Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-09-13T00:36:29.205Z Has data issue: false hasContentIssue false

Chapter 11 - Waves of Insight

A Historical Overview of the Neuroscience of Insight

from V - Cognitive Neuroscience of Insight

Published online by Cambridge University Press:  02 May 2024

Carola Salvi
Affiliation:
John Cabot University, Rome
Jennifer Wiley
Affiliation:
University of Illinois, Chicago
Steven M. Smith
Affiliation:
Texas A & M University
Get access

Summary

Perspectives on how to define, operationalize, and measure insight have evolved due to developments in theory, methodology, and technology. Research on insight can be broken into several waves. In the first wave, Gestalt psychologists introduced the concept of insight as a discontinuous form of learning and problem solving that arises from changes in one’s global representation of a problem, in opposition to contemporary associationist views. In the second wave, psychologists examined insight in deliberate contrast with analytical problem-solving and found that insight involves nonreportable mental operations leading to a discrete, all-or-none availability of representational change. In the third wave, thanks to advances in behavioral methods and neuroimaging technology, cognitive neuroscientists began to examine how insight occurs in the brain with the goal of studying the neural states that co-occur with and precede insight to better understand its cognitive mechanisms. The advances made during these initial waves enabled the proliferation of research on insight over recent decades and inspired new discoveries. This chapter provides a brief retrospective on the first two waves of insight research and a more in-depth overview of the third wave of research on the cognitive neuroscience of insight, and ends by discussing current and future directions in insight research

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ash, I. K., & Wiley, J. (2019). Ah-Ha, I knew it all along: Differences in hindsight bias between insight and algebra problems. In Gray, W. D & Schunn, C. D (Eds.), Proceedings of the twenty-fourth annual conference of the cognitive science society. Routledge. https://doi.org/10.4324/9781315782379-52.Google Scholar
Badre, D., & Wagner, A. D. (2007). Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia, 45( 13), 28832901. https://doi.org/10.1016/j.neuropsychologia.2007.06.015.CrossRefGoogle ScholarPubMed
Baird, B., Smallwood, J., Mrazek, M. D., et al. (2012). Inspired by distraction: Mind wandering facilitates creative incubation. Psychological Science, 23(10), 11171122. https://doi.org/10.1177/0956797612446024.CrossRefGoogle ScholarPubMed
Bartolo, A., Benuzzi, F., Nocetti, L., Baraldi, P., & Nichelli, P. (2006). Humor comprehension and appreciation: An FMRI study. Journal of Cognitive Neuroscience, 18(11), 17891798.CrossRefGoogle ScholarPubMed
Becker, M., & Cabeza, R. (2023). Assessing creativity independently of language: A language-independent remote associate task (LI-RAT). Behavior Research Methods, 55(1), 85-102.CrossRefGoogle Scholar
Becker, M., Sommer, T., & Kühn, S. (2020). Verbal insight revisited: fMRI evidence for early processing in bilateral insulae for solutions with AHA! experience shortly after trial onset. Human Brain Mapping, 41(1), 3045.CrossRefGoogle ScholarPubMed
Beeman, M. J., & Bowden, E. M. (2000). The right hemisphere maintains solution-related activation for yet-to-be-solved problems. Memory and Cognition, 28(7), 12311241. https://doi.org/10.3758/BF03211823.CrossRefGoogle ScholarPubMed
Beeman, M. J., Bowden, E. M., & Gernsbacher, M. A. (2000). Right and left hemisphere cooperation for drawing predictive and coherence inferences during normal story comprehension. Brain and Language, 71(2), 310336. https://doi.org/10.1006/brln.1999.2268.CrossRefGoogle ScholarPubMed
Behrens, J. P., & Olteţeanu, A. M. (2020). Are all remote associates tests equal? An overview of the remote associates test in different languages. Frontiers in Psychology, 11, 1125. https://doi.org/10.3389/fpsyg.2020.01125.CrossRefGoogle ScholarPubMed
Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8(12), 539546. https://doi.org/10.1016/j.tics.2004.10.003.CrossRefGoogle ScholarPubMed
Bowden, E. M. (1997). The effect of reportable and unreportable hints on anagram solution and the aha! experience. Consciousness and Cognition 6(4), 545573.CrossRefGoogle ScholarPubMed
Bowden, E. M., & Beeman, M. J. (1998). Getting the right idea: Semantic activation in the right hemisphere may help solve insight problems. Psychological Science, 9(6), 435440. https://doi.org/10.1111/1467-9280.00082.CrossRefGoogle Scholar
Bowden, E. M., & Jung-Beeman, M. (2003a). Aha! Insight experience correlates with solution activation in the right hemisphere. Psychonomic Bulletin and Review, 10(3), 730737. https://doi.org/10.3758/BF03196539.CrossRefGoogle ScholarPubMed
Bowden, E. M., & Jung-Beeman, M. (2003b). Normative data for 144 compound remote associate problems. Behavior Research Methods, Instruments, & Computers, 35(4), 634639. https://doi.org/10.3758/BF03195543.CrossRefGoogle ScholarPubMed
Bowden, E. M., & Jung-Beeman, M. (2007). Methods for investigating the neural components of insight. Methods, 42(1), 8799. https://doi.org/10.1016/j.ymeth.2006.11.007.CrossRefGoogle ScholarPubMed
Bowden, E. M., Jung-Beeman, M., Fleck, J., & Kounios, J. (2005). New approaches to demystifying insight. Trends in Cognitive Sciences, 9(7). https://doi.org/10.1016/j.tics.2005.05.012.CrossRefGoogle ScholarPubMed
Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4(6). https://doi.org/10.1016/S1364-6613(00)01483-2.CrossRefGoogle ScholarPubMed
Carter, C. S., & van Veen, V. (2007). Anterior cingulate cortex and conflict detection: An update of theory and data. Cognitive, Affective and Behavioral Neuroscience, 7(4), 367379. https://doi.org/10.3758/CABN.7.4.367.CrossRefGoogle ScholarPubMed
Chermahini, S. A., Hickendorff, M., & Hommel, B. (2012). Development and validity of a Dutch version of the Remote Associates Task: An item-response theory approach. Thinking Skills and Creativity, 7(3), 177186.CrossRefGoogle Scholar
Chesebrough, C., Chrysikou, E. G., Holyoak, K. H., Zhang, Z., & Kounios, J. (2023). Conceptual change induced by analogical reasoning sparks Aha moments. Creativity Research Journal. https://doi.org/10.1080/10400419.2023.2188361.CrossRefGoogle Scholar
Cristofori, I., Salvi, C., Beeman, M., & Grafman, J. (2018). The effects of expected reward on creative problem solving. Cognitive, Affective, & Behavioral Neuroscience, 18(5), 925931. https://doi.org/10.3758/s13415-018-0613-5.CrossRefGoogle ScholarPubMed
Danek, A. H. (2018). Magic tricks, sudden restructuring and the Aha! experience: A new model of non-monotonic problem solving. In Vallée-Tourangeau, F. (Ed.), Insight: On the origins of new ideas (pp. 5178). Routledge.CrossRefGoogle Scholar
Danek, A. H., Fraps, T., von Müller, A., Grothe, B., & Öllinger, M. (2013). Aha! experiences leave a mark: Facilitated recall of insight solutions. Psychological Research, 77(5). https://doi.org/10.1007/s00426-012-0454-8.CrossRefGoogle Scholar
Danek, A. H., & Salvi, C. (2020). Moment of truth: Why Aha! experiences are correct. The Journal of Creative Behavior, 54(2), 484486. https://doi.org/10.1002/jocb.380.CrossRefGoogle Scholar
Danek, A. H., & Wiley, J. (2020). What causes the insight memory advantage? Cognition, 205. https://doi.org/10.1016/j.cognition.2020.104411.CrossRefGoogle ScholarPubMed
Danek, A. H., Wiley, J., & Öllinger, M. (2016). Solving classical insight problems without Aha! experience: 9 dot, 8 coin, and matchstick arithmetic problems. Journal of Problem Solving, 9(1). https://doi.org/10.7771/1932-6246.1183.CrossRefGoogle Scholar
Danek, A. H., Williams, J., & Wiley, J. (2020). Closing the gap: Connecting sudden representational change to the subjective Aha! experience in insightful problem solving. Psychological Research, 84(1). https://doi.org/10.1007/s00426-018-0977-8.CrossRefGoogle Scholar
Dodds, R. A., Smith, S. M., & Ward, T. B. (2002). The use of environmental clues during incubation. Creativity Research Journal, 14(3–4), 287304. https://doi.org/10.1207/S15326934CRJ1434_1.CrossRefGoogle Scholar
Duncker, K. (1945). On problem-solving (L. S. Lees, Trans.). Psychological Monographs, 58(5), i113. https://doi.org/10.1037/h0093599.CrossRefGoogle Scholar
Erickson, B., Truelove-Hill, M., Oh, Y., et al. (2018). Resting-state brain oscillations predict trait-like cognitive styles. Neuropsychologia, 120, 18. https://doi.org/10.1016/j.neuropsychologia.2018.09.014.CrossRefGoogle ScholarPubMed
Ernst, G., & Newell, A. (1969). GPS: A case study in generality and problem solving. Academic Press.Google Scholar
Fleck, J. I., & Weisberg, R. W. (2013). Insight versus analysis: Evidence for diverse methods in problem solving. Journal of Cognitive Psychology, 25(4), 436463. https://doi.org/10.1080/20445911.2013.779248.CrossRefGoogle Scholar
Frijda, N. H., & de Groot, A. D. (1981). Otto Selz: His contribution to psychology. Mouton.CrossRefGoogle Scholar
Hark, M. (2010). The psychology of thinking before the cognitive revolution: Otto Selz on problems, schemas, and creativity. History of Psychology, 13(1). https://doi.org/10.1037/a0017442.Google ScholarPubMed
Hill, G., & Kemp, S. M. (2018). Connect 4: A novel paradigm to elicit positive and negative insight and search problem solving. Frontiers in Psychology, 9, 1755. https://doi.org/10.3389/fpsyg.2018.01755.CrossRefGoogle ScholarPubMed
Jensen, O., Kaiser, J., & Lachaux, J. P. (2007). Human gamma-frequency oscillations associated with attention and memory. Trends in Neurosciences, 30(7). https://doi.org/10.1016/j.tins.2007.05.001.CrossRefGoogle ScholarPubMed
Jensen, O., & Mazaheri, A. (2010). Shaping functional architecture by oscillatory alpha activity: Gating by inhibition. Frontiers in Human Neuroscience, 4. https://doi.org/10.3389/fnhum.2010.00186.CrossRefGoogle ScholarPubMed
Jung-Beeman, M., Bowden, E. M., Haberman, J., et al. (2004). Neural activity when people solve verbal problems with insight. PLoS Biology, 2(4), e97. https://doi.org/10.1371/journal.pbio.0020097.CrossRefGoogle ScholarPubMed
Kaplan, C. A., & Simon, H. A. (1990). In search of insight. Cognitive Psychology, 22(3), 374419. https://doi.org/10.1016/0010-0285(90)90008-R.CrossRefGoogle Scholar
Keil, A., Müller, M. M., Ray, W. J., Gruber, T., & Elbert, T. (1999). Human gamma band activity and perception of a gestalt. Journal of Neuroscience, 19(16). https://doi.org/10.1523/jneurosci.19-16-07152.1999.CrossRefGoogle ScholarPubMed
Kizilirmak, J. M., & Becker, M. (2024). A cognitive neuroscience perspective on insight as a memory process: Encoding the solution. In Ball, L. J. & Valleé-Tourangeau, F. (Eds.), Routledge international handbook of creative cognition (pp. 85102). Routledge.Google Scholar
Kizilirmak, J. M., Galvao Gomes da Silva, J., Imamoglu, F., & Richardson-Klavehn, A. (2016). Generation and the subjective feeling of “aha!” are independently related to learning from insight. Psychological Research, 80(6), 10591074. https://doi.org/10.1007/s00426-015-0697-2.CrossRefGoogle ScholarPubMed
Kizilirmak, J. M., Schott, B. H., Thuerich, H., et al. (2019). Learning of novel semantic relationships via sudden comprehension is associated with a hippocampus-independent network. Consciousness and Cognition, 69, 113132. https://doi.org/10.1016/j.concog.2019.01.005.CrossRefGoogle ScholarPubMed
Kizilirmak, J. M., Thuerich, H., Folta-Schoofs, K., Schott, B. H., & Richardson-Klavehn, A. (2016). Neural correlates of learning from induced insight: A case for reward-based episodic encoding. Frontiers in Psychology, 7(Nov.). https://doi.org/10.3389/fpsyg.2016.01693.CrossRefGoogle ScholarPubMed
Köhler, W. (1925). The mentality of apes. Routledge.Google Scholar
Kounios, J., Fleck, J. I., Green, D. L., et al. (2008). The origins of insight in resting-state brain activity. Neuropsychologia, 46(1), 281291CrossRefGoogle ScholarPubMed
Kounios, J., Frymiare, J. L., Bowden, E. M., et al. (2006). The prepared mind: Neural activity prior to problem presentation predicts subsequent solution by sudden insight. Psychological Science, 17(10), 882890. https://doi.org/10.1111/j.1467-9280.2006.01798.x.CrossRefGoogle ScholarPubMed
Landmann, N., Kuhn, M., Piosczyk, H., Feige, B., Riemann, D., Nissen, C. (2014). Entwicklung von 130 deutsch sprachigen Compound Remote Associate (CRA)-Wortraetseln zur Untersuchung kreativer Prozesse im deutschen Sprachraum. Psychologische Rundschau 65, 200211. https://doi.org/10.1026/0033-3042/a000223.CrossRefGoogle Scholar
Laukkonen, R. E., Kaveladze, B. T., Tangen, J. M., & Schooler, J. W. (2020). The dark side of Eureka: Artificially induced Aha moments make facts feel true. Cognition, 196, 104122. https://doi.org/10.1016/j.cognition.2019.104122.CrossRefGoogle ScholarPubMed
Laukkonen, R. E., & Tangen, J. M. (2018). How to detect insight moments in problem solving experiments. Frontiers in Psychology, 9, 282. https://doi.org/10.3389/fpsyg.2018.00282.CrossRefGoogle ScholarPubMed
Laukkonen, R. E., Webb, M. E., Salvi, C., Tangen, J. M., Slagter, H. A., & Schooler, J. W. (2023). Insight and the selection of ideas. Neuroscience and Biobehavioral Reviews, 153(March), 105363. https://doi.org/10.1016/j.neubiorev.2023.105363.CrossRefGoogle ScholarPubMed
Luo, J., & Knoblich, G. (2007). Studying insight problem solving with neuroscientific methods. Methods, 42(1), 7786. https://doi.org/10.1016/j.ymeth.2006.12.005.CrossRefGoogle ScholarPubMed
Luo, J., Niki, K., & Knoblich, G. (2006). Perceptual contributions to problem solving: Chunk decomposition of Chinese characters. Brain Research Bulletin, 70(4–6), 430433. https://doi.org/10.1016/j.brainresbull.2006.07.005.CrossRefGoogle ScholarPubMed
Luo, J., Niki, K., & Phillips, S. (2004). Neural correlates of the “Aha! reaction.” Neuroreport, 15, 20132017. https://doi.org/10.1097/00001756-200409150-00004.CrossRefGoogle ScholarPubMed
MacGregor, J. N., & Cunningham, J. B. (2008). Rebus puzzles as insight problems. Behavior Research Methods, 40(1), 263268.CrossRefGoogle ScholarPubMed
Manfredi, M., Mado, A., Ana, P., et al. (2017). tDCS application over the STG improves the ability to recognize and appreciate elements involved in humor processing. Experimental Brain Research, 235, 18431852. https://doi.org/10.1007/s00221-017-4932-5.CrossRefGoogle ScholarPubMed
Mashal, N., Faust, M., Hendler, T., & Jung-Beeman, M. (2007). An fMRI investigation of the neural correlates underlying the processing of novel metaphoric expressions. Brain and language, 100(2), 115126.CrossRefGoogle ScholarPubMed
Mayer, R. E. (1995). The search for insight: Grappling with Gestalt Psychology’s unanswered questions. In Sternberg, R. J. & Davidson, J. E. (Eds.), The nature of insight (pp. 332). MIT Press.Google Scholar
Mednick, S. (1962). The associative basis of the creative problem solving process. Psychological Review, 69(3), 200232. https://doi.org/10.1037/h0048850.CrossRefGoogle Scholar
Metcalfe, J., & Wiebe, D. (1987). Intuition in insight and noninsight problem solving. Memory & Cognition, 15(3), 238246. https://doi.org/10.3758/BF03197722.CrossRefGoogle ScholarPubMed
Moss, J., Kotovsky, K., & Cagan, J. (2007). The influence of open goals on the acquisition of problem-relevant information. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(5), 876891. https://doi.org/10.1037/0278-7393.33.5.876.Google ScholarPubMed
Nam, B., Paromita, P., Chu, S. L., Chaspari, T., & Woltering, S. (2021). Moments of insight in problem-solving relate to bodily arousal. Journal of Creative Behavior, 55(4). https://doi.org/10.1002/jocb.504.CrossRefGoogle Scholar
Oh, Y., Chesebrough, C., Erickson, B., Zhang, F., & Kounios, J. (2020). An insight-related neural reward signal. NeuroImage, 214, 116757. https://doi.org/10.1016/j.neuroimage.2020.116757.CrossRefGoogle ScholarPubMed
Ohlsson, S. (1984). Restructuring revisited: I. Summary and critique of the Gestalt theory of problem solving. Scandinavian Journal of Psychology, 25(1), 6578. https://doi.org/10.1111/j.1467-9450.1984.tb01001.x.CrossRefGoogle Scholar
Olteteanu, A.-M., Taranu, M., & Ionescu, T. (2019b). Normative data for 111 compound remote associates test problems in Romanian. Frontiers in Psychology, 10(1859). https://doi.org/10.3389/fpsyg.2019.01859.CrossRefGoogle ScholarPubMed
Orita, R., Hattori, M., & Nishida, Y. (2018). Development of a Japanese remote associates task as insight problems. Shinrigaku Kenkyu 89, 376386. https://doi.org/10.4992/jjpsy.89.17201.CrossRefGoogle Scholar
Qiu, J., Li, H., Jou, J., et al. (2010). Neural correlates of the “Aha” experiences: Evidence from an fMRI study of insight problem solving. Cortex, 46(3), 397403. https://doi.org/10.1016/j.cortex.2009.06.006.CrossRefGoogle ScholarPubMed
Rothmaler, K., Nigbur, R., & Ivanova, G. (2017). New insights into insight: Neurophysiological correlates of the difference between the intrinsic “Aha” and the extrinsic “oh yes” moment. Neuropsychologia, 95, 204214. https://doi.org/10.1016/j.neuropsychologia.2016.12.017.CrossRefGoogle ScholarPubMed
Salvi, C., Beeman, M., Bikson, M., McKinley, R., & Grafman, J. (2020). TDCS to the right anterior temporal lobe facilitates insight problem-solving. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-57724-1.CrossRefGoogle Scholar
Salvi, C., & Bowden, E. (2020). The relation between state and trait risk taking and problem-solving. Psychological Research, 84(5), 12351248. https://doi.org/10.1007/s00426-019-01152-y.CrossRefGoogle ScholarPubMed
Salvi, C., Bricolo, E., Franconeri, S. L., Kounios, J., & Beeman, M. (2015). Sudden insight is associated with shutting out visual inputs. Psychonomic Bulletin & Review, 22(6), 18141819. https://doi.org/10.3758/s13423-015-0845-0819.CrossRefGoogle ScholarPubMed
Salvi, C., Bricolo, E., Kounios, J., Bowden, E., & Beeman, M. (2016) Insight solutions are correct more often than analytic solutions. Thinking & Reasoning, 22(4), 443460, https://doi.org/10.1080/13546783.2016.1141798.CrossRefGoogle ScholarPubMed
Salvi, C., Costantini, G., Bricolo, E., Perugini, M., & Beeman, M. (2016a). Validation of Italian rebus puzzles and compound remote associate problems. Behavioural Research Methods 48, 664685. https://doi.org/10.3758/s13428-015-0597-9.CrossRefGoogle ScholarPubMed
Salvi, C., Costantini, G., Pace, A., & Palmiero, M. (2020). Validation of the Italian remote associate test. The Journal of Creative Behavior, 54(1), 6274.CrossRefGoogle ScholarPubMed
Salvi, C., Keller, N., Cooper, S. E., Leiker, E., & Dunsmoor, J. E. (2023). Insight enhances learning for incidental information. New evidence supports the insight memory advantage. https://osf.io/preprints/psyarxiv/tvafw/.Google Scholar
Salvi, C., Simoncini, C., Grafman, J., & Beeman, M. (2020). Oculometric signature of switch into awareness? Pupil size predicts sudden insight whereas microsaccades predict problem-solving via analysis. NeuroImage, 217, 116933. https://doi.org/10.1016/j.neuroimage.2020.116933.CrossRefGoogle ScholarPubMed
Santarnecchi, E., Sprugnoli, G., Bricolo, E., et al. (2019). Gamma tACS over the temporal lobe increases the occurrence of Eureka! moments. Scientific Reports, 9(1), 112.CrossRefGoogle ScholarPubMed
Schooler, J. W., Ohlsson, S., & Brooks, K. (1993). Thoughts beyond words: When language overshadows insight. Journal of Experimental Psychology: General, 122(2), 166183. https://doi.org/10.1037//0096-3445.122.2.166.CrossRefGoogle Scholar
Seifert, C. M., Meyer, D. E., Davidson, N., Patalano, A. L., & Yaniv, I. (1995). Demystification of cognitive insight: Opportunistic assimilation and the prepared-mind perspective. In Sternberg, R. J. (Ed.), The nature of insight (pp. 65124). MIT Press.Google Scholar
Shen, W., Tong, Y., Li, F., et al. (2018). Tracking the neurodynamics of insight: A meta-analysis of neuroimaging studies. Biological Psychology, 138, 189198. https://doi.org/10.1016/j.biopsycho.2018.08.018.CrossRefGoogle Scholar
Shen, W., Yuan, Y., Liu, C., & Luo, J. (2017). The roles of the temporal lobe in creative insight: An integrated review. Thinking and Reasoning, 23(4), 321375. https://doi.org/10.1080/13546783.2017.1308885.CrossRefGoogle Scholar
Shen, W., Yuan, Y., Liu, C., Yi, B., & Dou, K. (2016). The development and validity of a Chinese version of the compound remote associates test. American Journal of Psychology, 129, 245258.CrossRefGoogle ScholarPubMed
Simon, H. A., & Newell, A. (1971). Human problem solving: The state of the theory in 1970. American Psychologist, 26(2), 145159. https://doi.org/10.1037/h0030806.CrossRefGoogle Scholar
Smith, R. W., & Kounios, J. (1996). Sudden insight: All-or-none processing revealed by speed-accuracy decomposition. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22(6), 14431462. https://doi.org/10.1037//0278-7393.22.6.1443.Google ScholarPubMed
Smith, S. M., & Blankenship, S. E. (1989). Incubation effects. Bulletin of the Psychonomic Society, 27(4), 311314. https://doi.org/10.3758/bf03334612.CrossRefGoogle Scholar
Smith, S. M., & Blankenship, S. E. (1991). Incubation and the persistence of fixation in problem solving. The American Journal of Psychology, 104(1), 6187. https://doi.org/10.2307/1422851.CrossRefGoogle ScholarPubMed
Sobków, A., Połeć, A., & Nosal, C. (2017). RAT-PL–constructinon and validation the Polish version of the Remote Associates Test. Psychological Studies, 54(2), 113.Google Scholar
Sprugnoli, G., Rossi, S., Emmendorfer, A., et al. (2017). Neural correlates of Eureka moment. Intelligence, 62. https://doi.org/10.1016/j.intell.2017.03.004.CrossRefGoogle Scholar
Sprugnoli, G., S. Rossi, S. L. Liew, E., et al. (2021). Enhancement of semantic integration reasoning by tRNS. Cognitive, Affective, & Behavioral Neuroscience, 21, 736746.CrossRefGoogle ScholarPubMed
St George, M., Kutas, M., Martinez, A., & Sereno, M. I. (1999). Semantic integration in reading: Engagement of the right hemisphere during discourse processing. Brain, 122(7), 13171325CrossRefGoogle ScholarPubMed
Sternberg, R. J., & Davidson, J. E. (1995). The nature of insight. The MIT Press.Google Scholar
Storm, B. C., & Angello, G. M. (2010). Overcoming fixation. Psychological Science, 21(9), 12631265. https://doi.org/10.1177/0956797610379864.CrossRefGoogle ScholarPubMed
Subramaniam, K., Kounios, J., Parrish, T. B., & Jung-Beeman, M. (2009). A brain mechanism for facilitation of insight by positive affect. Journal of Cognitive Neuroscience, 21(3), 415432. https://doi.org/10.1162/jocn.2009.21057.CrossRefGoogle ScholarPubMed
Tallon-Baudry, C. (2004). Attention and awareness in synchrony. Trends in Cognitive Sciences, 8(12), 523525. https://doi.org/10.1016/j.tics.2004.10.008.CrossRefGoogle ScholarPubMed
Tallon-Baudry, C. (2012). On the neural mechanisms subserving consciousness and attention. Frontiers in Psychology, 3(Jan.). https://doi.org/10.3389/fpsyg.2011.00397.Google Scholar
Tallon-Baudry, C., & Bertrand, O. (1999). Oscillatory gamma activity in humans and its role in object representation. Trends in Cognitive Sciences, 3(4), 151162. https://doi.org/10.1016/S1364-6613(99)01299-1.CrossRefGoogle ScholarPubMed
Tervo, D. G. R., Kuleshova, E., Manakov, M., et al. (2021). The anterior cingulate cortex directs exploration of alternative strategies. Neuron, 109(11), 18761887.CrossRefGoogle ScholarPubMed
Thorndike, E. L. (1898). Animal intelligence: An experimental study of the associative processes in animals. Psychological Monographs, 2(8), 1125–1128.CrossRefGoogle Scholar
Threadgold, E., Marsh, J. E., & Ball, L. J. (2018). Normative data for 84 UK English rebus puzzles. Frontiers in Psychology, 9, 2513. https://doi.org/10.3389/fpsyg.2018.02513.CrossRefGoogle ScholarPubMed
Tian, F., Hou, Y., Zhu, W., et al. (2017). Getting the joke: Insight during humor comprehension – Evidence from an fMRI study. Frontiers in Psychology, 8(Oct.). https://doi.org/10.3389/fpsyg.2017.01835.CrossRefGoogle ScholarPubMed
Tik, M., Sladky, R., Luft, C. D. B., et al. (2018). Ultra-high-field fMRI insights on insight: Neural correlates of the Aha!-moment. Human Brain Mapping, 39(8), 32413252. https://doi.org/10.1002/hbm.24073.CrossRefGoogle ScholarPubMed
Toivainen, T., Olteteanu, A.-M., Repeykova, V., Lihanov, M., & Kovas, Y. (2019). Visual and linguistic stimuli in the remote associates test: A cross-cultural investigation. Frontiers in Psychology, 10(926). https://doi.org/10.3389/fpsyg.2019.00926.CrossRefGoogle Scholar
Topolinski, S., & Reber, R. (2010). Gaining insight into the “Aha” experience. Current Directions in Psychological Science, 19(6), 402405. https://doi.org/10.1177/0963721410388803.CrossRefGoogle Scholar
Touroutoglou, A., Andreano, J. M., Adebayo, M., Lyons, S., & Barrett, L. F. (2019). Motivation in the service of allostasis: The role of anterior mid-cingulate cortex. In Elliot, A. J (Ed.), Advances in motivation science (pp. 125). Elsevier.Google Scholar
Vogt, B. A. (2016). Midcingulate cortex: Structure, connections, homologies, functions and diseases. Journal of Chemical Neuroanatomy, 74, 2846. https://doi.org/10.1016/j.jchemneu.2016.01.010.CrossRefGoogle ScholarPubMed
Wakusawa, K., Sugiura, M., Sassa, Y., et al. (2007). Comprehension of implicit meanings in social situations involving irony: A functional MRI study. NeuroImage, 37(4), 14171426.CrossRefGoogle Scholar
Webb, M. E., Little, D. R., & Cropper, S. J. (2016). Insight is not in the problem: Investigating insight in problem solving across task types. Frontiers in Psychology, 7, 1424. https://doi.org/10.3389/fpsyg.2016.01424.CrossRefGoogle Scholar
Weisberg, R. W., & Alba, J. W. (1982). Problem solving is not like perception: More on Gestalt theory. Journal of Experimental Psychology: General, 111(3), 326330. https://doi.org/10.1037//0096-3445.111.3.326.CrossRefGoogle Scholar
Wertheimer, M. (1945). Productive thinking. University of Chicago Press.Google Scholar
Wiley, J. (1998). Expertise as mental set: The effects of domain knowledge in creative problem solving. Memory & Cognition, 26(4), 716730. https://doi.org/10.3758/bf03211392.CrossRefGoogle ScholarPubMed
Yu, Y., Salvi, C., & Beeman, M. (2022). Solving problems with an Aha! increases uncertainty tolerance. OSF Preprints. September 23. https://doi.org/10.31219/osf.io/z3ng5.CrossRefGoogle Scholar
Zhu, X., Oh, Y., Chesebrough, C., Zhang, F., & Kounios, J. (2021). Pre-stimulus brain oscillations predict insight versus analytic problem-solving in an anagram task. Neuropsychologia, 162. https://doi.org/10.1016/j.neuropsychologia.2021.108044.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×