Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-dwq4g Total loading time: 0 Render date: 2024-07-26T09:57:49.104Z Has data issue: false hasContentIssue false

Part II - Protocols

Published online by Cambridge University Press:  20 January 2022

Stephan Naji
Affiliation:
New York University
William Rendu
Affiliation:
University of Bordeaux (CNRS)
Lionel Gourichon
Affiliation:
Université de Nice, Sophia Antipolis
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Burke, A., & Castanet, J. (1995). Histological observations of cementum growth in horse teeth and their application to archaeology. Journal of Archaeological Science, 22, 479–93.Google Scholar
Colard, T., Bertrand, B., Naji, S., Delannoy, Y., & Bécart, A. (2015). Toward the adoption of cementochronology in forensic context. International Journal of Legal Medicine, 129, 18.Google Scholar
Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4, 19.Google Scholar
Klevezal’, G. A. (1996). Recording Structures of Mammals: Determination of Age and Reconstruction of Life History. A. A. Balkema Series, Rotterdam.Google Scholar
Naji, S., Gourichon, L., & Rendu, W. (2015). La cémentochronologie. In Balasse, M., Brugal, J.-P., Dauphin, Y., Geigl, E.-M., Oberlin, C., & Reiche, I. (eds.), Messages d’os. Archéométrie Du Squelette Animal et Humain, Sciences Archéologiques. Edition des Archives Contemporaines, France, 217–40.Google Scholar
Saxon, A., & Higham, C. (1969). A new research method for economic prehistorians. American Antiquity, 34, 303–11.Google Scholar

References

Aggarwal, P., Saxena, S., & Bansal, P. (2008). Incremental lines in root cementum of human teeth: An approach to their role in age estimation using polarizing microscopy. Indian Journal of Dental Research, 19(4), 326–30.Google Scholar
Allen, D. S., & Melfi, R. C. (1985). Improvements in techniques for aging mammals by dental cementum annuli. Proceedings of the Iowa Academy of Science, 92(3), 100–2.Google Scholar
Blondiaux, J., Gabart, N., Alduc-Le Bagousse, A., Niel, C., & Tyler, E. (2006). Relevance of cement annulations to paleopathology. Paleopathology Newsletter, 135, 413.Google Scholar
Bromage, T. G., Idaghdour, Y., Lacruz, R. S., … Schrenk, F. (2016). The swine plasma metabolome chronicles “many days” biological timing and functions linked to growth. PLoS ONE, 11(1), e0145919.CrossRefGoogle ScholarPubMed
Caropreso, S., Bondioli, L., Capannolo, D., Cerroni, L., Macchiarelli, R., & Condò, S. G. (2000). Thin sections for hard tissue histology: A new procedure. Journal of Microscopy, 199(3), 244–7.Google Scholar
Colard, T., Bertrand, B., Naji, S., Delannoy, Y., & Bécart, A. (2015). Toward the adoption of cementochronology in forensic context. International Journal of Legal Medicine, 129, 18.Google Scholar
Condon, K., Charles, D. K., Cheverud, J. M., & Buikstra, J. E. (1986). Cementum annulation and age determination in Homo sapiens. II. Estimates and accuracy. American Journal of Physical Anthropology, 71(3), 321–30.Google Scholar
Foster, B. L. (2017). On the discovery of cementum. Journal of Periodontal Research, 52(4), 666–85.CrossRefGoogle Scholar
Huffman, M., & Antoine, D. (2010). Analysis of cementum layers in archaeological material. Dental Anthropology, 23(3), 6778.Google Scholar
Joshi, P. S., Chougule, M. S., & Agrawal, G. P. (2010). Comparison of polarizing and phase-contrast microscopy for estimation of age based on cemental annulations. Indian Journal of Forensic Odontology, 3(3), 1725.Google Scholar
Kagerer, P., & Grupe, G. (2001). Age-at-death diagnosis and determination of life-history parameters by incremental lines in human dental cementum as an identification aid. Forensic Science International, 118(1), 7582.Google Scholar
Kasetty, S., Rammanohar, M., & Raju Ragavendra, T. (2010). Dental cementum in age estimation: A polarized light and stereomicroscopic sStudy. Journal of Forensic Sciences, 55(3), 779–83.Google Scholar
Kaur, P., Astekar, M., Singh, J., Arora, K. S., & Bhalla, G. (2015). Estimation of age based on tooth cementum annulations: A comparative study using light, polarized, and phase-contrast microscopy. Journal of Forensic Dental Sciences, 7(3), 215–21.Google Scholar
Klevezal’, G. A. (1996). Recording Structures of Mammals: Determination of Age and Reconstruction of Life History. Rotterdam: A. A. Balkema Series.Google Scholar
Kvaal, S. I., & Solheim, T. (1995). Incremental lines in human dental cementum in relation to age. European Journal of Oral Sciences, 103(4), 225–30.Google Scholar
Lipsinic, F. E., Paunovich, D. G., Houston, D. G., & Robinson, S. F. (1986). Correlation of age and incremental lines in the cementum of human teeth. Journal of Forensic Sciences, 31, 982–9.Google Scholar
Lucas, P. W., & Loh, H. S. (1986). Are the incremental lines in human cementum laid down annually? Annals of the Academy of Medicine, Singapore, 15(3), 384–6.Google Scholar
Maat, G. J. R., Gerretsen, R. R. R., & Aarents, M. J. (2006). Improving the visibility of tooth cementum annulations by adjustment of the cutting angle of microscopic sections. Forensic Science International, 159, (Supplement), S95S99.Google Scholar
Mallar, K. B., Girish, H. C., Murgod, S., & Kumar, B. Y. (2015). Age estimation using annulations in root cementum of human teeth: A comparison between longitudinal and cross-sections. Journal of Oral and Maxillofacial Pathology: JOMFP, 19(3), 396404.Google Scholar
Matson, G., Van Daele, L., Goodwin, E., Aumiller, L., Reynolds, H., & Hristienko, H. (1993). A Laboratory Manual for Cementum Age Determination of Alaska Brown Bear PM1 Teeth. Milltown, MT: Alaska Department of Fish and Game, and Matson’s Laboratory.Google Scholar
Miller, C. F., Dove, S. B., & Cottone, J. A. (1988). Failure of use of cemental annulations in teeth to determine the age of humans. Journal of Forensic Sciences, 33, 137–43.Google Scholar
Naji, S., Colard, T., Blondiaux, J., Bertrand, B., d’Incau, E., & Bocquet-Appel, J.-P. (2016). Cementochronology, to cut or not to cut? International Journal of Paleopathology, 15, 113–19.CrossRefGoogle ScholarPubMed
Natesan, S., Krishnapillai, R., Ramakrishnan, B., & Thomas, P. (2017). Phase-contrast microscopy: An adjuvant tool to assess cementum annulation in forensic dentistry. Oral & Maxillofacial Pathology Journal, 8(1), 58.Google Scholar
Obertova, Z., & Francken, M. (2009). Tooth cementum annulation method: Accuracy and applicability. Frontiers of Oral Biology, 13, 184–9.Google Scholar
Pundir, S., Saxena, S., & Aggrawal, P. (2009). Estimation of age based on tooth cementum annulations using three different microscopic methods. Journal of Forensic Dental Sciences, 1(2), 82.Google Scholar
Renz, H., & Radlanski, R. J. (2006). Incremental lines in root cementum of human teeth – A reliable age marker? HOMO – Journal of Comparative Human Biology, 57(1), 2950.Google Scholar
Saint-Pierre, C. (2010). Millau, La Granède (Aveyron): Une église paléochrétienne anonyme sur un éperon barré. Archéologie du Midi Médiéval, 28(1), 181–91.CrossRefGoogle Scholar
Schindelin, J., Arganda-Carreras, I., Frise, E., … Cardona, A. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9(7), 676–82.Google Scholar
Stein, T. J., & Corcoran, J. F. (1994). Pararadicular cementum deposition as a criterion for age estimation in human beings. Oral Surgery, Oral Medicine, Oral Pathology, 77(3), 266–70.Google Scholar
Wedel, V. L., & Wescott, D. J. (2016). Using dental cementum increment analysis to estimate age and season of death in African Americans from a historical cemetery in Missouri. International Journal of Paleopathology, 15, 134–9.Google Scholar
Wittwer-Backofen, U. (2012). Age estimation using tooth cementum annulation. In Bell, L. S., ed., Forensic Microscopy for Skeletal Tissues, Vol. 915, Totowa, NJ: Humana Press, 129–43.Google Scholar
Wittwer-Backofen, U., & Buba, H. (2002). Age estimation by tooth cementum annulation: Perspective of a new validation study. In Hoppa, R. D. and Vaupel, J. W., eds., Paleodemography, Age Distributions from Skeletal Samples, Cambridge: Cambridge University Press, 107–28.Google Scholar
Wittwer-Backofen, U., Gampe, J., & Vaupel, J. W. (2004). Tooth cementum annulation for age estimation: Results from a large known-age validation study. American Journal of Physical Anthropology, 123(2), 119–29.Google Scholar
Yamamoto, H., Niimi, T., Yokota-Ohta, R., Suzuki, K., Sakae, T., & Kozawa, Y. (2009). Diversity of acellular and cellular cementum distribution in human permanent teeth. Journal of Hard Tissue Biology, 18(1), 40–4.Google Scholar

References

Burke, A. 1993. “Applied Skeletochronology: The Horse as Human Prey during the Pleniglacial in Southwestern France.Archaeological Papers of the American Anthropological Association 4 (1): 145–50.Google Scholar
Charles, D. K., Condon, K., Cheverud, J. M., and Buikstra, J. E.. 1986. “Cementum Annulation and Age Determination in Homo Sapiens. I. Tooth Variability and Observer Error.” American Journal of Physical Anthropology 71: 311–20.Google Scholar
Colard, T., Bertrand, B, Naji, S., Delannoy, Y, and Bécart, A.. 2015. “Toward the Adoption of Cementochronology in Forensic Context.” International Journal of Legal Medicine 129: 18.Google Scholar
Cool, S. M., Forwood, M. R., Campbell, P., and Bennett, M. B.. 2002. “Comparisons between Bone and Cementum Compositions and the Possible Basis for Their Layered Appearances.” Bone 30 (2): 386–92.Google Scholar
Delagnes, A., and Rendu, W.. 2011. “Shifts in Neandertal Mobility, Technology and Subsistence Strategies in Western France.” Journal of Archaeological Science 38 (8): 1771–83.Google Scholar
Gordon, B. C. 1988. Of Men and Reindeer Herds in French Magdalenian Prehistory. BAR International Series 390. Oxford: BAR Publishing.Google Scholar
Gourichon, L. 2004. “Faune et Saisonnalité. L’Organisation Temporelle des Activités de Subsistance dans l’Epipaléolithique et le Néolithique Précéramique du Levant Nord (Syrie).” Ph.D. Dissertation. Lyon: Université Lumière-Lyon, 2.Google Scholar
Klevezal’, G. A. 1996. Recording Structures of Mammals: Determination of Age and Reconstruction of Life History. Rotterdam: A. A. Balkema Series.Google Scholar
Lieberman, D. E., Deacon, T. W., and Meadow, R. H.. 1990. “Computer Image Enhancement and Analysis of Cementum Increments as Applied to Teeth of Gazella Gazella.” Journal of Archaeological Science 17: 519–33.Google Scholar
Lincoln, G. 2019. “A Brief History of Circannual Time.Journal of Neuroendocrinology 31 (3): e12694.CrossRefGoogle ScholarPubMed
Lubinski, P. M., and O’Brien, C. J.. 2001. “Observations on Seasonality and Mortality from a Recent Catastrophic Death Assemblage.” Journal of Archaeological Science 28 (8): 833–42.Google Scholar
Matson, G., Van Daele, L., Goodwin, E., Aumiller, L., Reynolds, H., and Hristienko, H.. 1993. A Laboratory Manual for Cementum Age Determination of Alaska Brown Bear First Premolar Teeth. Matson’ Lab. Alaska Department of Fish and Game. Juneau: Division of Wildlife Conservation.Google Scholar
Miller, F. L. 1974. Biology of the Kaminuriak Population of Barren-Ground Caribou, Part 2: Dentition as an Indicator of Age and Sex; Composition and Socialization of the Population. Ottawa: Canadian Wildlife Service.Google Scholar
Naji, S. S., Colard, T. T., Blondiaux, J. J., Bertrand, B. B., d’Incau, E. E., and Bocquet-Appel, J-P. 2014. “Cementochronology, to Cut or Not to Cut?International Journal of Paleopathology.Google Scholar
Naji, S. S., Colard, T. T., Blondiaux, J. J., Bertrand, B. B., d’Incau, E. E., and Bocquet-Appel, J-P 2016. “Cementochronology, to Cut or Not to Cut?International Journal of Paleopathology 15: 113–19.CrossRefGoogle ScholarPubMed
Naji, S., Gourichon, L., and Rendu, W.. 2015. “La Cémentochronologie.” In Messages d’Os. Archéométrie du Squelette Animal et Humain. Balasse, M., Brugal, J-P, Dauphin, Y., Geigl, E-M, Oberlin, C., and Reiche, I. (eds.). 217–40. Sciences Archéologiques. Edition des Archives Contemporaines.Google Scholar
Pike-Tay, A.. 1991. Red Deer Hunting in the Upper Paleolithic of Southwest France: A Study in Seasonality. British Archaeological Reports International Series S569. Oxford: Tempus Reparatum.CrossRefGoogle Scholar
Pike-Tay, A. 1995. “Variability and Synchrony of Seasonal Indicators in Dental Cementum Microstructure of the Kaminuriak Caribou Population.” Archaeofauna 4: 273–84.Google Scholar
Rendu, W. 2010. “Hunting Behavior and Neanderthal Adaptability in the Late Pleistocene Site of Pech-de-l’Aze I.” Journal of Archaeological Science 37: 17891810.Google Scholar
Rendu, W. 2007. “Planification Des Activités de Subsistance Au Sein Du Territoire Des Derniers Moustériens. Cémentochronologie et Approche Archéozoologique de Gisements Du Paléolithique Moyen (Pech-de-l’Azé I, La Quina, Mauran) et Paléolithique Supérieur Ancien (Isturitz).” Bordeaux: Université de Bordeaux I.Google Scholar
Roksandic, M., Vlak, D., Schillaci, M. A., and Voicu, D.. 2009. “Technical Note: Applicability of Tooth Cementum Annulation to an Archaeological Population.” American Journal of Physical Anthropology 140 (3): 583–8.CrossRefGoogle Scholar
Sánchez-Hernández, C., Gourichon, L., Pubert, E., Rendu, W., Montes, R., andRivals, F.. 2019. “Combined Dental Wear and Cementum Analyses in Ungulates Reveal the Seasonality of Neanderthal Occupations in Covalejos Cave (Northern Iberia).” Scientific Reports 9 (1): 14335.Google Scholar
Stutz, A. J. 2002. “Polarizing Microscopy Identification of Chemical Diagenesis in Archaeological Cementum.” Journal of Archaeological Science 29 (11): 1327–47.Google Scholar

References

AlQahtani, S. J., Hector, M. P., and Liversidge, H. M.. 2010. Brief communication: The London Atlas of Human Tooth Development and Eruption. American Journal of Physical Anthropology, 142: 481–90.Google Scholar
AlQahtani, S. J., Hector, M. P., and Liversidge, H. M. 2014. Accuracy of dental age estimation charts: Schour and Massler, Ubelaker, and the London Atlas. American Journal of Physical Anthropology, 154(1): 70–8.Google Scholar
Cunningham, C., Scheuer, L., and Black, S. M. 2016. Developmental Juvenile Osteology, 2nd ed. Amsterdam: Elsevier/AP.Google Scholar
Moorrees, C. F., Fanning, E. A, and Hunt, E. E, Jr. 1963a. Age variation of formation stages for ten permanent teeth. Journal of Dental Research, 42: 490502.Google Scholar
Moorrees, C. F., Fanning, E. A, and Hunt, E. E, 1963b. Formation and resorption of three deciduous teeth in children. American Journal of Physical Anthropology, 21: 205–13.Google Scholar
Nanci, A. 2018. Ten Cate’s Oral Histology: Development, Structure, and Function, 9th ed. St. Louis, MO: Mosby.Google Scholar
Naji, S., Colard, T., Blondiaux, J., Bertrand, B., d’Incau, E, and Bocquet-Appel, J.-P.. 2016. Cementochronology, to cut or not to cut? International Journal of Paleopathology, 15: 113–19.Google Scholar
Schour, I., and Massler, M.. 1941. The development of the human dentition. Journal of the American Dental Association, 28(7): 1153–60.Google Scholar
Schour, I., and Massler, M. 1944 The Development of Human Dentition, 2nd ed. Chicago: American Dental Association.Google Scholar
Ubelaker, D. H. 1978. Human Skeletal Remains: Excavation, Analysis, Interpretation. Aldine Manuals on Archeology. Chicago: Aldine Publishing Company.Google Scholar
Wedel, V. L. 2007. Determination of season at death using dental cementum increment analysis. Journal of Forensic Sciences, 52(6): 1334–7.Google Scholar
Wedel, V. L., Found, G., and Nusse, G. L.. 2013. A 37-year-old cold case identification using novel and collaborative methods. Journal of Forensic Identification, 63(1): 521.Google Scholar
Wedel, V. L., and Wescott, D.. 2016. Using dental cementum increment analysis to determine age and season at death in African Americans from a historical cemetery in Missouri. International Journal of Paleopathology, 15: 134–39.CrossRefGoogle ScholarPubMed
Wittwer-Backofen, U., Gampe, J., and Haupfel, J. W.. 2004. Tooth cementum annulation for age estimation: Results from a large known‐age validation study. American Journal of Physical Anthropology, 123(2): 121–9.CrossRefGoogle ScholarPubMed

References

Brooks, S., and Suchey, J. M.. 1990. Skeletal age determination based on the os pubis: A comparison of the Acsádi-Nemeskéri and Suchey-Brooks methods. Human Evolution 5: 227–38.Google Scholar
Broucker, A. de, Colard, T., Penel, G., Blondiaux, J., and Naji, S.. 2016. The impact of periodontal disease on cementochronology age estimation. International Journal of Paleopathology.Google Scholar
Buikstra, J. E., and Ubelaker, D. H.. 1994. Standards for data collection from human skeletal remains. Research Series (44). Fayetteville, AR: Arkansas Archaeological Survey.Google Scholar
Charles, D. K., Condon, K, Cheverud, J. M, and Buikstra, J. E.. 1986. Cementum annulation and age determination in Homo sapiens. I. Tooth variability and observer error. American Journal of Physical Anthropology 71: 311–20.Google Scholar
Colard, T., Bertrand, B., Naji, S., Delannoy, Y., and Becart, A.. 2015. Toward the adoption of cementochronology in forensic context. International Journal of Legal Medicine 129: 1–8.Google Scholar
Condon, K., Charles, D. K., Cheverud, J. M, and Buikstra, J. E.. 1986. Cementum annulation and age determination in Homo sapiens II. Estimates and accuracy. American Journal of Physical Anthropology 71: 321–30.Google Scholar
Kagerer, P., and Grupe, G.. 2001. Age-at-death diagnosis and determination of life-history parameters by incremental lines in human dental cementum as an identification aid. Forensic Science International 118: 7582.CrossRefGoogle ScholarPubMed
Lieberman, D. E. 1994. The biological basis for seasonal increments in dental cementum and their application to archaeological research. Journal of Archaeological Science 21: 525–39.Google Scholar
Lovejoy, C. O., Meindl, R. S., Mensforth, R. P., and Barton, T. J.. 1985. Multifactorial determination of skeletal age at death: A method and blind tests of its accuracy. American Journal of Physical Anthropology 68: 114.Google Scholar
Naji, S., and Koel-Abt, K. 2017. Cementochronology – The still underestimated old “new” method for age-at-death assessment. Journal of Forensic Sciences & Criminal Investigation 3(5): 15.Google Scholar
Naji, S., T. Colard, J. Blondiaux, B. Bertrand, E. d’Incau, and J.-P. Bocquet-Appel, . 2016. Cementochronology, to cut or not to cut? International Journal of Paleopathology 15: 113–19.CrossRefGoogle ScholarPubMed
Stott, G. G., Sis, R. F., and Levy, B. M.. 1982. Cemental annulation as an age criterion in forensic dentistry. Journal of Dental Research 61: 814–17.Google Scholar
Wedel, V. L. 2007. Determination of season at death using dental cementum increment analysis. Journal of Forensic Science 52(6): 1334–37.Google Scholar
Wittwer-Backofen, U. 2012. Age estimation using tooth cementum annulation. 2012. In Forensic Microscopy for Skeletal Tissues, ed., Bell, L. S.. Totowa, NJ:Humana Press, 129–43.Google Scholar
Wittwer-Backofen, U., Gampe, J., and Vaupel, J. W.. 2004. Tooth cementum annulation for age estimation: results from a large known-age validation study. American Journal of Physical Anthropology 123: 119–29.Google Scholar

References

Alqahtani, S. J., Hector, M. P, and Liversidge, H. M. 2010. Brief communication: The London atlas of human tooth development and eruption. American Journal of Physical Anthropology 142(3): 481–90.Google Scholar
Boyde, A., 1963. Estimation of age at death from young human skeletal remains from incremental lines in dental enamel. Third International Meeting in Forensic Immunology, Medicine, Pathology and Toxicology, London, 3646.Google Scholar
Buikstra, J. (2022). A brief history of cemental annuli research, with emphasis upon anthropological applications. In Naji, S., Gourichon, L., & Rendu, W., eds., Cementum in Anthropology: Back to the Root. Cambridge: Cambridge University Press, ch. 1.Google Scholar
Cool, S. M., Forwood, M. R, Campbell, P, and Bennett, M. B. 2002. Comparisons between bone and cementum compositions and the possible basis for their layered appearances. Bone 30(2): 386–92.Google Scholar
Blondiaux, J., Alduc-Le Bagousse, A., Niel, C., et al. 2006. Relevance of cement annulations to paleopathology. Paleopathology Newsletter 135: 415.Google Scholar
Cerrito, P., Bailey, S. E., Hu, B., et al. 2020. Parturitions, menopause and other physiological stressors are recorded in dental cementum microstructure. Scientific Reports 10(1): 110.CrossRefGoogle ScholarPubMed
Colard, T., Bertrand, B., Naji, S., Delannoy, Y., and Bécart, A.. 2015. Toward the adoption of cementochronology in forensic context. International Journal of Legal Medicine 129: 18.Google Scholar
Colard, T., Falgayrac, G., Bertrand, B., et al. 2016. New insights on the composition and the structure of the acellular extrinsic fiber cementum by Raman Analysis. PLoS ONE 11(12): e0167316.Google Scholar
Courbebaisse, M., and Souberbielle, J. C.. 2011. Phosphocalcic metabolism: Regulation and explorations. Nephrologie & Therapeutique 7(2): 118–38.Google Scholar
Dean, M. C. 1987. Growth layers and incremental markings in hard tissues: A review of the literature and some preliminary observations about enamel structure in Paranthropus boisei. Journal of Human Evolution 16: 157–72.Google Scholar
Dean, M. C. 2000. Incremental markings in enamel and dentine: What they can tell us about the way teeth grow. Development, Function and Evolution of Teeth, 119–30.Google Scholar
Dean, M. C., Le Cabec, A., Spiers, K., Zhang, Y., and Garrevoet, J.. 2018. Incremental distribution of strontium and zinc in great ape and fossil hominin cementum using synchrotron X-ray fluorescence mapping. Journal of the Royal Society Interface 15: 20170626.Google Scholar
Falgayrac, G., et al. 2010. New method for Raman investigation of the orientation of collagen fibrils and crystallites in the Haversian system of bone. Applied Spectroscopy 64(7): 775–80.Google Scholar
Ferreira, T., Kota, M., Bitdeli, C., and Eglinger, J.. 2015. Scripts: BAR 1.1.6 (Version 1.1.6). Zenodo. http://doi.org/10.5281/zenodo.28838Google Scholar
Giraud-Guille, M. M. 1988. Twisted plywood architecture of collagen fibrils in human compact bone osteons. Calcified Tissue International 42(3): 167–80.Google Scholar
Giraud-Guille, M. M., Besseau, L., and Martin, R.. 2003. Liquid crystalline assemblies of collagen in bone and in vitro systems. Journal of Biomechanics 36(10): 1571–9.Google Scholar
Guatelli-Steinberg, D., Larsen, C. S., and Hutchsinson, D. L.. 2004. Prevalence and the duration of linear enamel hypoplasia: a comparative study of Neandertals and Inuit foragers. Journal of Human Evolution 47( 1–2): 6584.Google Scholar
Kagerer, P., and Grupe, G.. 2001. Age-at-death diagnosis and determination of life-history parameters by incremental lines in human dental cementum as an identification aid. Forensic Science International 118, 7582.Google Scholar
Klevezal’, G. A. 1996. Recording Structures of Mammals: Determination of Age and Reconstruction of Life History. Rotterdam: A. A. Balkema Series.Google Scholar
Kovacs, C. S. 2005. Calcium and bone metabolism during pregnancy and lactation. Journal of Mammary Gland Biology and Neoplasia 10(2): 105–18.Google Scholar
Kovacs, C. S. 2016. Maternal mineral and bone metabolism during pregnancy, lactation, and post-weaning recovery. Physiological Reviews 96(2): 449547.Google Scholar
Kovacs, C. S. 2017. The skeleton is a storehouse of mineral that is plundered during lactation and (fully?) replenished afterwards. Journal of Bone and Mineral Research 32(4): 676–80.Google Scholar
Lieberman, D. E. 1993. Life history variables preserved in dental cementum microstructure. Science 261(5125): 1162–64.Google Scholar
Mani-Caplazi, G., Hotz, G, Wittwer-Backofen, U., and Vach, W.. 2019. Measuring incremental line width and appearance in the tooth cementum of recent and archaeological human teeth to identify irregularities: First insights using a standardized protocol. International Journal of Paleopathology 27: 2437.Google Scholar
Naji, S., et al. 2016. Cementochronology, to cut or not to cut? International Journal of Paleopathology 15: 113–19.Google Scholar
Reid, D. J. and Dean, M. C. 2006. Variation in modern human enamel formation times. Journal of Human Evolution 50(3): 329–46.Google Scholar
Ristova, M., Talevska, M., and Stojanovska, Z.. 2018. Accurate age estimations from dental cementum and a childbirth indicator – A pilot study. Journal of Forensic Science & Criminology 6: 112.Google Scholar
Salari, P., and Abdollahi, M.. 2014. The influence of pregnancy and lactation on maternal bone health: A systematic review. Journal of Family & Reproductive Health 8(4): 135.Google Scholar
Schindelin, J., Arganda-Carreras, I., Frise, E, et al. 2012. Fiji: An open-source platform for biological-image analysis. Nature Methods 9(7): 676–82.CrossRefGoogle ScholarPubMed
Schwartz, G. T., Reid, D. J., Dean, M. C., and Zihlman, A. L.. 2006. A faithful record of stressful life events recorded in the dental developmental record of a juvenile gorilla. International Journal of Primatology 27: 1201–19.Google Scholar
Skinner, M., and Byra, C.. 2019. Signatures of stress: Pilot study of accentuated laminations in porcine enamel. American Journal of Physical Anthropology 169(4): 619–31.Google Scholar
Stock, S. R., et al. 2017. Cementum structure in beluga whale teeth. Acta Biomaterialia 48: 289–99.Google Scholar
Surarit, R., Krishnamra, N., and Seriwatanachai, D. 2016. Prolactin receptor and osteogenic induction of prolactin in human periodontal ligament fibroblasts. Cell Biology International 40(4): 419–27.Google Scholar
Wittwer-Backofen, U. 2012. Age estimation using tooth cementum annulation. In Forensic Microscopy for Skeletal Tissues. Bell, L. S (ed.). Totowa, NJ: Humana Press, 129–43.Google Scholar

References

Boyle, Angela, Boston, Ceridwen, and Witkin, Annsofie. 2005. The Archaeological Experience at St. Luke’s Church, Old Street, Islington. (unpublished report). Oxford: Oxford Archaeology.Google Scholar
Immel, Alexander, Le Cabec, Adeline, Bonazzi, Marion, Herbig, Alexander, Temming, Heiko, Schuenemann, Verena J., Bos, Kirsten I., et al. 2016. “Effect of X-Ray Irradiation on Ancient DNA in Sub-Fossil Bones – Guidelines for Safe X-Ray Imaging.” Scientific Reports 6: 32969.Google Scholar
Le Cabec, , Adeline, M. Dean, Christopher, and Begun, David R.. 2017. “Dental Development and Age at Death of the Holotype of Anapithecus hernyaki (RUD 9) Using Synchrotron Virtual Histology.” Journal of Human Evolution 108: 161–75.Google Scholar
Le Cabec, Adeline, Tang, Nancy K., Rubio, Valentin Ruano, and Hillson, Simon W.. 2019. “Non-Destructive Adult Age at Death Estimation: Visualizing Cementum Annulations in a Known Age Historical Human Assemblage Using Synchrotron X-Ray Microtomography.” American Journal of Physical Anthropology 168: 2544Google Scholar
Le Cabec, Adeline, Tang, Nancy K., and Tafforeau, Paul. 2015. “Accessing Developmental Information of Fossil Hominin Teeth Using New Synchrotron Microtomography-Based Visualization Techniques of Dental Surfaces and Interfaces.” PLoS ONE 10 (4): e0123019.Google Scholar
Le Cabec, Adeline, and Toussaint, Michel. 2017. “Impacts of Curatorial and Research Practices on the Preservation of Fossil Hominid Remains.” Journal of Anthropological Sciences 95: 734.Google Scholar
Leiss-Holzinger, Elisabeth, Wiesauer, Karin, Stephani, Henrike, Heise, Bettina, Stifter, David, Kriechbaumer, Benjamin, Spachinger, Stefan J., Gusenbauer, Christian, and Withalm, Gerhard. 2015. “Imaging of the Inner Structure of Cave Bear Teeth by Novel Non-Destructive Techniques.” Palaeontologia Electronica 18 (1): 115.Google Scholar
Lieberman, Daniel E. 1994. “The Biological Basis for Seasonal Increments in Dental Cementum and Their Application to Archaeological Research.” Journal of Archaeological Science 21 (4): 525–39.Google Scholar
Newham, Elis, Robson-Brown, Kate, Gill, Pamela, and Corfe, Ian. 2017. “Sexual Dimorphism in Primate Dental Cementum Microstructure.” ISDM-IAPO Program. Bordeaux, France, 166.Google Scholar
Paganin, David., Mayo, Sherry. C., Gureyev, T. E., Miller, P. R., and Wilkins, S. W.. 2002. “Simultaneous Phase and Amplitude Extraction from a Single Defocused Image of a Homogeneous Object.” Journal of Microscopy 206 (1): 3340.Google Scholar
Smith, Tanya M., Tafforeau, Paul, Reid, Donald J., Pouech, Joane, Lazzari, Vincent, Zermeno, John P., Guatelli-Steinberg, Debbie, et al. 2010. “Dental Evidence for Ontogenetic Differences between Modern Humans and Neanderthals.” Proceedings of the National Academy of Sciences 107 (49): 20923–28.Google Scholar
Smith, Tanya M., Toussaint, Michel, Reid, Donald J., Olejniczak, Anthony J., and Hublin, Jean-Jacques. 2007. “Rapid Dental Development in a Middle Paleolithic Belgian Neanderthal.” Proceedings of the National Academy of Sciences 104: 20220–25.Google Scholar
Smith, Tanya M., Tafforeau, Paul, Le Cabec, Adeline, Bonnin, Anne, Houssaye, Alexandra, Pouech, Joane, Moggi-Cecchi, Jacopo, et al. 2015. “Dental Ontogeny in Pliocene and Early Pleistocene Hominins.” PLoS ONE 10 (2): e0118118.Google Scholar
Tafforeau, Paul, Boistel, Renaud, Boller, E., Bravin, A., Brunet, M., Chaimanee, Y., Cloetens, P., Feist, M., Hoszowska, J., and Jaeger, J. J.. 2006. “Applications of X-Ray Synchrotron Microtomography for Non-Destructive 3D Studies of Paleontological Specimens.” Applied Physics A: Materials Science & Processing 83 (2): 195202.Google Scholar
Tafforeau, Paul, and Smith, Tanya M.. 2008. “Non-Destructive Imaging of Hominoid Dental Microstructure Using Phase Contrast X-Ray Synchrotron Microtomography.” Journal of Human Evolution 54 (2): 272–78.Google Scholar
Weitkamp, Timm., Haas, David, Wegrzynek, D., and Rack, Alexander. 2011. “ANKAphase: Software for Single-Distance Phase Retrieval from Inline X-Ray Phase-Contrast Radiographs.” Journal of Synchrotron Radiation 18 (4): 617–29.Google Scholar
Weitkamp, Timm., Haas, David, Wegrzynek, D., and Rack, Alexander 2013. “ANKAphase: Software for Single-Distance Phase Retrieval from Inline X-Ray Phase-Contrast Radiographs. Erratum.” Journal of Synchrotron Radiation 20 (1): 205.Google Scholar
Zabler, Simon Andreas, Riesemeier, H., Fratzl, P., and Zaslansky, P.. 2006. “Fresnel-Propagated Imaging for the Study of Human Tooth Dentin by Partially Coherent X-Ray Tomography.” Optics Express 14 (19): 8584–97.Google Scholar

References

Barth, H. D., Launey, M. E., MacDowell, A. A., Ager, J. W., and Ritchie, R. O. (2010). On the effect of x-ray irradiation on the deformation and fracture behavior of human cortical bone. Bone 46(6): 1475–85.Google Scholar
Dean, C., Le Cabec, A., Spiers, K., Zhang, Y., and Garrevoet, J. (2018). Incremental distribution of strontium and zinc in great ape and fossil hominin cementum using synchrotron x-ray fluorescence mapping. Journal of The Royal Society Interface 15(138): 20170626.Google Scholar
Dias, P. E., Beaini, T. L., and Melani, R. F. (2010). Age estimation from dental cementum incremental lines and periodontal disease. Journal of Forensic Odontostomatology 28: 1321.Google Scholar
Dong, W. P., Sullivan, P. J., and Stout, K. J. (1992). Comprehensive study of parameters for characterizing three-dimensional surface topography I: Some inherent properties of parameter variation. Wear 159(2): 161–71.Google Scholar
Foster, B. L. (2012). Methods for studying tooth root cementum by light microscopy. International Journal of Oral Science 4(3): 119.Google Scholar
Frie, A. K., Fagerheim, K. A., Hammill, M. O., Kapel, F. O., Lockyer, C., Stenson, G. B., and Svetochev, V. (2011). Error in age estimation of harp seals (Pagophilus groenlandicus): Results from a transatlantic, image-based, blind-reading experiment using known-age teeth. ICES Journal of Marine Science 68(9),1942–53.Google Scholar
Frie, A. K., Hammill, M. O., Hauksson, E., Lind, Y., Lockyer, C., Stenman, O., and Svetocheva, O. (2013). Error patterns in age estimation and tooth readability assignment of grey seals (Halichoerus grypus): Results from a transatlantic, image-based, blind-reading study using known-age animals. ICES Journal of Marine Science 70(2): 418–30.Google Scholar
Immel, A., Le Cabec, A., Bonazzi, M., Herbig, A., Temming, H., Schuenemann, V. J., Bos, K.I., Langbein, F., Harvati, K., Bridault, A., Pion, G., Julien, M-A., Krotova, O., Conard, N. J., Münzel, S. C., Drucker, D. G., Viola, B., Hublin, J-J., Tafforeau, P., and Krause, J. (2016). Effect of ancient DNA in sub-fossil bones – guidelines for safe x-ray imaging. Scientific Reports 6: 32969.Google Scholar
Kagerer, P., and Grupe, G. (2001). Age-at-death diagnosis and determination of life-history parameters by incremental lines in human dental cementum as an identification aid. Forensic Science International 118(1): 7582.Google Scholar
Klevezal, G. A. (1996). Recording Structures of Mammals. Boca Raton, FL: CRC Press.Google Scholar
Klevezal, G. A., and Stewart, B. S. (1994). Patterns and calibration of layering in tooth cementum of female northern elephant seals, Mirounga angustirostris. Journal of Mammalogy 75(2): 483–7.Google Scholar
Kvaal, S. I., and Solheim, T. (1996). Incremental lines in human dental cementum in relation to age. European Journal of Oral Sciences 103(4): 225–30.Google Scholar
Le Cabec, A., Tang, N. K., Ruano Rubio, V., and Hillson, S. (2019). Nondestructive adult age at death estimation: Visualizing cementum annulations in a known age historical human assemblage using synchrotron x-ray microtomography. American Journal of Physical Anthropology 168(1): 2544.Google Scholar
Leiss-Holzinger, E., Wiesauer, K., Stephani, H., Heise, B., Stifter, D., Kriechbaumer, B., Spachinger, S. J., Gusenbauer, C., and Withalm, G. (2015). Imaging of the inner structure of cave bear teeth by novel non-destructive techniques. Palaeontologia Electronica 18(1): 115.Google Scholar
Lieberman, D. E., Deacon, T. W., and Meadow, R. H. (1990). Computer image enhancement and analysis of cementum increments as applied to teeth of Gazella gazella. Journal of Archaeological Science 17(5): 519–33.Google Scholar
Lieberman, D. E., and Meadow, R. H. (1992). The biology of cementum increments (with an archaeological application). Mammal Review 22(2): 5777.Google Scholar
Lucas, P. W., and Loh, H. S. (1986). Are the incremental lines in human cementum laid down annually? Annals, Academy of Medicine Singapore 15: 384–86.Google Scholar
Mani-Caplazi, G., Hotz, G., Wittwer-Backofen, U., and Vach, W., (2019). Measuring incremental line width and appearance in the tooth cementum of recent and archaeological human teeth to identify irregularities: First insights using a standardized protocol. International Journal of Paleopathology 27: 2437.Google Scholar
Mani-Caplazi, G., Schulz, G., Deyhle, H., Hotz, G., Vach, W., Wittwer-Backofen, U., and Müller, B. (2017). Imaging of the human tooth cementum ultrastructure of archaeological teeth, using hard x-ray microtomography to determine age-at-death and stress periods. Developments in X-Ray Tomography XI 10391: 103911 C. International Society for Optics and Photonics.Google Scholar
Naji, S., Colard, T., Blondiaux, J., Bertrand, B., d’Incau, E., and Bocquet-Appel, J.-P. (2016). Cementochronology, to cut or not to cut? International Journal of Paleopathology 15: 113–19.Google Scholar
Newham, E., Gill, P. G., Brewer, P., …, and Corfe, I. J. (2020). Reptile-like physiology in Early Jurassic stem-mammals. Nature Communications 11(1): 5121.Google Scholar
Paganin, D., Mayo, S. C., Gureyev, T. E., Miller, P. R., and Wilkins, S. W. (2002). Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. Journal of Microscopy 206: 3340.Google Scholar
Purnell, M., Seehausen, O., and Galis, F. (2012). Quantitative three-dimensional microtextural analyses of tooth wear as a tool for dietary discrimination in fishes. Journal of The Royal Society Interface 9(74): 2225–33.Google Scholar
Renz, H., and Radlanski, R. J. (2006). Incremental lines in root cementum of human teeth – A reliable age marker? HOMO- Journal of Comparative Human Biology 57(1): 2950.CrossRefGoogle ScholarPubMed
Rolandsen, C. M., Solberg, E. J., Heim, M., Holmstrøm, F., Solem, M. I., and Sæther, B. E. (2008). Accuracy and repeatability of moose (Alces alces) age as estimated from dental cement layers. European Journal of Wildlife Research 54(1): 614.Google Scholar
Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9(7): 671.Google Scholar
Spinage, C. A. (1973). A review of age determination of mammals by means of teeth, with especial reference to Africa. African Journal of Ecology 11(2): 165–87.Google Scholar
Stock, S. R., Finney, L. A., Telser, A., Maxey, E., Vogt, S., and Okasinski, J. S. (2017). Cementum structure in Beluga whale teeth. Acta Biomaterialia 48: 289–99.Google Scholar
Stutz, A. J. (2002). Polarizing microscopy identification of chemical diagenesis in archaeological cementum. Journal of Archaeological Science 29(11): 1327–47.Google Scholar
Wall-Scheffler, C. M., and Foley, R. A. (2008). Digital cementum luminance analysis (DCLA): A tool for the analysis of climatic and seasonal signals in dental cementum. International Journal of Osteoarchaeology 18(1): 1127.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×