Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-66nw2 Total loading time: 0.414 Render date: 2021-11-30T19:35:21.872Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

8 - Radioisotopes as chronometers

Published online by Cambridge University Press:  05 June 2012

Harry Y. McSween, Jr
Affiliation:
University of Tennessee, Knoxville
Gary R. Huss
Affiliation:
University of Hawaii, Manoa
Get access

Summary

Overview

So far we have discussed the materials that make up the solar system and the processes that caused those materials to be in their current state. We will now investigate the chronology of the events that led to the current state of the solar system. There are several different approaches to determine the timing of events. The sequence of events can often be established from spatial relationships among objects (e.g. younger things rest on older things). Absolute ages are provided by long-lived radioactive nuclides. Time intervals can be determined using short-lived radionuclides. Production of nuclides through irradiation by cosmic rays can also be used for age determinations. For a complete chronological picture, it is often necessary to use more than one method of age determination. In this chapter, we focus on the basic principles of radiometric dating. We review individual isotopic clocks, the types of materials that each can date, and the measurements that are made to determine the ages of different objects. In Chapter 9, we discuss the chronology of the solar system derived from these clocks.

Methods of age determination

Placing events in chronological order and attaching an absolute time scale to that order constitute one of the major areas of research in cosmochemistry. There is no single clock that works for everything, so the chronology of the solar system has been built on a wide variety of observations and measurements. The methods of age determination can be divided into two main types.

Type
Chapter
Information
Cosmochemistry , pp. 230 - 307
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brush, S. G. (1982) Cooling spheres and accumulating lead: The history of attempts to date the Earth's formation. The Science Teacher, 54, 29–34. A very readable history of finding the age of the Earth.Google Scholar
Brush, S. G. (1987) Finding the age of the Earth by physics or by faith. Journal of Geological Education, 30, 34–58. A thoughtful evaluation of the debate between scientists and creationists over the age of the Earth.CrossRefGoogle Scholar
Faure, G. and Messing, T. M. (2005) Isotopes: Principles and Applications. New Jersey: John Wiley and Sons, 897 pp. A tremendous resource for details about various techniques of radiometric dating.Google Scholar
Hohenberg, C. M. and Pravdivtseva, O. V. (2008) I–Xe dating: from adolescence to maturity. Chemie der Erde, 68, 339–351. A good review of the status of I–Xe dating.CrossRefGoogle Scholar
Kleine, T., Touboul, M., Bourdon, B.et al. (2009) Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochimica et Cosmochimica Acta, 73, 5150–5188. A detailed review of the status of Hf–W dating.CrossRefGoogle Scholar
Nyquist, L. E., Bogard, D. D. and Shif, C.-Y. (2001a) Radiometric chronology of the Moon and Mars. In The Century of Space Science, eds. Bleeker, A. M., Geiss, J. and Huber, M. C.The Netherlands: Klewer Academic Publishers, pp. 1325–1376. An easy-to-read review of the history of radiometric chronology as it relates to the Moon and Mars.CrossRefGoogle Scholar
Wasserburg, G. J. and Papanastassiou, D. A. (1982) Some short-lived nuclides in the early solar system: a connection with the placental ISM. In Essays in Nuclear Astrophysics, eds. Barnes, C. A., Clayton, D. D. and Schramm, D. N.Cambridge: Cambridge University Press, pp. 77–140. A good review of the early history of chronology using short-lived radionuclides.Google Scholar
Aldrich, L. T. and Nier, A. O. (1948) Argon-40 in potassium minerals. Physical Review, 74, 876–877.CrossRefGoogle Scholar
Alexander, E. C., Lewis, R. S., Reynolds, J. H. and Michel, M. C. (1971) Plutonium-244: confirmation as an extinct radioactivity. Science, 172, 837–840.CrossRefGoogle ScholarPubMed
Amelin, Y. (2005) Meteorite phosphates show constant 176Lu decay rate since 4557 million years ago. Science, 310, 839–841.CrossRefGoogle ScholarPubMed
Audouze, J. and Schramm, D. M. (1972) 146Sm: a chronometer for p-process nucleosynthesis. Nature, 237, 447–449.CrossRefGoogle Scholar
Birck, J. L. and Allègre, C. J. (1985) Evidence for the presence of 53Mn in the early solar system. Geophysical Research Letters, 12, 745–748.CrossRefGoogle Scholar
Birck, J. L. and Allègre, C. J. (1988) Manganese chromium isotope systematics and the development of the early solar system. Nature, 331, 579–584.CrossRefGoogle Scholar
Birck, J. L. and Lugmair, G. W. (1988) Nickel and chromium isotopes in Allende inclusions. Earth and Planetary Science Letters, 90, 131–143.CrossRefGoogle Scholar
Birck, J. L., Rotaru, M. and Allègre, C. J. (1999) 53Mn–53Cr evolution of the early solar system. Geochimica et Cosmochimica Acta, 63, 4111–4117.CrossRefGoogle Scholar
Black, D. C. and Pepin, R. O. (1969) Trapped neon in meteorites. Earth and Planetary Science Letters, 6, 395–405.CrossRefGoogle Scholar
Blichert-Toft, J., Boyet, M., Télouk, P. and Albarède, F. (2002) 147Sm–143Nd and 176Lu–176Hf in eucrites and the differentiation of the HED parent body. Earth and Planetary Science Letters, 204, 167–181.CrossRefGoogle Scholar
Bouvier, A., Vervoort, J. D. and Patchett, P. J. (2008) The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk compositions of the terrestrial planets. Earth and Planetary Science Letters, 273, 48–57.CrossRefGoogle Scholar
Brazzle, R. H., Pravdivtseva, O. V., Meshik, A. P. and Hohenberg, C. M. (1999) Verification and interpretation of the I–Xe chronometer. Geochimica et Cosmochimica Acta, 63, 739–760.CrossRefGoogle Scholar
Brennecka, G. A., Weyer, S., Wadhwa, M.et al. (2009) 238U/235U variations in meteoritic materials: Evidence for curium-247 in the early solar system and implications for Pb–Pb dating (abstr.). Meteoritics and Planetary Science, 44 Supplement, A40.Google Scholar
Brown, H. (1947) An experimental method for the estimation of the age of the elements. Physical Review, 72, 348.CrossRefGoogle Scholar
Burkhardt, C., Kleine, T., Bourdon, B.et al. (2008) Hf–W mineral isochron for Ca, Al-rich inclusions: age of the solar system and the timing of core formation in planetesimals. Geochimica et Cosmochimica Acta, 72, 6177–6197.CrossRefGoogle Scholar
Campbell, N. R. and Wood, A. (1906) The radioactivity of the alkali metals. Proceedings of the Cambridge Philosophical Society, 14, 15–21.Google Scholar
Carlson, R. W. and Hauri, E. H. (2001) Extending the 107Pd–107Ag chronometer to low Pd/Ag meteorites with multicollector plasma-ionization mass spectrometry. Geochimica et Cosmochimica Acta, 65, 1839–1848.CrossRefGoogle Scholar
Chaussidon, M., Robert, F. and McKeegan, K. D. (2006) Li and B isotopic variations in an Allende CAI: evidence for the in situ decay of short-lived Be-10 and for the possible presence of the short-lived nuclide Be-7 in the early solar system. Geochimica et Cosmochimica Acta, 70, 224–245.CrossRefGoogle Scholar
Chen, J. H., Papanastassiou, D. A. and Wasserburg, G. J. (1998) Re–Os systematics in chondrites and the fractionation of the platinum group elements in the early solar system. Geochimica et Cosmochimica Acta, 62, 3379–3392.CrossRefGoogle Scholar
Chen, J. and Wasserburg, G. J. (1990) The isotopic composition of Ag in meteorites and the presence of 107Pd in protoplanets. Geochimica et Cosmochimica Acta, 54, 1729–1743.CrossRefGoogle Scholar
Creaser, R. A., Papanastassiou, D. A. and Wasserburg, G. J. (1991) Negative thermal ion mass spectrometry of osmium, rhenium, and iridium. Geochimica et Cosmochimica Acta, 55, 397–401.CrossRefGoogle Scholar
Dauphas, N., Cook, D. L., Sacarabany, A.et al. (2008) Iron-60 evidence for early injection and efficient mixing of stellar debris in the protosolar nebula. Astrophysical Journal, 686, 560–569.CrossRefGoogle Scholar
DePaolo, D. J. and Wasserburg, G. J. (1976a) Nd isotopic variations and petrogenetic models. Geophysical Research Letters, 3, 249–252.CrossRefGoogle Scholar
DePaolo, D. J. and Wasserburg, G. J. (1976b) Inferences about magma sources and mantle structure from variations of 143Nd/144Nd. Geophysical Research Letters, 3, 743–746.CrossRefGoogle Scholar
Edmunson, J., Borg, L. E., Nyquist, L. E. and Asmerom, Y. (2009) A combined Sm–Nd, Rb–Sr, and U–Pb isotopic study of Mg-suite norite 78238: further evidence for early differentiation of the Moon. Geochimica et Cosmochimica Acta, 73, 514–527.CrossRefGoogle Scholar
Ehlers, T. A. and Farley, K. A. (2003) Apatite (U–Th)/He thermometry: methods and applications to problems in tectonic and surface processes. Earth and Planetary Science Letters, 206, 1–14.CrossRefGoogle Scholar
Endress, M., Zinner, E. and Bischoff, A. (1996) Early aqueous activity on primitive meteorite parent bodies. Nature, 379, 701–703.CrossRefGoogle ScholarPubMed
Faure, G. (1986) Principles of Isotope Geology, 2nd edn. New York: Wiley.Google Scholar
Gale, N. H. and Mussett, A. E. (1973) Episodic uranium–lead models and interpretation of variations in isotopic composition of lead in rocks. Reviews in Geophysics, 11, 37–86.CrossRefGoogle Scholar
Garner, E. L., Murphy, T. J., Bramlich, J. W., Paulsen, P. J. and Barnes, I. L. (1975) Absolute isotopic abundance ratios and the atomic weight of a reference sample of potassium. Journal of Research of the National Bureau of Standards A. Physics and Chemistry, 79A, 713–725.CrossRefGoogle Scholar
Gounelle, M., Shu, F. H., Shang, H.et al. (2001) Extinct radioactivities and protosolar cosmic rays: self-shielding and light elements. Astrophysical Journal, 548, 1051–1070.CrossRefGoogle Scholar
Gray, C. M. and Compston, W. (1974) Excess 26Mg in the Allende meteorite. Nature, 251, 495–497.CrossRefGoogle Scholar
Gray, C. M., Papanastassiou, D. A and Wasserburg, G. J. (1973) The identification of early condensates from the solar nebula. Icarus, 20, 213–239.CrossRefGoogle Scholar
Grinyer, G. F., Waddington, J. C., Svensson, C. E.et al. (2003) Half-life of 176Lu. Physical Review C, 67, 014302.CrossRefGoogle Scholar
Guan, Y., Huss, G. R. and Leshin, L. A. (2007) 60Fe–60Ni and 53Mn–53Cr isotope systems in sulfides from unequilibrated ordinary chondrites. Geochimica et Cosmochimica Acta, 71, 4082–4091.CrossRefGoogle Scholar
Hahn, O. and Walling, E. (1938) Über die Möglichkeit geologischer Altersbestimmungen rubidiumhaltiger Mineralen and Gesteine. Zeitschrift Anorganishen Allgemeine Chemie, 236, 78–82.CrossRefGoogle Scholar
Halliday, A. N. and Lee, D.-C. (1999) Tungsten isotopes and the early development of the Earth and Moon. Geochimica et Cosmochimica Acta, 63, 4157–4179.CrossRefGoogle Scholar
Halliday, A. N., Rehkämper, M., Lee, D.-C. and Yi, W. (1996) Early evolution of the Earth and Moon: new constraints from Hf–W isotope geochemistry. Earth and Planetary Science Letters, 142, 75–89.CrossRefGoogle Scholar
Harper, C. L. and Jacobsen, S. B. (1996) Evidence for 182Hf in the early solar system and constraints on the timescale of terrestrial core formation. Geochimica et Cosmochimica Acta, 60, 1131–1153.CrossRefGoogle Scholar
Hemmendinger, A. and Smythe, W. R. (1937) The radioactive isotope of rubidium. Physical Review, 51, 1052–1053.CrossRefGoogle Scholar
Hirt, B., Tilton, G. R. and Hoffmeister, W. (1963) The half-life of 187Re. In Earth Science and Meteorites, eds. Geiss, J. and Goldberg, E. D.North-Holland: Amsterdam, pp. 273–280.Google Scholar
Holden, N. E. (1990) Total half-lives for selected nuclides. Pure and Applied Chemistry, 62, 941–958.CrossRefGoogle Scholar
Holmes, A. (1946) An estimate of the age of the earth. Nature, 157, 680–684.CrossRefGoogle Scholar
Houtermans, F. G. (1946) Die Isotopenhäufigkeiten im natürlichen Blei und das Alter den Urans. Naturwissenschaften, 33, 186–186, 219.Google Scholar
Hsu, W., Guan, Y., Leshin, L. A., Ushikubo, T. and Wasserburg, G. J. (2006) A late episode of irradiation in the early solar system: evidence from extinct 36Cl and 26Al in meteorites. Astrophysical Journal, 640, 525–529.CrossRefGoogle Scholar
Hutcheon, I. D., Armstrong, J. T. and Wasserburg, G. J. (1984) Excess 41K in Allende CAI: A hint re-examined (abstr.). Meteoritics, 19, 243–244.Google Scholar
Hutcheon, I. D. and Hutchison, R. (1989) Evidence from the Semarkona ordinary chondrite for 26Al heating of small planets. Nature, 337, 238–241.CrossRefGoogle Scholar
Hutcheon, I. D., Krot, A. N., Keil, K., Phinney, D. L. and Scott, E. R. D. (1998) 53Mn/53Cr dating of fayalite formation in the CV3 chondrite Mokoia: evidence for asteroidal alteration. Science, 282, 1865–1867.CrossRefGoogle ScholarPubMed
Inghram, M. G. (1954) Stable isotope dilution as an analytical tool. Annual Review of Nuclear Science, 4, 81–92.CrossRefGoogle Scholar
Jacobsen, S. B. and Wasserburg, G. J. (1980) Sm–Nd isotopic evolution of chondrites. Earth and Planetary Science Letters, 50, 139–155.CrossRefGoogle Scholar
Jacobsen, S. B. and Wasserburg, G. J. (1984) Sm–Nd isotopic evolution of chondrites and achondrites. 2. Earth and Planetary Science Letters, 67, 137–150.CrossRefGoogle Scholar
Jeffery, P. M. and Reynolds, J. H. (1961) Origin of excess Xe129 in stone meteorites. Journal of Geophysical Research, 66, 3582–3583.CrossRefGoogle Scholar
Kaiser, T. and Wasserburg, G. J. (1983) The isotopic composition and concentration of Ag in iron meteorites. Geochimica et Cosmochimica Acta, 47, 43–58.CrossRefGoogle Scholar
Kita, N., Huss, G. R., Tachibana, S.et al. (2005) Constraints on the origin of chondrules and CAIs from short-lived and long-lived radionuclides. In Chondrites and the Protoplanetary Disk, eds. Krot, A. N., Scott, E. R. D. and Reipurth, B.ASP Conference Series, Vol. 341, pp. 558–587.Google Scholar
Kelly, W. R. and Larimer, J. W. (1977) Chemical fractionations in meteorites, VIII. Iron meteorites and the cosmochemical history of the metal phase. Geochimica et Cosmochimica Acta, 41, 93–111.CrossRefGoogle Scholar
Kelly, W. R. and Wasserburg, G. J. (1978) Evidence for the existence of 107Pd in the early solar system. Geophysical Research Letters, 5, 1079–1082.CrossRefGoogle Scholar
Khoman, T. P. (1954) Geochronological significance of extinct natural radioactivity. Science, 119, 851–852.CrossRefGoogle Scholar
Lee, T. and Papanastassiou, D. A. (1974) Mg isotopic anomalies in the Allende meteorite and correlation with O and Sr effects. Geophysical Research Letters, 1, 225–228.CrossRefGoogle Scholar
Lee, T., Papanastassiou, D. A. and Wasserburg, G. J. (1977) Aluminum-26 in the early solar system: fossil or fuel? Astrophysical Journal Letters, 211, L107–L110.CrossRefGoogle Scholar
Lin, Y. T., Guan, Y. B., Leshin, L. A., Ouyang, Z. Y. and Wang, D. (2005) Short-lived chlorine-36 in a Ca- and Al-rich inclusion from the Ningqiang carbonaceous chondrite. Proceedings of the National Academy of Sciences of the United States of America, 102, 1306–1311.CrossRefGoogle Scholar
Lindner, M., Leich, D. A., Russ, G. P., Bazan, J. M. and Borg, R. J. (1989) Direct determination of the half-life of 187Re. Geochimica et Cosmochimica Acta, 53, 1597–1606.CrossRefGoogle Scholar
Luck, J.-M. and Allegre, C. J. (1983) 187Re–187O systematics in meteorites and cosmochemical consequences. Nature, 302, 130–132.CrossRefGoogle Scholar
Luck, J.-M., Birck, J. L. and Allegre, C. J. (1980) 187Re–187O systematics in meteorites: early chronology of the solar system and age of the galaxy. Nature, 283, 256–259.CrossRefGoogle Scholar
Ludwig, K. R. (2003) Isoplot-3.00, a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication No. 4, 70 pp.Google Scholar
Lugmair, G. W. and Galer, S. J. G. (1992) Age and isotopic relationships among the angrites Lewis Cliff 86010 and Angra dos Reis. Geochimica et Cosmochimica Acta, 56, 1673–1694.CrossRefGoogle Scholar
Lugmair, G. W. and Marti, K. (1977) Sm–Nd–Pu timepieces in the Angra dos Reis meteorite. Earth and Planetary Science Letters, 35, 273–284.CrossRefGoogle Scholar
Lugmair, G. W., Scheinin, N. B. and Marti, K. (1975a) Sm–Nd age and history of Apollo 17 basalt 75075: Evidence for early differentiation of the lunar exterior. Proceedings of the 6th Lunar Science Conference, Geochimica et Cosmochimica Acta Supplement, 6, 1419–1429.Google Scholar
Lugmair, G. W., Sheinin, N. B. and Marti, K. (1975b) Search for extinct 146Sm, 1: the isotopic abundance of 142Nd in the Juvinas meteorite. Earth and Planetary Science Letters, 27, 79–84.CrossRefGoogle Scholar
Lugmair, G. W. and Shukolyukov, A. (1998) Early solar system timescales according to the 53Mn–53Cr system. Geochimica et Cosmochimica Acta, 62, 2863–2886.CrossRefGoogle Scholar
MacPherson, G. J., Davis, A. M. and Zinner, E. (1995) The distribution of 26Al in the early solar system: a reappraisal. Meteoritics, 30, 365–386.CrossRefGoogle Scholar
MacPherson, G. J., Huss, G. R. and Davis, A. M. (2003) Extinct 10Be in type A calcium-aluminum-rich inclusions from CV chondrites. Geochimica et Cosmochimica Acta, 67, 3165–3179.CrossRefGoogle Scholar
Makashima, A. and Masuda, A. (1993) Primordial Ce isotopic composition of the solar system. Chemical Geology, 106, 197–205.CrossRefGoogle Scholar
Marhas, K. K., Goswami, J. N. and Davis, A. M. (2002) Short-lived nuclides in hibonite grains from Murchison: evidence for solar system evolution. Science, 298, 2182–2185.CrossRefGoogle ScholarPubMed
Mattauch, J. (1937) Das Paar Rb87–Sr87 and die Isobarenregel. Naturwissenschaften, 25, 189–191.CrossRefGoogle Scholar
McDougall, I. and Harrison, M. T. (1988) Geochronology and Thermochronology by the 40Ar/ 39Ar method. Oxford Monographs on Geology and Geophysics No. 9. Oxford: Oxford University Press, 212 pp.Google Scholar
McKeegan, K. D., Chaussidon, M. and Robert, F. (2000) Incorporation of short-lived 10Be in a calcium-aluminum-rich inclusion from the Allende meteorite. Science, 289, 1334–1337.CrossRefGoogle Scholar
Meisel, T., Walker, R. J. and Morgan, J. W. (1996) The osmium isotopic composition of the Earth's primitive upper mantle. Nature, 383, 517–520.CrossRefGoogle Scholar
Merrihue, C. M. and Turner, G. (1966) Potassium–argon dating by activation with fast neutrons. Journal of Geophysical Research, 71, 2852–2857.CrossRefGoogle Scholar
Min, K., Farley, K. A., Renne, P. R. and Marti, K. (2003) Single-grain (U–Th)/He ages from phosphates in Acapulco meteorite and implications for thermal history. Earth and Planetary Science Letters, 209, 323–336.CrossRefGoogle Scholar
Minster, J. F. and Allegre, C. J. (1981) 87Rb–87Sr dating of LL chondrites. Earth and Planetary Science Letters, 5, 361–376.Google Scholar
Misawa, K., Shih, C.-Y., Reese, Y., Bogard, D. D. and Nyquist, L. E. (2006) Rb–Sr, Sm–Nd and Ar–Ar isotopic systematics of Martian dunite Chassigny. Earth and Planetary Science Letters, 246, 90–101.CrossRefGoogle Scholar
Mostefaoui, S., Lugmair, G. W. and Hoppe, P. (2005) 60Fe: a heat source for planetary differentiation from a nearby supernova explosion. Astrophysical Journal, 625, 271–277.CrossRefGoogle Scholar
Murty, S. V. S., Goswami, J. N. and Shukolyukov, Y. A. (1997) Excess Ar-36 in the Efremovka meteorite: a strong hint for the presence of Cl-36 in the early solar system. Astrophysical Journal Letters, 475, L65–L68.CrossRefGoogle Scholar
Nakai, S., Masuda, A., and Lehmann, B. (1988) La–Ba dating of bastnaesite. American Mineralogist, 73, 1111–1113.Google Scholar
Nichols, R. H., Hohenberg, C. M., Kehm, K., Kim, Y. and Marti, K. (1994) I–Xe studies of the Acapulco meteorite: Absolute ages of individual phosphate grains and the Bjurböle standard. Geochimica et Cosmochimica Acta, 58, 2523–2561.CrossRefGoogle Scholar
Nier, A. O. (1935) Evidence for the existence of an isotope of potassium of mass 40. Physical Review, 48, 283–284.CrossRefGoogle Scholar
Nier, A. O. (1939a) The isotopic composition of uranium and the half-lives of uranium isotopes. Physical Review, 55, 150–153.CrossRefGoogle Scholar
Nier, A. O. (1939b) The isotopic constitution of radiogenic leads and the measurement of geological time. II. Physical Review, 55, 153–163.CrossRefGoogle Scholar
Nier, A. O. (1950) A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon, and potassium. Physical Review, 77, 793–798.CrossRefGoogle Scholar
Nyquist, L. E., Bogard, D. D., Shih, C.-Y.et al. (2001b) Ages and geologic histories of Martian meteorites. Space Science Reviews, 96, 105–164.CrossRefGoogle Scholar
Nyquist, L. E., Kleine, T., Shih, C.-Y. and Reese, Y. D. (2009) The distribution of short-lived radioisotopes in the early solar system and the chronology of asteroid accretion, differentiation, and secondary mineralization. Geochimica et Cosmochimica Acta, 73, 5115–5136.CrossRefGoogle Scholar
Nyquist, L., Lindstrom, D., Mittlefehldt, D.et al. (2001c) Manganese–chromium formation intervals for chondrules from the Bushunpur and Chainpur meteorites. Meteoritics and Planetary Science, 36, 911–938.CrossRefGoogle Scholar
Papanastassiou, D. A. and Wasserburg, G. J. (1969) Initial strontium isotopic abundances and the resolution of small time differences in the formation of planetary objects. Earth and Planetary Science Letters, 5, 361–376.CrossRefGoogle Scholar
Papanastassiou, D. A. and Wasserburg, G. J. (1971) Rb–Sr ages of igneous rocks from the Apollo 14 mission and the age of the Fra Mauro Formation. Earth and Planetary Science Letters, 12, 36–48.CrossRefGoogle Scholar
Papanastassiou, D. A., Wasserburg, G. J., and Burnett, D. S. (1970) Rb–Sr ages of lunar rocks from the Sea of Tranquility. Earth and Planetary Science Letters, 8, 1–19.CrossRefGoogle Scholar
Patchett, P. J. and Tatsumoto, M. (1980) Lu–Hf total-rock isochron for eucrite meteorites. Nature, 288, 571–574.CrossRefGoogle Scholar
Patterson, C. C. (1955) The Pb207/Pb206 ages of some stone meteorites. Geochimica et Cosmochimica Acta, 7, 151–153.CrossRefGoogle Scholar
Patterson, C. C. (1956) Age of meteorites and the Earth. Geochimica et Cosmochimica Acta, 10, 230–237.CrossRefGoogle Scholar
Prinzhofer, A., Papanastassiou, D. A. and Wasserburg, G. J. (1992) Samarium–neodymium evolution of meteorites. Geochimica et Cosmochimica Acta, 56, 797–815.CrossRefGoogle Scholar
Reynolds, J. H. (1960a) Determination of the age of the elements. Physical Reviews Letters, 4, 8–10.CrossRefGoogle Scholar
Reynolds, J. H. (1960b) Isotopic composition of xenon from enstatite chondrites. Zeitschrift für Naturforschung, 15a, 1112–1114.Google Scholar
Sahijpal, S., Goswami, J. N., Davis, A. M., Grossman, L. and Lewis, R. S. (1998) A stellar origin for the short-lived nuclides in the early solar system. Nature, 391, 559–561.Google Scholar
Schönbächler, M., Carlson, R. W., Horan, M. F., Mock, T. D. and Hauri, E. H. (2008) Silver isotope variations in chondrites: Volatile depletion and the initial 107Pd abundance of the solar system. Geochimica et Cosmochimica Acta, 72, 5330–5341.CrossRefGoogle Scholar
Schumacher, E. (1956) Alterbestimmung von Steinmeteoriten mit der Rubidium–Strontium-Methode. Zeitschrift für Naturforschung, 11a, 206.Google Scholar
Shen, J. J., Papanastassiou, D. A. and Wasserburg, G. J. (1996) Precise Re–Os determinations and systematics of iron meteorites. Geochimica et Cosmochimica Acta, 60, 2887–2900.CrossRefGoogle Scholar
Shih, C.-Y., Nyquist, L. E. and Wiesmann, H. (1994) K–Ca and Rb–Sr dating of two lunar granites: relative chronometer resetting. Geochimica et Cosmochimica Acta, 58, 3101–3116.CrossRefGoogle Scholar
Shimizu, N., Semet, M. P. and Allegre, C. J. (1978) Geochemical applications of quantitative ion microprobe analysis. Geochimica et Cosmochimica Acta, 42, 1321–1334.CrossRefGoogle Scholar
Shirey, S. B and Walker, R. J. (1995) Carius tube digestions for low-blank rhenium–osmium analysis. Analytical Chemistry, 67, 2136–2141.CrossRefGoogle Scholar
Shirey, S. B. and Walker, R. J. (1998) The Re–Os isotope system in cosmochemistry and high-temperature geochemistry. Annual Reviews of Earth and Planetary Science, 26, 423–500.CrossRefGoogle Scholar
Shukolyukov, A. and Begemann, F. (1996) Pu–Xe dating of eucrites. Geochimica et Cosmochimica Acta, 60, 2454–2471.CrossRefGoogle Scholar
Shukolyukov, A. and Lugmair, G. W. (1993a) Live iron-60 in the early solar system. Science, 259, 1138–1142.CrossRefGoogle ScholarPubMed
Shukolyukov, A. and Lugmair, G. W. (1993b) 60Fe in eucrites. Earth and Planetary Science Letters, 119, 159–166.CrossRefGoogle Scholar
Smoliar, M. I., Walker, R. J. and Morgan, J. W. (1996) Re–Os ages of Groups IIA, IIIA, IVA, and IVB iron meteorites. Science, 271, 1099–1102.CrossRefGoogle Scholar
Smythe, W. R. and Hemmendinger, A. (1937) The radioactive isotope of potassium. Physical Review, 51, 178–182.CrossRefGoogle Scholar
Srinivasan, G., Sahijpal, S., Ulyanov, A. A. and Goswami, J. N. (1996) Ion microprobe studies of Efremovka CAIs: II. Potassium isotope compositions and 41Ca in the early solar system. Geochimica et Cosmochimica Acta, 60, 1823–1835.CrossRefGoogle Scholar
Srinivasan, G., Ulyanov, A. A. and Goswami, J. N. (1994) 41Ca in the early solar system. Astrophysical Journal, 431, L67–L70.CrossRefGoogle Scholar
Steiger, R. H. and Jäger, E. (1977) Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36, 359–362.CrossRefGoogle Scholar
Stewart, B. W., Papanastassiou, D. A. and Wasserburg, G. J. (1994) Sm–Nd chronology and petrogenesis of mesosiderites. Geochimica et Cosmochimica Acta, 58, 3487–3509.CrossRefGoogle Scholar
Stirling, C. H., Halliday, A. M. and Porcelli, D. (2005) In search of live 247Cm in the early solar system. Geochimica et Cosmochimica Acta, 69, 1059–1071.CrossRefGoogle Scholar
Tachibana, S. and Huss, G. R. (2003) The initial abundance of 60Fe in the solar system. Astrophysical Journal Letters, 588, L41–L44.CrossRefGoogle Scholar
Tachibana, S., Huss, G. R., Kita, N. T., Shimoda, G. and Morishita, Y. (2006) 60Fe in chondrites: Debris from a nearby supernova in the early solar system? Astrophysical Journal Letters, 639, L87–L90.CrossRefGoogle Scholar
Tanaka, T. and Masuda, A. (1982) The La–Ce geochronometer. A new dating method. Nature, 300, 515–517.CrossRefGoogle Scholar
Tera, F. and Carlson, R. W. (1999) Assessment of the Pb–Pb and U–Pb chronometry of the early solar system. Geochimica et Cosmochimica Acta, 63, 1877–1889.CrossRefGoogle Scholar
Tera, F. and Wasserburg, G. J. (1972) U–Th–Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth and Planetary Science Letters, 14, 281–304.CrossRefGoogle Scholar
Tera, F. and Wasserburg, G. J. (1974) U–Th–Pb systematics on lunar rocks and inferences about lunar evolution and the age of the Moon. Proceedings of the 5th Lunar Science Conference, Geochimica et Cosmochimica Acta Supplement, 5, 1571–1599.Google Scholar
Thrane, K., Bizzarro, M. and Baker, J. A. (2006) Extremely brief formation interval for refractory inclusions and uniform distribution of Al-26 in the early solar system. Astrophysical Journal, 646, L159–162.CrossRefGoogle Scholar
Turner, G., Huneke, J. C., Podosek, F. A. and Wasserburg, G. J. (1971) 40Ar–39Ar ages and cosmic-ray exposure ages of Apollo 14 samples. Earth and Planetary Science Letters, 12, 19–35.CrossRefGoogle Scholar
Urey, H. C. (1955) The cosmic abundances of potassium, uranium and thorium and the heat balances of the Earth, the Moon and Mars. Proceedings of the National Academy of Sciences of the United States of America, 41, 127–144.CrossRefGoogle ScholarPubMed
Völkening, J., Köppe, M., and Heumann, K. G. (1991) Tungsten isotope ratio determinations by negative thermal ionization mass spectrometry. International Journal of Mass Spectrometry and Ion Processes, 107, 361–368.CrossRefGoogle Scholar
Wadhwa, M., Zinner, E. and Crozaz, G. (1997) Mn–Cr systematics in sulfides of unequilibrated enstatite chondrites. Meteoritics and Planetary Science, 32, 281–292.CrossRefGoogle Scholar
Walker, R. J., Morgan, J. W., Beary, E. S.et al. (1997) Application of the 190Pt–186Os isotope system to geochemistry and cosmochemistry. Geochimica et Cosmochimica Acta, 61, 4799–4807.CrossRefGoogle Scholar
Wasserburg, G. J. and Hayden, R. J. (1955) Age of meteorites by the A40–K40 method. Physical Review, 97, 86–87.CrossRefGoogle Scholar
Wetherill, G. W. (1956) Discordant uranium–lead ages. Transactions: American Geophysical Union, 37, 320–326.Google Scholar
Wetherill, G. W., Aldrich, L. T. and Davis, G. L. (1955) A40/K40 ratios of feldspars and micas from the same rock. Geochimica et Cosmochimica Acta, 8, 171–172.CrossRefGoogle Scholar
Williamson, J. H. (1968) Least-squares fitting of a straight line. Canadian Journal of Physics, 46, 1845–1847.CrossRefGoogle Scholar
York, D. (1966) Least-squares fitting of a straight line. Canadian Journal of Physics, 44, 1079–1086.CrossRefGoogle Scholar
York, D. (1969) Least squares fitting of a straight line with correlated errors. Earth and Planetary Science Letters, 5, 320–324.CrossRefGoogle Scholar

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×