Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-5dd2w Total loading time: 0.455 Render date: 2022-05-25T03:12:36.874Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

8 - Synchronization

from Part III - Challenges Connected to CoMP

Published online by Cambridge University Press:  05 August 2012

D. Richard Brown III
Affiliation:
Institute, MA, USA
Andrew G. Klein
Affiliation:
Institute, MA, USA
Patrick Marsch
Affiliation:
Nokia Siemens Networks, Wroclaw, Poland
Gerhard P. Fettweis
Affiliation:
Technische Universität, Dresden
Get access

Summary

This chapter deals with another major challenge connected to CoMP, namely the synchronization of cooperating and cooperatively served devices in time and frequency. On one hand, there are different local oscillators in each base station and mobile terminal that lead to deviations in the carrier frequency according to its nominal value. On the other hand, there are variations in the symbol timing between each transmitter and receiver station. Both effects need to be compensated by synchronization techniques.

In cellular networks, we can distinguish between a network synchronization among all involved base stations and the alignment of the user equipments to that time and frequency reference. The basic definitions of the synchronization terms as well as procedures for the reference network synchronization are described in Section 8.1. The impact of symbol timing mismatches on CoMP is then treated in Section 8.2, before Section 8.3 concludes this chapter with the analysis of the impact of residual carrier frequency offsets on CoMP performance.

Synchronization Concepts

Synchronization is the process of establishing a common notion of time among two or more entities. In the context of wired and wireless communication networks, synchronization enables coordination among the nodes in the network and can facilitate applications such as distributed sensing. Precise synchronization can also facilitate scheduling of communication resources as well as interference avoidance in multi-access networks.

Type
Chapter
Information
Coordinated Multi-Point in Mobile Communications
From Theory to Practice
, pp. 161 - 192
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
2
Cited by

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×