Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-4hcbs Total loading time: 1.114 Render date: 2021-12-02T11:06:18.895Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

SECTION FOUR - THE β THALASSEMIAS

Published online by Cambridge University Press:  03 May 2010

Martin H. Steinberg
Affiliation:
Boston University
Bernard G. Forget
Affiliation:
Yale University, Connecticut
Douglas R. Higgs
Affiliation:
MRC Institute of Molecular Medicine, University of Oxford
David J. Weatherall
Affiliation:
Albert Einstein College of Medicine, New York
Get access

Summary

Over the years, study of the thalassemia syndromes has served as a paradigm for gaining insights into the factors that can regulate or disrupt normal gene expression. The thalassemias constitute a heterogeneous group of naturally occurring, inherited mutations characterized by abnormal globin gene expression resulting in total absence or quantitative reduction of α- or β-globin chain synthesis in human erythroid cells. α Thalassemia is associated with absent or decreased production of α-chains, whereas in the β thalassemias, there is absent or decreased production of β-chains. In those cases in which some of the affected globin chain is synthesized, early studies demonstrated no evidence of an amino acid substitution. In all cases in which genetic evidence was available, the thalassemia gene appeared to be allelic with the structural gene encoding α- or β-globin. The elucidation of the nature of the various molecular lesions in thalassemia has been a fascinating process, and full of surprises. Increase in our knowledge of the molecular basis of β thalassemia has closely followed and depended on progress and technical breakthroughs in the fields of biochemistry and molecular biology. In particular, recombinant DNA and polymerase chain reaction–based technologies have contributed to a virtual explosion of new information on the precise molecular basis of most forms of thalassemia. The accrual of this knowledge has, to a great degree, paralleled the acquisition of new, detailed information on the structure, organization, and function of the normal human globin genes, as described in the preceding chapters.

Type
Chapter
Information
Disorders of Hemoglobin
Genetics, Pathophysiology, and Clinical Management
, pp. 321 - 322
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×