73.CrossRefGoogle Scholar
Kearney, M. and Stuart, B. L. 2004. Repeated evolution of limblessness and digging heads in worm lizards revealed by DNA from old bones. Proc. R. Soc. Lond. B271: 1677–83.CrossRefGoogle ScholarPubMed
Lande, R. 1978. Evolutionary mechanisms of limb loss in tetrapods. Evolution 32: 73–92.CrossRefGoogle ScholarPubMed
Pough, F. H. and 5 others 1998. Herpetology. Upper Saddle River, NJ: Prentice-Hall.Google Scholar
Vidal, N. and Hedges, S. B. 2004. Molecular evidence for a terrestrial origin of snakes. Proc. R. Soc. Lond. B (suppl.)271: S226–9.CrossRefGoogle ScholarPubMed
Walls, G. L. 1940. Ophthalmalogical implications for the early history of snakes. Copeia 1940: 1–8.CrossRefGoogle Scholar
Wiens, J. J. and Slingluff, J. L. 2001. How lizards turn into snakes: a phylogenetic analysis of body-form evolution in anguid lizards. Evolution 55: 2303–18.CrossRefGoogle ScholarPubMed
Brinkmann, H., Venkatesh, B., Brenner, S., and Meyer, A. 2004. Nuclear protein-coding genes support lungfish and not the coelacanth as the closest living relatives of land vertebrates. Proc. Natl. Acad. Sci. USA 101: 4900–5.CrossRefGoogle Scholar
Gorr, T., Kleinschmidt, T., and Fricke, H. 1991. Close tetrapod relationship of the coelacanth Latimeria indicated by haemoglobin sequences. Nature 351: 394–7.CrossRefGoogle Scholar
Meyer, A. and Wilson, A. C. 1990. Origin of tetrapods inferred from their mitochondrial DNA affiliation to lungfish. J. Molec. Evol. 31: 359–64.CrossRefGoogle ScholarPubMed
Sharp, P. M., Lloyd, A. T., and Higgins, D. G. 1991. Coelacanth's relationships. Nature 353: 218–19.CrossRefGoogle Scholar
Stock, D. W., Moberg, K. D., Maxson, L. R., and Whitt, G. S. 1991. A phylogenetic analysis of the 18S ribosomal RNA sequence of the coelacanthLatimeria chalumnae. Env. Biol. Fishes 32: 99–117.CrossRefGoogle Scholar
Takezaki, N., Figueroa, F., Zaleska-Rutczynska, Z., Takahata, N., and Klein, J. 2004. The phylogenetic relationships of tetrapod, coelacanth, and lungfish revealed by the sequences of forty-four nuclear genes. Molec. Biol. Evol. 21: 1512–24.CrossRefGoogle ScholarPubMed
Thompson, K. S. 1991. Living Fossil: The Story of the Coelacanth. New York: Norton.Google Scholar
Zardoya, R., Cao, Y., Hasegawa, M., and Meyer, A. 1998. Searching for the closest living relative(s) of tetrapods through evolutionary analyses of mitochondrial and nuclear data. Molec. Biol. Evol. 15: 506–17.CrossRefGoogle ScholarPubMed
Flynn, J. J., Nedbal, M. A., Dragoo, J. W., and Honeycutt, R. L. 2000. Whence the red panda?Molec. Phylogen. Evol. 17: 190–9.CrossRefGoogle ScholarPubMed
O.Brien, S. J. 1987. The ancestry of the giant panda. Scient. Am. 257(5): 102–7.CrossRefGoogle Scholar
O'Brien, S. J., Nash, W. G., Wildt, D. E., Bush, M. E., and Benveniste, R. E. 1985. A molecular solution to the riddle of the giant panda's phylogeny. Nature 317: 140–4.CrossRefGoogle ScholarPubMed
Sarich, V. M. 1973. The giant panda is a bear. Nature 245: 218–20.CrossRefGoogle Scholar
Slattery, J. P. and O'Brien, S. J. 1995. Molecular phylogeny of the red panda(Ailurus fulgens). J. Hered. 86: 413–22.CrossRefGoogle ScholarPubMed
Brown, L. H. and Amadon, D. 1968. Eagles, Hawks and Falcons of the World. London: Country Life.Google Scholar
Bunce, M. and 6 others. 2005. Ancient DNA provides new insights into the evolutionary history of New Zealand's extinct giant eagle. PloS Biology 3: 44–6.CrossRefGoogle ScholarPubMed
Hofreiter, M, Serre, D., Poinar, H. N., Kuch, M., and Pääbo, S. 2001. Ancient DNA. Nature Rev. Genet. 2: 353–9.CrossRefGoogle ScholarPubMed
Nicholls, H. 2005. Ancient DNA comes of age. PloS Biology 3: 192–6.CrossRefGoogle ScholarPubMed
Worthy, T. H. and Holdaway, R. N. 2002. The Lost World of the Moa: Prehistoric Life of New Zealand. Bloomington, IN: Indiana University Press.Google Scholar
Hergé, G. R. 1960. Tintin in Tibet [English version]. Belgium: Casterman.Google Scholar
Matthiessen, P. 1979. The Snow Leopard. London: Chatto & Windus.Google Scholar
Matthiessen, P. and Laird, T. 1995. East of Lo Monhong: In the Land of the Mustang. Boston, MA: Shambala Publishers.Google Scholar
Milinkovitch, M. C., Caccone, A., and Amato, G. 2004. Molecular phylogenetic analyses indicate extensive morphological convergence between the “yeti” and primates. Molec. Phylogen. Evol. 31: 1–3.Google ScholarPubMed
Lanyon, S. M. and Hall, J. G. 1994. Re-examination of barbet monophyly using mitochondrial-DNA sequence data. Auk 111: 389–97.CrossRefGoogle Scholar
Prum, R. O. 1988. Phylogenetic interrelationships of the barbets (Aves: Capitonidae) and toucans (Aves: Ramphastidae) based on morphology with comparisons to DNA-DNA hybridization. Zool. J. Linn. Soc. 92: 313–43.CrossRefGoogle Scholar
Sibley, C. G. and Ahlquist, J. E.. 1986. Reconstructing bird phylogeny by comparing DNA's. Scient. Am. 254(2): 82–3.CrossRefGoogle Scholar
Beer, G. R. 1940. Embryos and Ancestors. Oxford: Clarendon Press.Google Scholar
Boughton, D. A., Collette, B. B., and McCune, A. R.. 1991. Heterochrony in jaw morphology of needlefishes (Teleostei: Belonidae). Syst. Zool. 40: 329–54.CrossRefGoogle Scholar
Collette, B. B. and Parin, N. V.. 1970. Needlefishes (Belonidae) of the Eastern Atlantic Ocean. Atl. Rep. 11: 1–60.Google Scholar
Gould, S. J. 2000. Ontogeny and Phylogeny. Cambridge, MA: Harvard University Press.Google Scholar
Haeckel, E. 1866. Generelle Morphologie der Organismen. Berlin: Georg Reimer.CrossRefGoogle Scholar
Lovejoy, N. R. 2000. Reinterpreting recapitulation: Systematics of needlefishes and their allies (Teleostei: Beloniformes). Evolution 54: 1349–62.CrossRefGoogle Scholar
Collin, R. and Cipriani, R. 2003. Dollo's law and the re-evolution of shell coiling. Proc. R. Soc. Lond. B270: 2551–5.CrossRefGoogle ScholarPubMed
Dollo, L. 1893. Les lois de l'evolution. Bull. Soc. Belge Géol. Pal. Hydr. 7: 164–6.Google Scholar
Gould, S. J. 1970. Dollo on Dollo's law: irreversibility and the status of evolutionary laws. J. Hist. Biol. 3: 189–212.CrossRefGoogle ScholarPubMed
Raff, R. A. 1996. The Shape of Life: Genes, Development, and the Evolution of Animal Form. Chicago: University of Chicago Press.Google Scholar
Vermeij, G. 1987. Evolution and Escalation. Princeton, NJ: Princeton University Press.Google Scholar
Asami, T., Cowie, R. H., and Ohbayashi, K. 1998. Evolution of mirror images by sexually asymmetric mating behavior in hermaphroditic snails. Am. Nat. 152: 225–36.CrossRefGoogle ScholarPubMed
Gittenberger, E. 1988. Sympatric speciation in snails: A largely neglected model. Evolution 42: 826–8.CrossRefGoogle ScholarPubMed
Johnson, M. S., Clarke, B., and Murray, J. 1990. The coil polymorphism in Partula suturalis does not favor sympatric speciation. Evolution 44: 459–64.CrossRefGoogle Scholar
Ueshima, R. and Asami, T. 2003. Single-gene speciation by left-right reversal. Nature 425: 679.CrossRefGoogle ScholarPubMed
Vermeij, G. J. 1975. Evolution and distribution of left-handed and planispiral coiling in snails. Nature 254: 419–20.CrossRefGoogle Scholar
Wagner, D. L. and Liebherr, J. K. 1992. Flightlessness in insects. Trends Ecol. Evol. 7: 216–20.CrossRefGoogle ScholarPubMed
Whiting, M. F., Bradler, S., and Maxwell, T. 2003. Loss and recovery of wings in stick insects. Nature 421: 264–7.CrossRefGoogle ScholarPubMed
Cunningham, C. W., Blackstone, N. W., and Buss, L. W. 1992. Evolution of king crabs from hermit crab ancestors. Nature 355: 539–42.CrossRefGoogle ScholarPubMed
Gould, S. J. 1992. We are all monkey's uncles. Nat. Hist. 101(6): 14–21.Google Scholar
Brochu, C. A. 2001. Crocodylian snouts in space and time: Phylogenetic approaches toward adaptive radiation. Am. Zool. 41: 564–85.Google Scholar
Gatesy, J. and Amato, G. D.. 1992. Sequence similarity of 12S ribosomal segment of mitochondrial DNAs of gharial and false gharial. Copeia 1992: 241–3.CrossRefGoogle Scholar
Graybeal, A. 1994. Evaluating the phylogenetic utility of genes: A search for genes informative about deep divergences among vertebrates. Syst. Biol. 43: 174–93.CrossRefGoogle Scholar
Grigg, G. C., Seebacher, F., and Franklin, C. E. (eds) 2001. Crocodilian Biology and Evolution. Chipping Norton, New South Wales, Australia: Surrey Beatty & Sons.Google Scholar
Harshman, J., Huddleston, C. J., Bollback, J. P., Parsons, T. J., and Braun, M. J. 2003. True and false gharials: a nuclear gene phylogeny of Crocodylia. Syst. Biol. 52: 386–402.CrossRefGoogle ScholarPubMed
Hillis, D. M. 1987. Molecular versus morphological approaches to systematics. A. Rev. Ecol. Syst. 18: 23–42.CrossRefGoogle Scholar
Maddison, W. P. 1997. Gene trees in species trees. Syst. Biol. 46: 523–36.CrossRefGoogle Scholar
Norell, M. A. 1989. The higher level relationships of the extant Crocodylia. J. Herpetol. 23: 325–35.CrossRefGoogle Scholar
Caldwell, M. W. and Lee, M. S. Y. 1997. A snake with legs from the marine Cretaceous of the Middle East. Nature 386: 705–9.CrossRefGoogle Scholar
Coates, M. and Ruta, M. 2000. Nice snake, shame about the legs. Trends Ecol. Evol. 15: 503–7.CrossRefGoogle ScholarPubMed
Greer, A. E. 1991. Limb reduction in squamates: identification of the lineages and discussion of the trends. J. Herpetol. 25: 166–73.CrossRefGoogle Scholar
Kearney, M. and Stuart, B. L. 2004. Repeated evolution of limblessness and digging heads in worm lizards revealed by DNA from old bones. Proc. R. Soc. Lond. B271: 1677–83.CrossRefGoogle ScholarPubMed
Lande, R. 1978. Evolutionary mechanisms of limb loss in tetrapods. Evolution 32: 73–92.CrossRefGoogle ScholarPubMed
Pough, F. H. and 5 others 1998. Herpetology. Upper Saddle River, NJ: Prentice-Hall.Google Scholar
Vidal, N. and Hedges, S. B. 2004. Molecular evidence for a terrestrial origin of snakes. Proc. R. Soc. Lond. B (suppl.)271: S226–9.CrossRefGoogle ScholarPubMed
Walls, G. L. 1940. Ophthalmalogical implications for the early history of snakes. Copeia 1940: 1–8.CrossRefGoogle Scholar
Wiens, J. J. and Slingluff, J. L. 2001. How lizards turn into snakes: a phylogenetic analysis of body-form evolution in anguid lizards. Evolution 55: 2303–18.CrossRefGoogle ScholarPubMed
Brinkmann, H., Venkatesh, B., Brenner, S., and Meyer, A. 2004. Nuclear protein-coding genes support lungfish and not the coelacanth as the closest living relatives of land vertebrates. Proc. Natl. Acad. Sci. USA 101: 4900–5.CrossRefGoogle Scholar
Gorr, T., Kleinschmidt, T., and Fricke, H. 1991. Close tetrapod relationship of the coelacanth Latimeria indicated by haemoglobin sequences. Nature 351: 394–7.CrossRefGoogle Scholar
Meyer, A. and Wilson, A. C. 1990. Origin of tetrapods inferred from their mitochondrial DNA affiliation to lungfish. J. Molec. Evol. 31: 359–64.CrossRefGoogle ScholarPubMed
Sharp, P. M., Lloyd, A. T., and Higgins, D. G. 1991. Coelacanth's relationships. Nature 353: 218–19.CrossRefGoogle Scholar
Stock, D. W., Moberg, K. D., Maxson, L. R., and Whitt, G. S. 1991. A phylogenetic analysis of the 18S ribosomal RNA sequence of the coelacanthLatimeria chalumnae. Env. Biol. Fishes 32: 99–117.CrossRefGoogle Scholar
Takezaki, N., Figueroa, F., Zaleska-Rutczynska, Z., Takahata, N., and Klein, J. 2004. The phylogenetic relationships of tetrapod, coelacanth, and lungfish revealed by the sequences of forty-four nuclear genes. Molec. Biol. Evol. 21: 1512–24.CrossRefGoogle ScholarPubMed
Thompson, K. S. 1991. Living Fossil: The Story of the Coelacanth. New York: Norton.Google Scholar
Zardoya, R., Cao, Y., Hasegawa, M., and Meyer, A. 1998. Searching for the closest living relative(s) of tetrapods through evolutionary analyses of mitochondrial and nuclear data. Molec. Biol. Evol. 15: 506–17.CrossRefGoogle ScholarPubMed
Flynn, J. J., Nedbal, M. A., Dragoo, J. W., and Honeycutt, R. L. 2000. Whence the red panda?Molec. Phylogen. Evol. 17: 190–9.CrossRefGoogle ScholarPubMed
O.Brien, S. J. 1987. The ancestry of the giant panda. Scient. Am. 257(5): 102–7.CrossRefGoogle Scholar
O'Brien, S. J., Nash, W. G., Wildt, D. E., Bush, M. E., and Benveniste, R. E. 1985. A molecular solution to the riddle of the giant panda's phylogeny. Nature 317: 140–4.CrossRefGoogle ScholarPubMed
Sarich, V. M. 1973. The giant panda is a bear. Nature 245: 218–20.CrossRefGoogle Scholar
Slattery, J. P. and O'Brien, S. J. 1995. Molecular phylogeny of the red panda(Ailurus fulgens). J. Hered. 86: 413–22.CrossRefGoogle ScholarPubMed
Brown, L. H. and Amadon, D. 1968. Eagles, Hawks and Falcons of the World. London: Country Life.Google Scholar
Bunce, M. and 6 others. 2005. Ancient DNA provides new insights into the evolutionary history of New Zealand's extinct giant eagle. PloS Biology 3: 44–6.CrossRefGoogle ScholarPubMed
Hofreiter, M, Serre, D., Poinar, H. N., Kuch, M., and Pääbo, S. 2001. Ancient DNA. Nature Rev. Genet. 2: 353–9.CrossRefGoogle ScholarPubMed
Nicholls, H. 2005. Ancient DNA comes of age. PloS Biology 3: 192–6.CrossRefGoogle ScholarPubMed
Worthy, T. H. and Holdaway, R. N. 2002. The Lost World of the Moa: Prehistoric Life of New Zealand. Bloomington, IN: Indiana University Press.Google Scholar
Hergé, G. R. 1960. Tintin in Tibet [English version]. Belgium: Casterman.Google Scholar
Matthiessen, P. 1979. The Snow Leopard. London: Chatto & Windus.Google Scholar
Matthiessen, P. and Laird, T. 1995. East of Lo Monhong: In the Land of the Mustang. Boston, MA: Shambala Publishers.Google Scholar
Milinkovitch, M. C., Caccone, A., and Amato, G. 2004. Molecular phylogenetic analyses indicate extensive morphological convergence between the “yeti” and primates. Molec. Phylogen. Evol. 31: 1–3.Google ScholarPubMed
Dice, L. and Blossom, P. M. 1937. Studies of mammalian ecology in southwestern North America, with special attention to the colors of desert mammals. Publ. Carnegie Inst. Washington 485: 1–25.Google Scholar
Hoekstra, H. E. and Nachman, M. W. 2003. Different genes underlie adaptive melanism in different populations of rock pocket mice. Molec. Ecol. 12: 1185–94.CrossRefGoogle ScholarPubMed
Nachman, M. W., Hoekstra, H. E., and D'Agostino, S. L. 2003. The genetic basis of adaptive melanism in pocket mice. Proc. Natl. Acad. Sci. USA 100: 5268–73.CrossRefGoogle ScholarPubMed
Andersson, M. 1994. Sexual Selection. Princeton, NJ: Princeton University Press.Google Scholar
Badyaev, A. V. and Hill, G. E. 2003. Avian sexual dichromatism in relation to phylogeny and ecology. A. Rev. Ecol. Evol. Syst. 34: 27–49.CrossRefGoogle Scholar
Burns, K. J. 1998. A phylogenetic perspective on the evolution of sexual dichromatism in tanagers (Thraupidae): The role of female versus male plumage. Evolution 52: 1219–24.CrossRefGoogle ScholarPubMed
Kimball, R. T., Braun, E. L., Ligon, J. D., Lucchini, V., and Randi, E. 2001. A molecular phylogeny of the peacock-pheasants (Galliformes: Polyplectron spp) indicates loss and reduction of ornamental traits and display behaviors. Biol. J. Linn. Soc. 73: 187–98.Google Scholar
Kimball, R. T. and Ligon, J. D. 1999. Evolution of avian plumage dichromatism from a proximate perspective. Am. Nat. 154: 182–93.CrossRefGoogle Scholar
Owens, I. P. F. and Short, R. V. 1995. Hormonal basis of sexual dimorphism in birds: implications for new theories of sexual selection. Trends Ecol. Evol. 10: 44–7.CrossRefGoogle ScholarPubMed
Peterson, A. T. 1996. Geographic variation in sexual dichromatism in birds. Bull. Br. Ornithol. Club 116: 156–72.Google Scholar
Price, T. and Birch, G. L. 1996. Repeated evolution of sexual color dimorphism in passerine birds. Auk 133: 842–8.CrossRefGoogle Scholar
Wiens, J. 2001. Widespread loss of sexually selected traits: how the peacock lost its spots. Trends Ecol. Evol. 16: 517–23.CrossRefGoogle Scholar
Delacour, J. and Mayr, E. 1945.