Skip to main content Accessibility help
×
Home
Hostname: page-component-56f9d74cfd-fpcrz Total loading time: 1.084 Render date: 2022-06-25T06:01:50.618Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

13 - Freshwater diatoms as indicators of environmental change in the High Arctic

from Part III - Diatoms as indicators in Arctic, Antarctic, and alpine lacustrine environments

Published online by Cambridge University Press:  05 June 2012

Marianne S. V. Douglas
Affiliation:
University of Alberta
John P. Smol
Affiliation:
Queen's University
John P. Smol
Affiliation:
Queen's University, Ontario
Eugene F. Stoermer
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction

High Arctic environments continue to receive increased attention from the scientific community, policy makers, and the public at large because polar regions are considered to be especially sensitive to the effects of global climatic and other environmental changes (Rouse et al., 1997; ACIA, 2004; IPCC, 2007). Polar lakes and ponds, and the biota they contain, are important sentinels of environmental changes (Pienitz et al., 2004; Schindler & Smol, 2006) and have thus been the focus of many research programs (Vincent & Laybourn-Parry, 2008).

There is considerable potential for using living and fossil diatom assemblages to track environmental trends in High Arctic regions (Smol & Douglas, 1996; Douglas et al., 2004a). A growing number of studies have examined the taxonomy, ecology, and paleoecology of High Arctic diatoms, as lakes and ponds are dominant features of most Arctic landscapes. Given the diversity and vastness of these regions, many exciting research opportunities exist. For example, about 18% (by area) of Canada's surface waters are situated north of 60 °N (Statistics Canada, 1987), and Sheath (1986) estimated that tundra ponds cover approximately 2% of the Earth's surface. The heightened interest in High Arctic environments, coupled with an increased accessibility of these remote regions (e.g. by helicopter), has resulted in a recent surge of interest in Arctic diatom research. Whilst some proxy techniques, such as palynology and dendroecology, have limited applicability in some High Arctic regions due to the paucity of higher plants (Gajewski et al., 1995), paleolimnological approaches using diatoms have become especially important for studies of long-term global environmental change.

Type
Chapter
Information
The Diatoms
Applications for the Environmental and Earth Sciences
, pp. 249 - 266
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

,ACIA (2004). Impacts of a Warming Arctic. Arctic Climate Impact Assessment. Cambridge: Cambridge University Press.Google Scholar
Anderson, N. J., Ryves, D. B., Grauert, M., & McGowan, S. (2004). Holocence paleolimnology of Greenland and the North Atlantic islands (north of 60° N). In Long-term Environmental Change in Arctic and Antarctic Lakes, ed. Pienitz, R., Douglas, M. S. V. and Smol, J. P., Dordrecht: Springer, pp. 319–47.CrossRefGoogle Scholar
Andrews, J. T., Evans, L. W., Williams, K. M., et al. (1990). Cryosphere/ocean interactions at the margin of the Laurentide Ice Sheet during the Younger Dryas Chron: SE Baffin Shelf, Northwest Territories. Paleoceanography, 5, 921–35.CrossRefGoogle Scholar
Antoniades, D., Crawley, C., Douglas, M. S. V., et al. (2007). Abrupt environmental change in Canada's northernmost lake inferred from fossil diatom and pigment stratigraphy. Geophysical Research Letters, 34, L18708, DOI:10.1029/2007GL030947.CrossRefGoogle Scholar
Antoniades, D. & Douglas, M. S. V. (2002). Characterization of high arctic stream diatom assemblages from Cornwallis Island, Nunavut, Canada. Canadian Journal of Botany, 80, 50–8.CrossRefGoogle Scholar
Antoniades, D., Douglas, M. S. V., & Smol, J. P. (2003a). Comparative physical and chemical limnology of two Canadian High Arctic regions: Alert (Ellesmere Island, NU) and Mould Bay (Prince Patrick Island, NWT). Archiv für Hydrobiologie, 158, 485–516.CrossRefGoogle Scholar
Antoniades, D., Douglas, M. S. V., & Smol, J. P. (2003b). The physical and chemical limnology of 24 ponds and one lake from Isachsen, Ellef Ringnes Island, Canadian High Arctic. International Review of Hydrobiology, 88, 519–38.CrossRefGoogle Scholar
Antoniades, D., Douglas, M. S. V., & Smol, J. P. (2004). Diatom species–environment relationships and inference models from Isachsen, Ellef Ringnes Island, Canadian High Arctic. Hydrobiologia, 529, 1–18.CrossRefGoogle Scholar
Antoniades, D., Douglas, M. S. V., & Smol, J. P. (2005a). Benthic diatom autecology and inference model development from the Canadian High Arctic Archipelago. Journal of Phycology, 41, 30–45.CrossRefGoogle Scholar
Antoniades, D., Douglas, M. S. V., & Smol, J. P. (2005b). Quantitative estimates of recent environmental changes in the Canadian High Arctic inferred from diatoms in lake and pond sediments. Journal of Paleolimnology 33, 349–60.CrossRefGoogle Scholar
Antoniades, D., Hamilton, P. B., Douglas, M. S. V., & Smol, J. P. (2008). Diatoms of North America: the Freshwater Floras of Prince Patrick, Ellef Ringnes and Northern Ellesmere Islands from the Canadian Arctic Archipelago, Königstein: Koeltz Scientific Books.Google Scholar
Antoniades, D., Hamilton, P. B., Hinz, F., Douglas, M. S. V. & Smol, J. P. (2009b). Seven new species of freshwater diatoms (Bacillariophyceae) from the Canadian Arctic Archipelago. Nova Hedwigia, 88, 57–80.CrossRefGoogle Scholar
Antoniades, D., Smol, J. P., & Douglas, M. S. V. (2009a). Biogeographic distributions and environmental controls of stream diatoms in the Canadian Arctic Archipelago. Botany, 87, 443–54.CrossRefGoogle Scholar
Axford, Y., Briner, J. P., Cooke, C. A., et al. (2009). Recent changes in a remote Arctic lake are unique within the past 200,000 years. Proceedings of the National Academy of Sciences of the USA, 106, 18443–6.CrossRefGoogle Scholar
Belzile, C., Vincent, W. F., Gibson, J. A. E., & Van Hove, P. (2001). Bio-optical characteristics of the snow, ice, and water column of a perennially ice-covered lake in the High Arctic. Canadian Journal of Fisheries and Aquatic Sciences, 58, 2405–18.CrossRefGoogle Scholar
Besonen, M. R., Patridge, W., Bradley, R. S., et al. (2008). A record of climate over the last millennium based on varved lake sediments from the Canadian High Arctic. The Holocene, 18, 169–80.CrossRefGoogle Scholar
Beyens, L. & Bock, P. (1989). Moss dwelling diatom assemblages from Edgeøya (Svalbard). Polar Biology, 9, 423–30.CrossRefGoogle Scholar
Birks, H. J. B., Monteith, D. T., Rose, N. L., Jones, V. J., & Peglar, S. M. (2004). Recent environmental change and atmospheric contamination on Svalbard as recorded in lake sediments – modern limnology, vegetation and pollen deposition. Journal of Paleolimnology, 31, 411–31.CrossRefGoogle Scholar
Blake, W. Jr. (1989). Inferences concerning climatic change from a deeply frozen lake on Rundfjeld, Ellesmere Island, Arctic Canada. Journal of Paleolimnology, 2, 41–54.CrossRefGoogle Scholar
Blake, W. Jr. (1992). Holocene emergence at Cape Herschel, east–central Ellesmere Island, Arctic Canada: implications for ice sheet configuration. Canadian Journal of Earth Sciences, 29, 1958–80.CrossRefGoogle Scholar
Blake, W. Jr., Boucherle, M. M., Fredskild, B., Janssens, J. A., & Smol, J. P. (1992). The geomorphological setting, glacial history and Holocene development of ‘Kap Inglefield Sø’, Inglefield Land, north-west Greenland. Meddelelser om Grönland, Geosciences, 27, 1–42.Google Scholar
Bouchard, G., Gajewski, K., & Hamilton, P. B. (2004). Freshwater diatom biogeography in the Canadian Arctic Archipelago. Journal of Biogeography, 31, 1955–73.CrossRefGoogle Scholar
Bradley, R. S. (ed.) (1996). Taconite Inlet lakes project. Journal of Paleolimnology, 16, 97–255.CrossRefGoogle Scholar
Briner, J. P., Axford, Y., Forman, S. L., Miller, G. H., & Wolfe, A. P. (2007). Multiple generations of interglacial lake sediment preserved beneath the Laurentide Ice Sheet. Geology, 35, 887–90.CrossRefGoogle Scholar
Briner, J. P., Michelutti, N., Francis, D. R., et al. (2006). A multi-proxy lacustrine record of Holocene climate change on northeastern Baffin Island, Arctic Canada. Quaternary Research, 65, 431–42.CrossRefGoogle Scholar
Briner, J. P., Miller, G. H., Davis, P. T., & Finkel, R. (2005). Cosmogenic exposure dating in arctic glacial landscapes: implications for the glacial history of northeastern Baffin Island, Arctic Canada. Canadian Journal of Earth Sciences, 42, 67–84.CrossRefGoogle Scholar
Brown, K. M., Douglas, M. S. V., & Smol, J. P. (1994). Siliceous microfossils in a Holocene High Arctic peat deposit (Nordvestø Northwest Greenland). Canadian Journal of Botany, 72, 208–16.CrossRefGoogle Scholar
Cleve, P. T. (1864). Diatomaceer från Spetsbergen. Öfversight af Kongl. Vetenskaps-Akademiens Forhandlinger, 24, 661–9.Google Scholar
Cleve, P. T. (1873). On diatoms from the Arctic Sea. Bihang Till Kongl. Svenska Vetenskaps-Akademiens Forhandlinger, 1, 1–28.Google Scholar
Cleve, P. T. (1883). Diatoms, collected during the expedition of the Vega. Ur Vega-Expedpeditionens Vettenskapliga Iakttagelser, 3, 457–517.Google Scholar
Cleve, P. T. (1896). Diatoms from Baffin Bay and Davis Strait. Bihang Till Kongliga Svenska Vetenskaps-Akademiens Handlingar, 22, 1–22.Google Scholar
Cleve, P. T. (1898). Diatoms from Franz Josef Land. Bihang Till Kongliga Svenska Vetenskaps-Akademiens Handlingar, 24, 1–26.Google Scholar
Cremer, H. (2006). The planktonic diatom flora of a High Arctic lake in East Greenland. Nordic Journal of Botany, 24, 235–44.CrossRefGoogle Scholar
Cremer, H., Bennike, O., Hakansson, L., et al. (2005). Hydrology and diatom phytoplankton of High Arctic lakes and ponds on Store Koldewey, northeast Greenland. International Review of Hydrobiology, 90, 84–99.CrossRefGoogle Scholar
Cremer, H. & Wagner, B. (2004). Planktonic diatom communities in High Arctic lakes (Store Koldewey, Northeast Greenland). Canadian Journal of Botany, 82, 1744–57.CrossRefGoogle Scholar
Davis, P. T., Briner, J. P., Coulthard, R. D., Finkel, R. W., & Miller, G. H. (2006). Preservation of Arctic landscapes overridden by cold-based ice sheets. Quaternary Research, 65, 156–63.CrossRefGoogle Scholar
Denys, L. & Beyens, L. (1987). Some diatom assemblages from the Angmagssalik region, south-east Greenland. Nova Hedwigia, 45, 389–413.Google Scholar
Doubleday, N., Douglas, M. S. V., & Smol, J. P. (1995). Paleoenvironmental studies of black carbon deposition in the High Arctic: a case study from Northern Ellesmere Island. The Science of the Total Environment, 160/161, 661–68.CrossRefGoogle Scholar
Douglas, M. S. V. (1993). Diatom ecology and paleolimnology of high arctic ponds. Unpublished Ph.D. thesis, Queen's University, Kingston, Ontario.
Douglas, M. S. V., Ludlam, S., & Feeney, S. (1996). Changes in diatom assemblages in Lake C2 (Ellesmere Island, Arctic Canada): response to basin isolation from the sea and to other environmental changes. Journal of Paleolimnology, 16, 217–26.CrossRefGoogle Scholar
Douglas, M. S. V. & Smol, J. P. (1993). Freshwater diatoms from High Arctic ponds (Cape Herschel, Ellesmere Island, N.W.T.). Nova Hedwigia, 57, 511–52.Google Scholar
Douglas, M. S. V. & Smol, J. P. (1994). Limnology of High Arctic ponds (Cape Herschel, Ellesmere Island, N.W.T.). Archiv für Hydrobiologie, 131, 401–34.Google Scholar
Douglas, M. S. V. & Smol, J. P. (1995a). Periphytic diatom assemblages from High Arctic ponds. Journal of Phycology, 31, 60–9.CrossRefGoogle Scholar
Douglas, M. S. V. & Smol, J. P. (1995b). Paleolimnological significance of chrysophyte cysts in Arctic environments. Journal of Paleolimnology, 13, 79–83.CrossRefGoogle Scholar
Douglas, M. S. V. & Smol, J. P. (2000). Eutrophication and recovery in the High Arctic: Meretta Lake (Cornwallis Island, Nunavut, Canada) revisited. Hydrobiologia, 431, 193–204.CrossRefGoogle Scholar
Douglas, M. S. V., Smol, J. P., & Blake, W. Jr. (1994). Marked post-18th century environmental change in High Arctic ecosystems. Science, 266, 416–19.CrossRefGoogle ScholarPubMed
Douglas, M. S. V., Smol, J. P., & Blake, W. Jr. (2000). Paleolimnological studies of High Arctic ponds: summary of investigations at Cape Herschel, east–central Ellesmere Island. Geological Survey of Canada Bulletin, 529, 257–69.Google Scholar
Douglas, M. S. V., Smol, J. P., Pienitz, R., & Hamilton, P. (2004a). Algal indicators of environmental change in Arctic and Antarctic lakes and ponds. In Long-term Environmental Change in Arctic and Antarctic Lakes, ed. Pienitz, R., Douglas, M. S. V., & Smol, J. P., Dordrecht: Springer, pp. 117–157.Google Scholar
Douglas, M. S. V., Smol, J. P., Savelle, J. M., & Blais, J. M. (2004b). Prehistoric Inuit whalers affected Arctic freshwater ecosystems. Proceedings of the National Academy of Sciences of the USA, 101, 1613–17.CrossRefGoogle ScholarPubMed
Ehrenberg, C. G. (1853). Über neue Anschaunungen des kleinsten nördlichen Polarlebens. Deutsche Akademie der Wissenschaften zu Berlin, Monatsberichte, 1853, 522–9.Google Scholar
Ellis, C. J. & Rochefort, L. (2006). Long-term sensitivity of a High Arctic wetland to Holocene climate change. Journal of Ecology, 94, 441–54.CrossRefGoogle Scholar
Finkelstein, S. A. & Gajewski, K. (2007). A palaeolimnological record of diatom community dynamics and late-Holocene climatic changes from Prescott Island, Nunavut, central Canadian Arctic. The Holocene, 17, 803–12.CrossRefGoogle Scholar
Finkelstein, S. A. & Gajewski, K. (2008). Responses of Fragilarioid-dominated diatom assemblages in a small Arctic lake to Holcene climatic changes, Russell Island, Nunavut, Canada. Journal of Paleolimnology, 40, 1079–95.CrossRefGoogle Scholar
Finney, B. P., Rühland, K., Smol, J. P., & Fallu, M.-A. (2004). Paleolimnology of the North America Subarctic. In Long-term Environmental Change in Arctic and Antarctic Lakes, ed. Pienitz, R., Douglas, M. S. V. & Smol, J. P., Dordrecht: Springer, pp. 269–318.CrossRefGoogle Scholar
Foged, N. (1953). Diatoms from West Greenland. Meddelelser om Grönland, 147, 1–86.Google Scholar
Foged, N. (1955). Diatoms from Peary Land, North Greenland. Meddelelser om Grönland, 194, 1–66.Google Scholar
Foged, N. (1958). The diatoms in the basalt area and adjoining areas of Archean rock in West Greenland. Meddelelser om Grönland, 156, 1–146.Google Scholar
Foged, N. (1964). Freshwater diatoms from Spitsbergen. Tromsö Museums Skrifter, 11, 1–204, 22 pls.Google Scholar
Foged, N. (1972). The diatoms in four postglacial deposits in Greenland. Meddelelser om Grönland, 194, 1–66.Google Scholar
Foged, N. (1973). Diatoms from Southwest Greenland. Meddelelser om Grönland, 194, 1–84.Google Scholar
Foged, N. (1974). Freshwater diatoms in Iceland. Bibliotheca Phycologia, 15, 1–118.Google Scholar
Foged, N. (1977). Diatoms from four postglacial deposits at Godthabsfjord,West Greenland. Meddelelser om Grönland, 199, 1–64.Google Scholar
Foged, N. (1981). Diatoms in Alaska. Bibliotheca Phycologica, 53, 1–31.Google Scholar
Foged, N. (1982). Diatoms in human tissues – Greenland ab. 1460 AD – Funen 1981–82 ADNova Hedwigia, 36, 345–379.Google Scholar
Foged, N. (1989). The subfossil diatom flora of four geographically widely separated cores in Greenland. Meddelelser om Grönland (Bioscience), 30, 1–75.Google Scholar
Gajewski, K., Garneau, M., & Bourgeois, J. C. (1995). Paleoenvironments of the Canadian High Arctic derived from pollen and plant macrofossils: problems and potentials. Quaternary Science Reviews, 14, 609–29.CrossRefGoogle Scholar
Gajewski, K., Hamilton, P. B., & McNeely, R. N. (1997). A high resolution proxy-climate record from an Arctic lake with laminated sediments on Devon Island, Nunavut, Canada. Journal of Paleolimnology, 17, 215–25.CrossRefGoogle Scholar
Gayley, R. I. & Ram, M. (1984). Observations of diatoms in Greenland ice. Arctic, 37, 172–3.CrossRefGoogle Scholar
Gayley, R. I., Ram, M., & Stoermer, E. F. (1989). Seasonal variations in diatom abundance and provenance in Greenland ice. Journal of Glaciology, 35, 290–2.CrossRefGoogle Scholar
Guilizzoni, P., Marchetto, A., Lami, A., et al. (2006). Records of environmental and climatic changes during the late Holocene from Svalbard: palaeolimnology of Kongressvatnet. Journal of Paleolimnology, 36, 325–51.CrossRefGoogle Scholar
Hadley, K. R., Douglas, M. S. V., McGhee, R. H., Blais, J. M., & Smol, J. P. (2010a). Ecological influences of Thule Inuit whalers on high Arctic pond ecosystems: a comparative paleolimnological study from Bathurst Island (Nunavut, Canada). Journal of Paleolimnology, 44, 85–93.
Hadley, K. R., Douglas, M. S. V., Blais, J. M., & Smol, J. P. (2010b). Nutrient enrichment in the High Arctic associated with Thule Inuit whalers: a paleolimnological investigation from Ellesmere Island (Nunavut, Canada). Hydrobiologia, 649, 129–38.
Håkansson, H. (1988). Obituary: Niels Aage Johannes Foged 1906–1988. Diatom Research, 3, 169–74.CrossRefGoogle Scholar
Hamilton, P. B., Douglas, M. S. V., Fritz, S. C., et al. (1994a). A compiled freshwater diatom taxa list for the Arctic and Subarctic regions of North America. In The Proceedings of the Fourth Arctic–Antarctic Diatom Symposium (Workshop), ed. Hamilton, P. B., Canadian Technical Report of Fisheries and Aquatic Sciences, 1957, pp. 85–102.Google Scholar
Hamilton, P. B. & Edlund, S. A. (1994).Occurrence of Prasiola fluviatilis (Chlorophyta) on Ellesmere Island in the Canadian Arctic. Journal of Phycology, 30, 217–21.CrossRefGoogle Scholar
Hamilton, P., Gajewski, K., Atkinson, D., & Lean, D. R. S. (2001). Physical and chemical limnology of lakes from the Canadian Arctic Archipelago. Hydrobiologia 457, 133–48.CrossRefGoogle Scholar
Hamilton, P. B., Gajewski, K., & McNeely, R. N. (2000). Physical, chemical and biological characteristics of lakes from the Sidre Basin on the Fosheim Peninsula. Geological Survey of Canada, Bulletin, 529, 234–48.Google Scholar
Hamilton, P. B., Poulin, M., Prevost, C., Angell, M., & Edlund, S. A. (1994b). Americanarum Diatomarum Exsiccata: Fascicle II (CANA), voucher slides representing 34 lakes, ponds and streams from Ellesmere Island, Canadian High Arctic, North America. Diatom Research, 9, 303–27.CrossRefGoogle Scholar
Harwood, D. M. (1986a). Do diatoms beneath the Greeenland ice sheet indicate interglacials warmer than present? Arctic, 39, 304–8.CrossRefGoogle Scholar
Harwood, D. M. (1986b). The search for microfossils beneath the Greenland and west Antarctic ice sheets. Antarctic Journal of the United States, 21, 105–6.Google Scholar
Hay, M., Michelutti, N., & Smol, J. P. (2000). Ecological patterns of diatom assemblages from Mackenzie Delta lakes, Northwest Territories, Canada. Canadian Journal of Botany, 78, 19–33.CrossRefGoogle Scholar
Hay, M. B., Smol, J. P., Pipke, K., & Lesack, L. (1997). A diatom-based paleohydrological model for the Mackenzie Delta, Northwest Territories, Canada. Arctic and Alpine Research, 29, 430–44.CrossRefGoogle Scholar
Hickman, M. (1974). The epipelic diatom flora of a small lake on Baffin Island, Northwest Territories. Archiv für Protistenk, 116S, 270–9.Google Scholar
Hobbie, J. E. (1984). Polar limnology. In Ecosystems of the World: Lakes and Reservoir, ed. Taub, F. B., Amsterdam: Elsevier, pp. 63–106.Google Scholar
Hodgson, D. A. & Smol, J. P. (2008). High-latitude paleolimnology. In Polar Lakes and Rivers, ed. Vincent, W. & Laybourn-Parry, J., Oxford: Oxford University Press, pp. 43–64.CrossRefGoogle Scholar
Hughen, K. A., Overpeck, J. T., Anderson, R. F., & Williams, K. M. (1996). The potential for paleoclimate records from varved Arctic lake sediments: Baffin Island, Eastern Canadian Arctic. Geological Society of London, Special Publication, 116, 57–71CrossRefGoogle Scholar
Hyvärinen, H. (1969). Trullvatnet: a Flandrian stratigraphical site near Murctlandet, Spitsbergen. Geografiska Annaler, 51A, 42–5.CrossRefGoogle Scholar
,IPCC (2007). Summary for policymakers. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. Solomon, S., Qin, D., Manning, M., et al., Cambridge: Cambridge University Press.Google Scholar
Janssens, J. A. (1990). Methods in Quaternary ecology. No. 11. Bryophytes. Geoscience Canada, 17, 13–24.Google Scholar
Jones, V. J. & Birks, H. J. B. (2004). Lake-sediment records of recent environmental change on Svalbard: results of diatom analysis. Journal of Paleolimnology, 31, 445–66.CrossRefGoogle Scholar
Joynt, E. H., III & Wolfe, A. P. (2001). Paleoenvironmental inference models from sediment diatom assemblages in Baffin Island lakes (Nunavut, Canada) and reconstruction of summer water temperature. Canadian Journal of Fisheries and Aquatic Sciences, 58, 1222–43.CrossRefGoogle Scholar
Keatley, B. E., Douglas, M. S. V., & Smol, J. P. (2006). Early-20th century environmental changes inferred using subfossil diatoms from a small pond on Melville Island, NWT, Canadian High Arctic. Hydrobiologia, 553, 15–26.CrossRefGoogle Scholar
Keatley, B. E., Douglas, M. S. V., & Smol, J. P. (2007a). Physical and chemical limnological characteristics of lakes and ponds across environmental gradients on Melville Island, Nunavut/NWT, High Arctic Canada. Fundamental and Applied Limnology, 168, 355–76.CrossRefGoogle Scholar
Keatley, B. E., Douglas, M. S. V., & Smol, J. P. (2007b). Limnological characteristics of a high arctic oasis and comparisons across northern Ellesmere Island. Arctic, 60, 294–308.Google Scholar
Keatley, B. E., Douglas, M. S. V., & Smol, J. P. (2008a). Evaluating the influence of environmental and spatial variables on diatom species distributions from Melville Island (Canadian High Arctic). Botany, 86, 76–90.CrossRefGoogle Scholar
Keatley, B. E., Douglas, M. S. V. & Smol, J. P. (2008b). Prolonged ice cover dampens diatom community responses to recent climatic change in High Arctic lakes. Arctic, Antarctic and Alpine Research, 40, 364–72.CrossRefGoogle Scholar
Koerner, R. (1977). Devon Island ice cap: core stratigraphy and paleoclimate. Science, 196, 15–18.CrossRefGoogle ScholarPubMed
Koinig, K. A., Schmidt, R., Sammaruga-Wögrath, S., Tessadri, R., & Psenner, R. (1998). Climate change as the primary cause for pH shifts in a High Arctic lake. Water Air and Soil Pollution, 104, 167–80.CrossRefGoogle Scholar
Koivo, L. & Seppala, M. (1994). Diatoms from an ice-wedge furrow, Ungava Peninsula, Quebec, Canada. Polar Research, 13, 237–41.CrossRefGoogle Scholar
Kokelj, S. V., Jenkins, R. E., Burn, C. R., & Snow, N. (2005). The influence of thermokarst disturbance on the water quality of small upland lakes, Mackenzie Delta region, Northwest Territories, Canada. Permafrost and Periglacial Processes, 16, 343–53.CrossRefGoogle Scholar
Korhola, A. & Weckström, , , J. (2004). Paleolimnological studies in Arctic Fennoscandia and the Kola peninsula (Russia). In Long-term Environmental Change in Arctic and Antarctic Lakes, ed. Pienitz, R., Douglas, M. S. V., & Smol, J. P., Dordrecht: Springer, pp. 381–418.CrossRefGoogle Scholar
Lafarge-England, C., Vitt, D. H., & England, J. (1991). Holocene soligenous fens on a High Arctic fault block, Northern Ellesmere Island (82° N), NWT, Canada. Arctic and Alpine Research 23, 80–98.CrossRefGoogle Scholar
Lagerstedt, N. G. W. (1873). Sötvattens-Diatomaceer från Spetsergen och Beeren Eiland. Bihang Till Kongliga Svenska Vetenskaps-Akademiens Handlingar, 1, 1–52.Google Scholar
Larsen, J., Jones, V. J., & Eide, W. (2006). Climatically driven pH changes in two Norwegian alpine lakes. Journal of Paleolimnology, 36, 175–87.CrossRefGoogle Scholar
LeBlanc, M., Gajewski, K., & Hamilton, P.B. (2004). A diatom-based Holocene palaeoenvironmental record from a mid-Arctic lake on Boothia Peninsula, Nunavut, Canada. The Holocene, 14, 417–25.CrossRefGoogle Scholar
Lemmen, D. S., Gilbert, R., Smol, J. P., & Hall, R. I. (1988). Holocene sedimentation in glacial Tasikutaaq Lake, Baffin Island. Canadian Journal of Earth Sciences, 25, 810–23.CrossRefGoogle Scholar
Lichti-Federovich, S. (1980). Diatom flora of red snow from Isbjørneø, Carey Øer, Greenland. Nova Hedwigia, 33, 395–431.Google Scholar
Lichti-Federovich, S. (1984). Investigations of diatoms found in surface snow from the Sydkap ice cap, Ellesmere Island, Northwest Territories. Current Research, Part A, Geological Survey of Canada, Paper 84–1A, 287–301.CrossRef
Lichti-Federovich, S. (1985). Diatom dispersal phenomena: diatoms in rime frost samples from Cape Herschel, central Ellesmere Island, Northwest Territories. Current Research, Part B, Geological Survey of Canada, Paper 85–1B, 391–9.CrossRef
Lichti-Federovich, S. (1986). Diatom dispersal phenomena: diatoms in precipitation samples from Cape Herschel, east–central Ellesmere Island, Northwest Territories – a quantitative assessment. Current Research, Part B, Geological Survey of Canada, Paper 86–1B, 263–9.
Lim, D. S. S. (2004). Limnology and diatom palaeoecology of lakes and ponds on Banks Island, N.W.T. and Devon Island, Nunavut, Canadian Arctic. Unpublished Ph.D. thesis, University of Toronto.
Lim, D. S. S. & Douglas, M. S. V. (2003). Limnological characteristics of 22 lakes and ponds in the Haughton Crater region of Devon Island, Nunavut, Canadian High Arctic. Arctic Antarctic and Alpine Research, 35, 509–19.CrossRefGoogle Scholar
Lim, D. S. S., Douglas, M. S. V., & Smol, J. P. (2005). Limnology of 46 lakes and ponds on Banks Island, NWT, Canadian Arctic Archipelago. Hydrobiologia, 545, 11–32.CrossRefGoogle Scholar
Lim, D. S. S., Douglas, M. S. V., Smol, J. P., & Lean, D. R. S. (2001a). Physical and chemical limnological characteristics of 38 lakes and ponds on Bathurst Island, Nunavut, Canadian High Arctic, International Review of Hydrobiology, 86, 1–22.3.0.CO;2-E>CrossRefGoogle Scholar
Lim, D. S. S., Kwan, C., & Douglas, M. S. V. (2001c). Periphytic diatom assemblages from Bathurst Island, Nunavut, Canadian High Arctic: an examination of community relationships and habitat preferences. Journal of Phycology, 37, 379–92.CrossRefGoogle Scholar
Lim, D. S. S., Smol, J. P., & Douglas, M. S. V. (2001b). Diatoms and their relationship to environmental variables from lakes and ponds on Bathurst Island, Nunavut, Canadian High Arctic. Hydrobiologia, 450, 215–230.CrossRefGoogle Scholar
Lim, D. S. S., Smol, J. P., & Douglas, M. S. V. (2007). Diatom assemblages and their relationships to lakewater nitrogen levels and other limnological variables from 36 lakes and ponds on Banks Island, NWT, Canadian Arctic. Hydrobiologia, 586, 191–211.CrossRefGoogle Scholar
Lim, D. S. S., Smol, J. P., & Douglas, M. S. V. (2008). Recent environmental changes on Banks Island (NWT, Canadian Arctic) quantified using fossil diatom assemblages. Journal of Paleolimnology, 40, 385–98.CrossRefGoogle Scholar
Lowe, C. W. (1923). Report of the Canadian Arctic Expedition 1913–18. Part A: freshwater algae and freshwater diatoms, Southern Party 1913–1916. Ottowa: F. A. Acland, Printer of the King's Most Excellent Majesty.
Ludlam, S. D., Feeney, S., & Douglas, M. S. V. (1996). Changes in the importance of lotic and littoral diatoms in a High Arctic lake over the last 191 years. Journal of Paleolimnology, 16, 184–204.CrossRefGoogle Scholar
MacDonald, G. M., Edwards, T. W. D., Gervais, B., et al. (2004). Paleolimnological research from northern Russian Eurasia. In Long-term Environmental Change in Arctic and Antarctic Lakes, ed. Pienitz, R., Douglas, M. S. V., & Smol, J. P., Dordrecht: Springer., pp. 349–80.CrossRefGoogle Scholar
McGowan, S., Ryves, D. B., & Anderson, N. J. (2003). Holocene records of effective precipitation in west Greenland. The Holocene, 13, 239–49.Google Scholar
Metzeltin, D. & Witkowski, A. (1996). Diatomeen der Bären-Insel. Iconographia Diatomologica, 4, 1–287.Google Scholar
Michelutti, N., Douglas, M. S. V., Muir, D. C. G., Wang, X. W., & Smol, J. P. (2002a). Limnological characteristics of 38 lakes and ponds on Axel Heiberg Island, High Arctic Canada. International Review of Hydrobiology, 87, 385–399.3.0.CO;2-3>CrossRefGoogle Scholar
Michelutti, N., Douglas, M. S. V., Lean, D. R. S., & Smol, J. P. (2002b). Physical and chemical limnology of 34 ultra-oligotrophic lakes and ponds near Wynniatt Bay, Victoria Island, Arctic Canada. Hydrobiologia, 482, 1–13.CrossRefGoogle Scholar
Michelutti, N., Douglas, M. S. V., & Smol, J. P. (2002c). Tracking recent recovery from eutrophication in a High Arctic lake (Meretta Lake, Cornwallis Island, Nunavut, Canada) using fossil diatom assemblages. Journal of Paleolimnology, 28, 377–81.CrossRefGoogle Scholar
Michelutti, N., Douglas, M. S. V., & Smol, J. P. (2002d). Tracking recovery in a eutrophied High Arctic lake (Meretta Lake, Cornwallis Island, Canadian Arctic) using periphytic diatoms. Verhandlungen der Internationale Vereinigung von Limnologie, 28, 1533–7.Google Scholar
Michelutti, N., Douglas, M. S. V., & Smol, J. P. (2003a). Diatom response to recent climatic change in a High Arctic lake (Char Lake, Cornwallis Island, Nunavut). Global and Planetary Change, 38, 257–71.CrossRefGoogle Scholar
Michelutti, N., Douglas, M. S. V., & Smol, J. P. (2007a). Evaluating diatom community composition in the absence of marked limnological gradients in the High Arctic: a surface sediment calibration set from Cornwallis Island (Nunavut, Canada). Polar Biology, 30, 1459–73.CrossRefGoogle Scholar
Michelutti, N., Douglas, M. S. V., Wolfe, A. P., & Smol, J. P. (2006b). Heightened sensitivity of a poorly buffered High Arctic lake to late-Holocene climatic change. Quaternary Research, 65, 421–30.CrossRefGoogle Scholar
Michelutti, N., Hay, M., Marsh, P., Lesack, L., & Smol, J. P. (2001). Diatom changes in lake sediments from the Mackenzie Delta, N W.T., Canada: paleohydrological applications. Arctic, Antarctic, and Alpine Research, 33, 1–12.Google Scholar
Michelutti, N., Hermanson, M. H., Smol, J. P., Dillon, P. J., & Douglas, M. S. V. (2007b). Delayed response of diatom assemblages to sewage inputs in an Arctic lake. Aquatic Sciences, 69, 523–33.CrossRefGoogle Scholar
Michelutti, N., Holtham, A. J., Douglas, M. S. V., & Smol, J. P. (2003b). Periphytic diatom assemblages from ultra-oligotrophic and UV transparent lakes and ponds on Victoria Island and comparisons with other diatom surveys in the Canadian Arctic. Journal of Phycology, 39, 465–80.CrossRefGoogle Scholar
Michelutti, N., Smol, J. P., & Douglas, M. S. V. (2006a). Ecological characteristics of modern diatom assemblages from Axel Heiberg Island (High Arctic Canada) and their application to paleolimnological inference models. Canadian Journal of Botany, 84, 1695–713.CrossRefGoogle Scholar
Michelutti, N., Wolfe, A. P., Briner, J. P., & Miller, G. H. (2007c). Climatically controlled chemical and biological development in Arctic lakes. Journal of Geophysical Research-Biogeosciences, 112, G03002, doi:10.1029/2006JG000396.CrossRefGoogle Scholar
Moore, J. W. (1974a). Benthic algae of southern Baffin Island. I. Epipelic communities in rivers. Journal of Phycology, 10, 50–7.Google Scholar
Moore, J. W. (1974b). Benthic algae of southern Baffin Island. II. The epipelic communities in temporary pools. Journal of Ecology, 62, 809–19.CrossRefGoogle Scholar
Moore, J. W. (1974c). Benthic algae of southern Baffin Island. III. Epilithic and epiphytic communities. Journal of Phycology, 10, 456–62.Google Scholar
Moser, K.A., Korhola, A., Weckstrom, J., et al. (2000). Paleohydrology inferred from diatoms in northern latitude regions, Journal of Paleolimnology, 24, 93–107.CrossRefGoogle Scholar
Mueller, D. R. & Pollard, W. H. (2004). Gradient analysis of cryoconite ecosystems from two polar glaciers. Polar Biology, 27, 66–74.CrossRefGoogle Scholar
Mueller, D. R., Vincent, W. F., Pollard, W. H., & Fritsen, C. H. (2001). Glacial cryoconite ecosystems: a bipolar comparison of algal communities and habitats. Nova Hedwigia, Beiheft, 123, 173–97.Google Scholar
Nansen, F. (1897). Farthest North. Westminster: Archibald Constable and Company.Google Scholar
Ng, S. L. & King, R. H. (1999). Development of a diatom-based specific conductivity model for the glacio-isostatic lakes of Truelove Lowland: implications for paleoconductivity and paleoenvironmental reconstructions in Devon Island lakes, N.W.T., Canada. Journal of Paleolimnology, 22, 367–82.CrossRefGoogle Scholar
Østrup, E. (1897a). Ferskvands-Diatomeer fra Öst Grönland. Meddelelser om Grönland, 15, 251–90.Google Scholar
Østrup, E. (1897b). Kyst-Diatoméer fra Grönland. Meddelelser om Grönland, 15, 305–62.Google Scholar
Østrup, E. (1910). Diatoms from North-East Greenland. Meddelelser om Grönland, 43, 199–256.Google Scholar
Ovenden, L. (1988). Holocene proxy-climate data from the Canadian Arctic. Geological Survey of Canada Paper, 88–22.CrossRef
Paul, C. A. (2008). Paleolimnological assessment of Holocene climatic and environmental change in two lakes located in different regions of the Canadian Arctic Tundra. Unpublished M. Sc. thesis, Queen's University, Kingston, Ontario.Google Scholar
Paull, T. M., Hamilton, P. B., Gajewski, K., & LeBlanc, M. (2008). Numerical analysis of small Arctic diatoms (Bacillariophyceae) representing the Staurosira and Staurosirella species complexes. Phycologia, 47, 213–24.CrossRefGoogle Scholar
Perren, B. B., Bradley, R.S., & Francus, P. (2003). Rapid lacustrine response to recent High Arctic warming: a diatom record from Sawtooth Lake, Ellesmere Island, Nunavut. Arctic, Antarctic, and Alpine Research, 35, 271–78.CrossRefGoogle Scholar
Petersen, J. B. (1924). Fresh water algae from the north coast of Greenland collected by the late Dr. Th. Wulff. Den II Thule Exped. til Groenlands Nordkyst (1916–18). Meddelelser om Grønland, 64, 307–19.Google Scholar
Pienitz, R., Smol, J.P., Last, W., Leavitt, P. R., & Cumming, B. F. (2000). Multiproxy Holocene palaeoclimatic record from a saline lake in the Canadian Subarctic. The Holocene, 10, 673–86.CrossRefGoogle Scholar
Pienitz, R., Douglas, M. S. V., & Smol, J. P. (eds.) (2004). Long-Term Environmental Change in Arctic and Antarctic Lakes. Dordrecht: Springer.Google Scholar
Podritskie, B. & Gajewski, K. (2007). Diatom community response to multiple scales of Holocene climate variability in a small lake on Victoria Island, NWT, Quaternary Science Reviews, 26, 3179–96.CrossRefGoogle Scholar
Psenner, R. & Schmidt, R. (1992). Climate-driven pH control of remote alpine lakes and effects of acid deposition. Nature, 356, 781–3.CrossRefGoogle Scholar
Rigler, F. H. (1978). Limnology in the High Arctic: a case study of Char Lake. Verhandlungen Internationale Vereingung Limnologen, 20, 127–40.Google Scholar
Ross, R. (1947). Freshwater diatomae (Bacillariophyta). In Botany of the Canadian Eastern Arctic. Part II: Thallophyta and Bryophyta, ed. Polunin, N., Ottawa: National Museum of Canada, pp. 178–233.Google Scholar
Rouse, W., Douglas, M., Hecky, R., et al. (1997). Effects of climate change on fresh waters of Region 2: Arctic and Sub-Arctic North America. Hydrologic Processes, 11, 873–902.3.0.CO;2-6>CrossRefGoogle Scholar
Rühland, K., Paterson, A. M., & Smol, J. P. (2008). Hemispheric-scale patterns of climate-induced shifts in planktonic diatoms from North American and European lakes. Global Change Biology, 14, 2740–45.Google Scholar
Schindler, D. W. & Smol, J. P. (2006). Cumulative effects of climate warming and other human activities on freshwaters of Arctic and Subarctic North America. Ambio, 35, 160–8.CrossRefGoogle ScholarPubMed
Sheath, R. G. (1986). Seasonality of phytoplankton in northern tundra ponds. Hydrobiologia, 138, 75–83.CrossRefGoogle Scholar
Sheath, R. G., Morgan, V., Hambrook, J. A., & Cole, K. M. (1996). Tundra stream macroalgae of North America: composition, distribution and physiological adaptations. Hydrobiologia, 336, 67–82.CrossRefGoogle Scholar
Short, S., Andres, J., Williams, K., Weiner, J., & Elias, S. (1994). Late Quaternary marine and terrestrial environments, northwestern Baffin Island, Northwest Territories. Geographie Physique et Quaternaire, 48, 85–95.CrossRefGoogle Scholar
Skulberg, O. M. (1996). Terrestrial and limnic algae and cyanobacteria. In A Catalogue of Svalbard Plants, Fungi, Algae and Cyanobacteria, Part 9, ed. Elvebakk, A. & Prestrud, P., Oslo: Norsk Polarinstitutt Skrifter 198, pp. 383–95.Google Scholar
Smith, I. R. (2000). Diamictic sediments within High Arctic lake sediment cores: evidence for lake ice rafting along the lateral glacial margin. Sedimentology, 47, 1157–79.CrossRefGoogle Scholar
Smith, I. R. (2002). Diatom-based Holocene paleoenvironmental records from continental sites on northeastern Ellesmere Island, High Arctic, Canada. Journal of Paleolimnology, 27, 9–28.CrossRefGoogle Scholar
Smol, J. P. (1983). Paleophycology of a High Arctic lake near Cape Herschel, Ellesmere Island. Canadian Journal of Botany, 61, 2195–204.CrossRefGoogle Scholar
Smol, J. P. (1988). Paleoclimate proxy data from freshwater Arctic diatoms. Verhandlungen Internationale Vereingung Limnologen, 23, 837–44.Google Scholar
Smol, J. P. & Cumming, B. F. (2000). Tracking long-term changes in climate using algal indicators in lake sediments. Journal of Phycology, 36, 986–1011.CrossRefGoogle Scholar
Smol, J. P. & Douglas, M. S. V. (1996). Long-term environmental monitoring in Arctic lakes and ponds using diatoms and other biological indicators. Geoscience Canada, 23, 225–30.Google Scholar
Smol, J. P. & Douglas, M. S. V. (2007a). Crossing the final ecological threshold in High Arctic ponds. Proceedings of the National Academy of Sciences of the USA, 104, 12395–7.CrossRefGoogle ScholarPubMed
Smol, J. P. & Douglas, M. S. V. (2007b). From controversy to consensus: making the case for recent climate using lake sediments. Frontiers in Ecology and the Environment, 5, 466–74.CrossRefGoogle Scholar
Smol, J. P., Wolfe, A. P., Birks, H. J. B., et al. (2005). Climate-driven regime shifts in the biological communities of Arctic lakes. Proceedings of the National Academy of Sciences of the USA, 102, 4397–402.CrossRefGoogle ScholarPubMed
Sommaruga-Wögrath, R., Koinig, K., Schmidt, R., et al. (1997). Temperature effects on the acidity of remote alpine lakes. Nature, 387, 64–7.CrossRefGoogle Scholar
,Statistics Canada (1987). Canada Year Book 1988; A Review of Economic, Social and Political Development in Canada. Ottawa: Statistics Canada.Google Scholar
Stewart, K. A., Lamoureux, S. F., & Forbes, A. C. (2005). Hydrological controls on the diatom assemblage of a seasonal Arctic river: Boothia Peninsula, Nunavut, Canada. Hydrobiología, 544, 259–70.CrossRefGoogle Scholar
Stewart, K. A., Lamoureux, S. F., & Finney, B. P. (2008). Multiple ecological and hydrological changes recorded in varved sediments from Sanagak Lake, Nunavut, Canada. Journal of Paleolimnology, 40, 217–33.CrossRefGoogle Scholar
Vijver, B., Kerckvoorde, A., & Beyens, L. (2003). Freshwater and terrestrial moss diatom assemblages of the Cambridge Bay area, Victoria Island (Nunavut, Canada). Nova Hedwigia, 76, 225–43.CrossRefGoogle Scholar
Donk, E., Faafeng, B. A., Lange, H. J., & Hessen, D. O. (2001). Differential sensitivity to natural ultraviolet radiation among phytoplankton species in Arctic lakes (Spitsbergen, Norway). Plant Ecology, 154, 247–59.CrossRefGoogle Scholar
Veres, A. J., Pienitz, R., & Smol, J. P. (1995). Lakewater salinity and periphytic diatom succession in three subarctic lakes (Yukon Territory, Canada). Arctic, 48, 63–70.CrossRefGoogle Scholar
Vincent, W. F. & Laybourn-Parry, J. (eds.) (2008). Polar Lakes and Rivers – Limnology of Arctic and Antarctic Aquatic Ecosystems. Oxford: Oxford University Press.Google Scholar
Williams, K. M. (1990a). Paleolimnology of three Jackman Sound lakes, southern Baffin Island, based on down-core diatom analyses. Journal of Paleolimnology, 4, 203–17.CrossRefGoogle Scholar
Williams, K. M. (1990b). Late Quaternary paleoceanography of the western Baffin Bay region: evidence from fossil diatoms. Canadian Journal of Earth Sciences, 27, 1487–94.CrossRefGoogle Scholar
Williams, K. M., Short, S. K., Andrews, J. T.et al. (1995). The Eastern Canadian Arctic at ca.6 Ka BP – a time of transition. Géographie Physique et Quaternaire, 49, 13–27.CrossRefGoogle Scholar
Wilson, C. R. (2009). A lacustrine sediment record of the last three interglacial periods from Clyde Foreland, Baffin Island, Nunavut: biological indicators from the past 200,000 years. Unpublished M.Sc. thesis, Queen's University, Kingston, Ontario.
Wolfe, A. P. (1994). Late Wisconsinan and Holocene diatom stratigraphy from Amarok Lake, Baffin Island, N.W.T., Canada. Journal of Paleolimnology, 10, 129–39.CrossRefGoogle Scholar
Wolfe, A. P. (1996a). Spatial patterns of modern diatom distribution and multiple paleolimnological records from a small non-glacial Arctic lake, Baffin Island, Northwest Territories. Canadian Journal of Botany, 74, 345–59.CrossRefGoogle Scholar
Wolfe, A. P. (1996b). A high resolution late-glacial and early Holocene diatom record from Baffin Island, Northwest Territories. Canadian Journal of Earth Sciences, 33, 928–37.CrossRefGoogle Scholar
Wolfe, A. P. (2000). A 6500 year diatom record from southwestern Fosheim Peninsula, Ellesmere Island, Canadian High Arctic. Geological Survey of Canada, Bulletin, 529, 249–56.Google Scholar
Wolfe, A. P. (2002). Climate modulates the acidity of arctic lakes on millennial time scales. Geology, 30, 215–18.2.0.CO;2>CrossRefGoogle Scholar
Wolfe, A. P. (2003). Diatom community responses to late-Holocene climatic variability, Baffin Island, Canada: a comparison of numerical approaches. Holocene, 13, 29–37.Google Scholar
Wolfe, A. P. & Härtling, J. W. (1996). The late Quaternary development of three ancient tarns on southwestern Cumberland Peninsula, Baffin Island, Arctic Canada: paleolimnological evidence from diatoms and sediment chemistry. Journal of Paleolimnology, 15, 1–18.CrossRefGoogle Scholar
Wolfe, A. P. & Smith, I. R. (2004). Paleolimnology of the Middle and High Canadian Arctic. In Long-term Environmental Change in Arctic and Antarctic Lakes, ed. Pienitz, R., Douglas, M. S. V., & Smol, J. P., Dordrecht: Springer, pp. 241–268.CrossRefGoogle Scholar
Wolfe, B. B., Karst-Riddoch, T. L., Vardy, S. R., et al. (2005). Impacts of climatic variability and river regulation on hydro-ecology of a floodplain basin, Peace-Athabasca Delta, Canada: 1700–present. Quaternary Research, 64, 147–62.CrossRefGoogle Scholar
Young, R. B. & King, R. H. (1989). Sediment chemistry and diatom stratigraphy of two high arctic isolation lakes, Truelove Lowland, Devon Island, N.W.T., Canada. Journal of Paleolimnology, 2, 207–25.CrossRefGoogle Scholar
29
Cited by

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×