Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-22T15:45:33.178Z Has data issue: false hasContentIssue false

12 - Deformation of multi-phase materials

Published online by Cambridge University Press:  05 June 2012

Shun-ichiro Karato
Affiliation:
Yale University, Connecticut
Get access

Summary

Most parts of the Earth are made of multi-phase materials. The physical mechanisms of deformation of a multi-phase material differ from those of a homogeneous material in several ways. A key issue here is how the rate of deformation (or the strength of a polycrystalline material) is related to those of individual materials (or crystals) and their volume fraction, orientation and geometry. Experimental observations and theoretical models of the deformation of a multi-phase material are reviewed. It is shown that the plastic deformation of a multi-phase material is controlled not only by the rheological contrast (the contrast in effective viscosity) and the volume fraction of each phase but also by the stress–strain distribution that depends on the geometry of each phase. The case of partial melt deserves special attention. Mechanical contrast is large in this case and as a consequence the properties of a partial melt depend strongly on the fraction and geometry of the melt. Principles that determine the geometry of melt in a partially molten material are discussed.

Key words Reuss average (model), Voigt average (model), Hill average (model), Hoff's analogy, Taylor average (model), Sachs average (model), variational principle, self-consistent approach, percolation, partial melt, dihedral angle.

Introduction

So far, we have considered the deformation of single-phase, homogeneous materials. This is a natural starting point, but there are several fundamental differences in deformation and microstructural development between a single- and a multi-phase material.

Type
Chapter
Information
Deformation of Earth Materials
An Introduction to the Rheology of Solid Earth
, pp. 214 - 231
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×