Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-z5d2w Total loading time: 0.29 Render date: 2021-12-08T22:11:51.561Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

4 - Opportunistic Delivery Services and Delay-Tolerant Networks

Published online by Cambridge University Press:  03 May 2011

Sanjoy Paul
Affiliation:
InfoSys Technologies Limited
Dipankar Raychaudhuri
Affiliation:
Rutgers University, New Jersey
Mario Gerla
Affiliation:
University of California, Los Angeles
Get access

Summary

Abstract

The number of endpoints connected wirelessly to the Internet has long overtaken the number of wired endpoints, and the difference between the two is widening. Wireless mesh networks, sensor networks, and vehicular networks represent some of the new growth segments in wireless networking in addition to mobile data networks, which is currently the fastest-growing segment in the wireless industry. Wireless networks with time-varying bandwidth, error rate, and connectivity beg for opportunistic transport, especially when the link bandwidth is high, error rate is low, and the endpoint is connected to the network in contrast to when the link bandwidth is low, error rate is high, and the endpoint is not connected to the network. “Connected” is a binary attribute in TCP/IP, meaning one is either part of the Internet and can talk to everything or is isolated. In addition, connecting requires a globally unique IP address that is topologically stable on routing timescale (minutes to hours). This makes it difficult and inefficient to handle mobility and opportunistic transport in the Internet. Clearly we need a new networking paradigm that avoids a heavyweight operation like end-to-end connection and enables opportunistic transport. In addition to the these scenarios, given that the predominant use of the Internet today is for content distribution and content retrieval, there is a need for handling dissemination of content in an efficient manner. This chapter describes a network architecture that addresses the previously mentioned unique requirements.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×