Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-20T03:33:17.319Z Has data issue: false hasContentIssue false

6 - Electron-ion interaction

Published online by Cambridge University Press:  06 July 2010

Massimiliano Di Ventra
Affiliation:
University of California, San Diego
Get access

Summary

Electrical current is affected by the interaction between electrons and ions. Due to this interaction electrons may undergo inelastic transitions between states of different energy, even if the electrons themselves are considered non-interacting with each other. These transitions appear as discontinuities (steps) in the current (conductance) at biases corresponding to the phonon spectrum of the structure. In reality, the phonon spectrum is renormalized by both the electron-phonon interaction at equilibrium, and by the current itself. The latter fact makes the concept of phonons under current flow fundamentally less obvious. I will discuss this point in Sec. 6.5.

An example of inelastic features in nanoscale systems is illustrated in Fig. 6.1 where the conductance of a gold point contact is measured as a function of bias. The conductance shows a step in the range between 10 and 20 meV corresponding to the energy of the vibrational modes of the whole system – gold point contact plus electrodes – that couple more effectively with electrons.

Via the same inelastic mechanism, electrons can exchange energy with the ions and thus heat up the nanostructure while they propagate across it. As we will see later, this phenomenon, called local ionic heating, may have dramatic effects on the stability of nanostructures.

Finally, in a current-carrying system ions may be displaced by local current-induced rearrangements of the electronic distribution – the local resistivity dipoles I discussed in Sec. 3.2 – without the intervention of inelastic processes. The forces responsible for such displacements are known as current-induced forces. Despite many studies, past and present, these forces challenge our understanding of non-equilibrium phenomena, starting from their basic definition for a current-carrying system to their, yet unsolved, conservative character.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×