Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-22T15:17:39.692Z Has data issue: false hasContentIssue false

21 - Seismic anisotropy and its geodynamic implications

Published online by Cambridge University Press:  05 June 2012

Shun-ichiro Karato
Affiliation:
Yale University, Connecticut
Get access

Summary

Earth materials are anisotropic to some extent and the nature of anisotropic structures can be inferred from a range of seismological observations. Anisotropic structures carry valuable information as to the anisotropic fields that reflect the dynamic processes in Earth's interior including the geometry of flow. Therefore seismic anisotropy provides an important insight into the dynamics of Earth's interior. However, both observations and the interpretation of seismic anisotropy are not straightforward. Following the description of some of the fundamentals of seismic wave propagation in an anisotropic material, I will review the basic seismological observations on anisotropy. This is followed by a brief summary of the essence of the processes that may cause anisotropic structure formation. They include lattice-preferred orientation of anisotropic crystals and shape-preferred orientation of (isotropic or anisotropic) materials with distinct elastic moduli (or other types of layered structure). In most cases, seismic anisotropy is caused by lattice-preferred orientation of elastically anisotropic minerals. The relation between seismic anisotropy and deformation in such a case is mineral specific, and also depends on the physical and chemical conditions that change the elastic and plastic anisotropy of minerals. Following detailed discussions on the mechanisms of lattice-preferred orientation and other microscopic processes of anisotropic structure formation, some geodynamic implications of seismic anisotropy are discussed in the final section.

Key words azimuthal anisotropy, polarization anisotropy, shear wave splitting, Christoffel equation, lattice-preferred orientation, shape-preferred orientation.

Type
Chapter
Information
Deformation of Earth Materials
An Introduction to the Rheology of Solid Earth
, pp. 391 - 411
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×