Skip to main content Accessibility help
Hostname: page-component-cd4964975-ppllx Total loading time: 0 Render date: 2023-03-29T20:55:19.763Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Part III - Species Comparisons

Published online by Cambridge University Press:  08 February 2021

Walter Wilczynski
Georgia State University
Sarah F. Brosnan
Georgia State University
Get access


Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Cooperation and Conflict
The Interaction of Opposites in Shaping Social Behavior
, pp. 165 - 233
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Alberts, S. C. (2019) Social influences on survival and reproduction: Insights from a long-term study of wild baboons. Journal of Animal Ecology, 88: 4766.CrossRefGoogle ScholarPubMed
Angulo, E., Luque, G. M., Gregory, S. D., Wenzel, J. W., Bessa-Gomes, C., Berec, L., and Courchamp, F. (2018) Allee effects in social species. Journal of Animal Ecology, 87: 4758.CrossRefGoogle Scholar
Angulo, E., Rasmussen, G. S. A., MacDonald, D. W., and Courchamp, F. (2009) Do social groups prevent Allee effect related extinctions? The case of wild dogs. Frontiers in Zoology, 10: 11.CrossRefGoogle Scholar
Baglione, V., Canestrari, D., Marcos, J. M. 2006. Experimentally increased food resources in the natal territory promote offspring philopatry and helping in cooperatively breeding carrion crows. Proceedings of the Royal Society London B Biological Science, 273: 15291535.CrossRefGoogle ScholarPubMed
Batchelor, T. P., and Briffa, M. (2011) Fight tactics in wood ants: Individuals in smaller groups fight harder but die faster. Proceedings of the Royal Society London B Biological Science, 278: 32423250.Google ScholarPubMed
Beauchamp, G. (2009) How does food density influence vigilance in birds and mammals? Animal Behaviour, 78(2): 223231.CrossRefGoogle Scholar
Beauchamp, G. (2014) Do avian cooperative breeders live longer? Proceedings of the Royal Society London B Biological Science, 281: 20140844.CrossRefGoogle ScholarPubMed
Canestrari, D., Marcos, J. M., and Baglione, V. (2008) Reproductive success increases with group size in cooperative carrion crows Corvus corone corone. Animal Behaviour, 75: 403416.CrossRefGoogle Scholar
Christensen, C., and Radford, A. N. (2018) Dear enemies or nasty neighbours? Causes and consequences of variation in the response of group-living species to territorial intrusions. Behavioral Ecology, 29: 10041013.CrossRefGoogle Scholar
Choi, J. K., and Bowles, S. (2007) The coevolution of parochial altruism and war. Science, 318: 636640.CrossRefGoogle ScholarPubMed
Clutton-Brock, T. H. (2016) Mammal Societies. West Sussex: John Wiley & Sons, Inc.Google Scholar
Clutton-Brock, T. H., Brotherton, P. N. M., Russell, A. F. et al. (2001) Cooperation, control and concession in meerkat groups. Science, 291: 478481.CrossRefGoogle ScholarPubMed
Clutton-Brock, T. H., Hodge, S. J., Flower, T. P., Spong, G. F., and Young, A. J. (2010) Adaptive suppression of subordinate reproduction in cooperative mammals. American Naturalist, 176: 664673.CrossRefGoogle Scholar
Cockburn, A. (2006) Prevalence of different modes of parental care in birds. Proceedings of the Royal Society London B Biological Science, 273: 13751383.CrossRefGoogle ScholarPubMed
Cooney, R., and Bennett, N. C. (2000) Inbreeding avoidance and reproductive skew in a cooperative mammal. Proceedings of the Royal Society London B Biological Science, 267: 801806.CrossRefGoogle Scholar
Courchamp, F., Rasmussen, G. S. A., and MacDonald, D. W. (2002) Small pack size imposes a trade-off between hunting and pup-guarding in the painted hunting dog Lycaon pictus. Behavioral Ecology, 13: 2027.CrossRefGoogle Scholar
Covas, R., and Doutrelant, C. (2018) The sexual and social benefits of cooperation in animals. Trends in Ecology and Evolution, 34: 112120.CrossRefGoogle ScholarPubMed
Crofoot, M. C. (2013) The cost of defeat: Capuchin groups travel further, faster and later after losing conflicts with neighbors. American Journal of Physical Anthropology, 152(1): 7985, DOI: ScholarPubMed
Davies, N. B. (2000) Cuckoos, Cowbirds and Other Cheats. London: T and AD Poyser Ltd.Google Scholar
Dickinson, J. L., Ferree, E. D., Stern, C. A., Swift, R., and Zuckerberg, B. (2014) Delayed dispersal in western bluebirds: Teasing apart the importance of resources and parents. Behavioral Ecology, 25: 843851.CrossRefGoogle Scholar
Drummond, H. (2006) Dominance in vertebrate broods and litters. Quarterly Review of Biology, 81: 332.CrossRefGoogle ScholarPubMed
Ekman, J., Eggers, S., and Griesser, M. (2002) Fighting to stay: The role of sibling rivalry for delayed dispersal. Animal Behaviour, 64: 453459.CrossRefGoogle Scholar
Ekman, J., and Griesser, M. (2002) Why offspring delay dispersal: Experimental evidence for a role of parental tolerance. Proceedings of the Royal Society London B Biological Science, 269: 17091713.CrossRefGoogle ScholarPubMed
Elgar, M. A. (1989) Predator vigilance and group size in mammals and birds – A critical review of the evidence. Biology Review, 64: 1333.CrossRefGoogle Scholar
Emlen, S. T. (1988) The role of kinship in helping decisions among white-fronted bee-eaters. Behavioral Ecology and Sociobiology, 23: 305315.CrossRefGoogle Scholar
Esteban, J., and Ray, D. (2001) Collective action and the group size paradox. American Political Science Review, 95: 663672.CrossRefGoogle Scholar
Gavrilets, S. (2015) The collective action problem in heterogeneous groups. Philosophical Transactions of the Royal Society of London B, 370: 20150016.CrossRefGoogle ScholarPubMed
Golabek, K. A., Ridley, A. R., and Radford, A. N. (2012) Food availability affects strength of seasonal territorial behaviour in a cooperatively breeding bird. Animal Behaviour, 83: 613619.CrossRefGoogle Scholar
Goldstein, J. M., Woolfenden, G. E., and Hailman, J. P. (1998) A same-sex stepparent shortens a prebreeder’s duration on the natal territory: Tests of two hypotheses in Florida scrub-jays. Behavioral Ecology and Sociobiology, 44: 1522.CrossRefGoogle Scholar
Griesser, M., Nystrand, M., and Ekman, J. (2006) Reduced mortality selects for family cohesion in a social species. Proceedings of the Royal Society London B Biological Science, 273: 18811886.Google Scholar
Groenewoud, F., Kingma, S. A., Hammers, M., Dugdale, H. L., Burke, T., Richardson, D. S., and Komdeur, J. (2018) Subordinate females in the cooperatively breeding Seychelles warbler obtain direct benefits by joining unrelated groups. Journal of Animal Ecology, 87: 12511263.Google ScholarPubMed
Hamilton, W. D. (1964) The genetical evolution of social behavior I. Journal of Theoretical Biology, 7: 116.Google Scholar
Hillegas, M. A., Waterman, J. M., and Roth, J. D. (2008) The influence of sex and sociality on parasite loads in an African ground squirrel. Behavioral Ecology, 19: 10061011.CrossRefGoogle Scholar
Hollén, L. I., Bell, M. B.V., and Radford, A. N. (2008) Cooperative sentinel calling? Foragers gain increased biomass intake. Current Biology, 18: 576579, DOI: ScholarPubMed
Humphries, D. (2013) The mechanisms and function of social recognition in the cooperatively breeding southern pied babler, Turdoides bicolor. PhD thesis, University of Western Australia.Google Scholar
Keynan, O., and Ridley, A. R. (2016) Component, group and demographic Allee effects in a cooperatively breeding bird species, the Arabian babbler (Turdoides squamiceps). Oecologia, 182: 153161.CrossRefGoogle Scholar
Koenig, W. D., and Dickinson, J. L. (2016) Cooperative Breeding in Vertebrates: Studies of Ecology, Evolution and Behaviour. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Kokko, H., and Ekman, J. (2002) Delayed dispersal as a route of breeding: Territorial inheritance, safe havens, and ecological constraints. American Naturalist, 160: 468484.CrossRefGoogle ScholarPubMed
Kokko, H., and Johnstone, R. (1999) Social queuing in animal societies: A dynamic model of reproductive skew. Proceedings of the Royal Society London B Biological Science, 266: 571578.CrossRefGoogle Scholar
Komdeur, J. (1992) Importance of habitat saturation and territory quality for the evolution of cooperative breeding in the Seychelles Warbler. Nature, 358: 493495.CrossRefGoogle Scholar
Lundy, K. J., Parker, P. G., and Zahavi, A. (1998) Reproduction by subordinates in cooperatively breeding Arabian babblers is uncommon but predictable. Behavioral Ecology and Sociobiology, 43: 173180.CrossRefGoogle Scholar
Macedo, R. H., and DuVal, E. H. (2018) Friend or foe? The dynamics of social life. Animal Behaviour, 143: 139143.CrossRefGoogle Scholar
Majolo, B., de Bortoli, V. A., and Lehmann, J. (2016) The effect of intergroup competition on intragroup affiliation in primates. Animal Behaviour, 114: 1319.CrossRefGoogle Scholar
Mirville, M. O. (2018) The causes and consequences of intergroup interactions in mountain gorillas (Gorillia beringei beringei). PhD thesis, University of Western Australia.Google Scholar
Mirville, M. O., Ridley, A. R., Samedi, J. P. M., Vecellio, V., Ndagijimana, F., Stoinski, T. S., and Grueter, C. C. (2018) Factors influencing individual participation during intergroup interactions in mountain gorillas. Animal Behaviour, 144: 7586.CrossRefGoogle Scholar
Moehlman, P. D. (1979) Jackal helpers and pup survival. Nature, 277: 382383.CrossRefGoogle Scholar
Morales, J., and Velando, A. (2013) Signals in family groups. Animal Behaviour, 86: 1116.CrossRefGoogle Scholar
Nelson-Flower, M. J., Hockey, P. A. R., O’Ryan, C., Raihani, N. J., du Plessis, M. A., and Ridley, A. R. (2011) Monogamous dominant pairs monopolize reproduction in the cooperatively breeding pied babbler. Behavioral Ecology, 22: 559565.CrossRefGoogle Scholar
Nelson-Flower, M. J., Hockey, P. A. R., O’Ryan, C., and Ridley, A. R. (2012) Inbreeding avoidance mechanisms: Dispersal dynamics in cooperatively breeding southern pied babblers. Journal of Animal Ecology, 81: 876883.CrossRefGoogle ScholarPubMed
Nelson-Flower, M. J., Hockey, P. A. R., O’Ryan, C. et al. (2013) Costly reproductive competition between females in a monogamous cooperatively breeding bird. Proceedings of the Royal Society London B Biological Science, 280: 20180728.Google Scholar
Nelson-Flower, M. J., and Ridley, A. R. (2015) Male–male competition is not costly to dominant males in a cooperatively breeding bird. Behavioral Ecology and Sociobiology, 69: 19972004.CrossRefGoogle Scholar
Nelson-Flower, M. J., and Ridley, A. R. (2016) Nepotism and subordinate tenure in a cooperative breeder. Biology Letters, 12: 20160365.CrossRefGoogle Scholar
Nelson‐Flower, M. J., Flower, T. P., and Ridley, A. R. (2018b) Sex differences in the drivers of reproductive skew in a cooperative breeder. Molecular Ecology 27: 24352446.CrossRefGoogle Scholar
Nelson-Flower, M. J., Wiley, E. M., Flower, T. P., and Ridley, A. R. (2018a) Individual dispersal delays in a cooperative breeder: Ecological constraints, the benefits of philopatry and the social queue for dominance. Journal of Animal Ecology, 87: 12271238.CrossRefGoogle Scholar
Nunn, C. L. (2000) Collective benefits, free-riders, and male extra-group conflict. In Kappeler, P. M., ed., Primate Males: Causes and Consequences of Variation in Group Composition. Cambridge: Cambridge University Press, pp. 192204.Google Scholar
Olson, M. (1965) The Logic of Collective Action. Cambridge, MA: Harvard University Press.Google Scholar
Packer, C., and Pusey, A. (1983) Adaptations of female lions to infanticide by incoming males. American Naturalist, 121: 716728.CrossRefGoogle Scholar
Peña, J., and Nöldeke, G. (2018) Group size effects in social evolution. Journal of Theoretical Biology, 457: 211220.CrossRefGoogle ScholarPubMed
Radford, A. N. (2008) Duration and outcome of intergroup conflict influences intragroup affiliative behaviour. Proceedings of the Royal Society London B Biological Science, 275: 27872791.CrossRefGoogle ScholarPubMed
Raihani, N. J., Nelson-Flower, M. J., Golabek, K. A., and Ridley, A. R. (2010) Routes to breeding in cooperatively breeding pied babblers Turdoides bicolor. Journal of Avian Biology, 41: 681686.CrossRefGoogle Scholar
Raihani, N. J. and Ridley, A. R. (2007) Adult vocalizations during provisioning: Offspring response and postfledging benefits in wild pied babblers. Animal Behaviour, 74(5): 13031309, DOI: Scholar
Reeve, H. K., Emlen, S. T., and Keller, L. (1998) Reproductive sharing in animal societies: Reproductive incentives or incomplete control by dominant breeders. Behavioral Ecology, 9: 267278.CrossRefGoogle Scholar
Ridley, A. R. (2012) Invading together: The benefits of coalition dispersal in a cooperative bird. Behavioral Ecology and Sociobiology, 66: 7783.CrossRefGoogle Scholar
Ridley, A. R. (2016) Southern pied babblers: The dynamics of conflict and cooperation in a group-living society. In Koenig, W. D., and Dickinson, J. L., eds., Cooperative Breeding in Vertebrates: Studies in Ecology, Evolution and Behaviour. Cambridge: Cambridge University Press, pp. 115132.CrossRefGoogle Scholar
Ridley, A. R., Nelson-Flower, M. J., and Thompson, A. M. (2013) Is sentinel behavior safe? An experimental investigation. Animal Behaviour, 85: 137142.CrossRefGoogle Scholar
Ridley, A. R., and Raihani, N. J. (2007a) Facultative response to a kleptoparasite by the cooperatively breeding pied babbler. Behavioral Ecology, 18: 324330.CrossRefGoogle Scholar
Ridley, A. R., and Raihani, N. J. (2007b) Variable postfledging care in a cooperative bird: Causes and consequences. Behavioral Ecology, 18: 9941000.CrossRefGoogle Scholar
Ridley, A. R., Raihani, N. J., and Nelson-Flower, M. J. (2008) The cost of being alone: The fate of floaters in a population of cooperatively breeding pied babblers Turdoides bicolor. Journal of Avian Biology, 39: 389392.Google Scholar
Ridley, A. R., and van den Huevel, I. M. (2012) Is there a difference in reproductive performance between cooperative and non-cooperative species? A southern African comparison. Behaviour, 149: 821848.CrossRefGoogle Scholar
Ridley, A. R., and Thompson, A. M. (2012) Heterospecific egg destruction by wattled starlings and the impact on pied babbler reproductive success. Ostrich, 82: 201205.CrossRefGoogle Scholar
Riehl, C. (2013) Evolutionary routes to non-kin cooperative breeding in birds. Proceedings of the Royal Society London B Biological Science, 280: 20131445.Google ScholarPubMed
Rusch, H. (2014) The evolutionary interplay of intergroup conflict and altruism in humans: A review of parochial altruism theory and prospects for its extension. Proceedings of the Royal Society London B Biological Science, 281: 20141539.CrossRefGoogle ScholarPubMed
van Schaik, C. P., and Janson, C. H. (2000) Infanticide by Males and Its Implications. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Shen, S. F., Akçay, E., and Rubenstein, D. R. (2014) Group size and social conflict in complex societies. American Naturalist, 183: 301310.CrossRefGoogle ScholarPubMed
Shen, S. F., Emlen, S. T., Koenig, W. D., and Rubenstein, D. R. (2017) The ecology of cooperative breeding behaviour. Ecology Letters, 20: 708720.CrossRefGoogle ScholarPubMed
Skutch, A. F. (1935) Helpers at the nest. Auk, 52: 257273.CrossRefGoogle Scholar
Strong, M. J., Sherman, B. L., and Riehl, C. (2017) Home field advantage, not group size, predicts outcome of intergroup conflicts in a social bird. Animal Behaviour, 143: 205213.CrossRefGoogle Scholar
Thompson, A. M., Raihani, N. J., Hockey, P. A. R., Britton, A., Finch, F. M., and Ridley, A. R. (2013) The influence of fledgling location on adult provisioning: A test of the blackmail hypothesis. Proceedings of the Royal Society London B Biological Science, 280: 20130558.CrossRefGoogle ScholarPubMed
Thompson, F. J., Marshall, H. H., Vitikainen, E. I. K., and Cant, M. A. (2017) Causes and consequences of intergroup conflict in cooperative banded mongooses. Animal Behaviour, 126: 3140.CrossRefGoogle Scholar
Vehrencamp, S. L. (1983) A model for the evolution of despotic versus egalitarian societies. Animal Behaviour, 31: 667682.CrossRefGoogle Scholar
Wiley, E. M., and Ridley, A. R. (2018) The benefits of pair bond tenure in the cooperatively breeding pied babbler (Turdoides bicolor). Ecology and Evolution, 8: 71787185.CrossRefGoogle Scholar
Willems, E. P., Hellriegel, B., and van Schaik, C. P. (2013) The collective action problem in primate territory economics. Proceedings of the Royal Society London B Biological Science, 280: 20130081.CrossRefGoogle ScholarPubMed
Wittig, R. M., Crockford, C., Lehmann, J., Whitten, P. L., Seyfarth, R. M., and Cheney, D. L. (2008) Focused grooming networks and stress alleviation in wild female baboons. Hormones and Behavior, 54: 170177.CrossRefGoogle ScholarPubMed


Aanen, D. K., Eggleton, P., Rouland-Lefèvre, C., Guldberg-Frøslev, T., Rosendahl, S., and Boomsma, J. J. (2002) The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proceedings of the National Academy of Sciences USA, 99(23): 1488714892.CrossRefGoogle ScholarPubMed
Axen, A. H., Leimar, O., and Hoffman, V. (1996) Signalling in a mutualistic interaction. Animal Behaviour, 52: 321333.CrossRefGoogle Scholar
Barbu, L., Guinand, C., Alvarez, N., Bergmüller, R., and Bshary, R. (2011) Cleaning wrasse species vary with respect to dependency on the mutualism and behavioural adaptations in interactions. Animal Behaviour, 82: 10671074.CrossRefGoogle Scholar
Binning, S. A., Rey, O., Wismer, S., Triki, Z., Glauser, G., Soares, M. C., and Bshary, R. (2017) Reputation management promotes strategic adjustment of service quality in cleaner wrasse. Scientific Reports, 7(1): 8425.CrossRefGoogle ScholarPubMed
Boesch, C. (1994) Cooperative hunting in wild chimpanzees. Animal Behaviour, 48: 653667.CrossRefGoogle Scholar
Borgeaud, C., and Bshary, R. (2015) Wild vervet monkeys trade tolerance and specific coalitionary support for grooming in experimentally induced conflicts. Current Biology, 25: 30113016.CrossRefGoogle ScholarPubMed
Bossan, B., Koehncke, A., and Hammerstein, P. (2011) A new model and method for understanding Wolbachia-induced cytoplasmic incompatibility. PLoS ONE, 6(5): e19757.CrossRefGoogle ScholarPubMed
Brandenburg, A., Kuhlemeier, C., and Bshary, R. (2012) Hawkmoth pollinators decrease seed set of a low nectar Petunia axillaris line through reduced probing time. Current Biology, 22:16351639.CrossRefGoogle ScholarPubMed
Brock, D. A., Douglas, T. E., Queller, D. C., and Strassmann, J. E. (2011) Primitive agriculture in a social amoeba. Nature, 469(7330): 393396.CrossRefGoogle Scholar
Bronstein, J. L. (1994) Conditional outcomes in mutualistic interactions. Trends in Ecology and Evolution, 9(6): 214217.CrossRefGoogle ScholarPubMed
Bronstein, J. L. (2001) Mutualisms. In Fox, C., Fairbairn, D., and Roff, D., eds., Evolutionary Ecology: Perspectives and Synthesis. Oxford University Press, pp. 315330.Google Scholar
Bronstein, J. L., ed. (2015) Mutualism. Oxford: Oxford University Press.CrossRefGoogle Scholar
Brosnan, S. F., Salwiczek, L., and Bshary, R. (2010) The interplay of cognition and cooperation. Philosophical Transactions of the Royal Society B: Biological Sciences, 365: 26992710.CrossRefGoogle ScholarPubMed
Brown, C. (2015) Fish intelligence, sentience and ethics. Animal Cognition, 18: 117.CrossRefGoogle ScholarPubMed
Bshary, R. (2001) The cleaner fish market. In Noë, R., Van Hooff, J. A. R. A. M., and Hammerstein, P., eds., Economics in Nature: Social Dilemmas, Mate Choice and Biological Markets. Cambridge: Cambridge University Press, pp. 146172.CrossRefGoogle Scholar
Bshary, R. (2002) Biting cleaner fish use altruism to deceive image-scoring client reef fish. Proceedings of the Royal Society London B Biological Sciences, 269: 20872093.CrossRefGoogle ScholarPubMed
Bshary, R., and Bergmüller, R. (2008) Distinguishing four fundamental approaches to the evolution of helping. Journal of Evolutionary Biology, 21: 405420.CrossRefGoogle ScholarPubMed
Bshary, R., and Bronstein, J. L. (2004) Game structures in mutualisms: What can the evidence tell us about the kind of models we need? Advances in the Study of Behaviour, 34: 59101.CrossRefGoogle Scholar
Bshary, R., and Bronstein, J. S. (2011) A general scheme to predict partner control mechanisms in pairwise cooperative interactions between unrelated individuals. Ethology, 117: 271283.CrossRefGoogle Scholar
Bshary, R., and D’Souza, A. (2005) Indirect reciprocity in interactions between cleaner fish and client reef fish. In McGregor, P., ed., Communication Networks. Cambridge: Cambridge University Press, pp. 521539.Google Scholar
Bshary, R., Gingins, S., and Vail, A. L. (2014) Social cognition in fishes. Trends in Cognitive Sciences, 8(9): 465471.CrossRefGoogle Scholar
Bshary, R., and Grutter, A. S. (2002a) Asymmetric cheating opportunities and partner control in a cleaner fish mutualism. Animal Behaviour, 63: 547555.CrossRefGoogle Scholar
Bshary, R., and Grutter, A. S. (2002b) Experimental evidence that partner choice is a driving force in the payoff distribution among cooperators or mutualists: The cleaner fish case. Ecology Letters, 5(1): 130136.CrossRefGoogle Scholar
Bshary, R., and Grutter, A. S. (2005) Punishment and partner switching cause cooperative behaviour in a cleaning mutualism. Biology Letters, 1(4): 396399.CrossRefGoogle Scholar
Bshary, R., and Grutter, A. S. (2006) Image scoring and cooperation in a cleaner fish mutualism. Nature, 441: 975978.CrossRefGoogle Scholar
Bshary, R., Grutter, A. S., Willener, A. S. T., and Leimar, O. (2008) Pairs of cooperating cleaner fish provide better service quality than singletons. Nature, 455(7215): 964966.CrossRefGoogle ScholarPubMed
Bshary, R., and Noë, R. (1997) Red colobus and diana monkeys provide mutual protection against predators. Animal Behaviour, 54: 14611474.CrossRefGoogle ScholarPubMed
Bshary, R., and Schäffer, D. (2002) Choosy reef fish select cleaner fish that provide high-quality service. Animal Behaviour, 63: 557564.CrossRefGoogle Scholar
Bshary, R., Wickler, W., and Fricke, H. (2002) Fish cognition: A primate’s eye view. Animal Cognition, 5(1): 113.CrossRefGoogle ScholarPubMed
Bshary, R., and Würth, M. (2001) Cleaner fish Labroides dimidiatus manipulate client reef fish by providing tactile stimulation. Proceedings of the Royal Society of London B Biological Science, 268: 14951501.CrossRefGoogle ScholarPubMed
Bshary, R., Zuberbühler, K., and van Schaik, C. P. (2016) Why mutual helping in most natural systems is neither conflict-free nor based on maximal conflict. Philosophical Transactions of the Royal Society B, 371: 20150091.CrossRefGoogle ScholarPubMed
Cheney, D. L., Moscovice, L. R., Heesen, M., Mundry, R., and Seyfarth, R. M. (2010) Contingent cooperation between wild female baboons. Proceedings of the National Academy of Sciences USA, 107(21): 95629566.CrossRefGoogle ScholarPubMed
Clutton-Brock, T. H., O’Riain, M. J., Brotherton, P. N. M., Gaynor, D., Kansky, R., Griffin, A. S., and Manser, M. (1999) Selfish sentinels in cooperative mammals. Science, 284: 16401644.CrossRefGoogle ScholarPubMed
Connor, R. C. (1986) Pseudo-reciprocity: Investing in altruism. Animal Behaviour, 34: 15621566.CrossRefGoogle Scholar
Côté, I. M. (2000) Evolution and ecology of cleaning symbioses in the sea. Oceanography and Marine Biology Annual Review, 38: 311355.Google Scholar
Curio, E. (1978) The adaptive significance of avian mobbing. I. Teleonomic hypotheses and predictions. Zeitschrift fur Tierpsychology, 48: 175183.Google Scholar
Currie, C. R., and Stuart, A. E. (2001) Weeding and grooming of pathogens in agriculture by ants. Proceedings of the Royal Society of London B Biological Science, 268: 10331039.CrossRefGoogle ScholarPubMed
Currie, C. R., Wong, B., Stuart, A. E. et al. (2003) Ancient tripartite coevolution in the attine ant–microbe symbiosis. Science, 299(5605): 386388.CrossRefGoogle ScholarPubMed
De Vos, A., and O’Riain, M. J. (2009) Sharks shape the geometry of a selfish seal herd: Experimental evidence from seal decoys. Biology Letters, 6(1): 4850.CrossRefGoogle ScholarPubMed
Diamond, J. (2002) Evolution, consequences and future of plant and animal domestication. Nature, 418: 700707.CrossRefGoogle ScholarPubMed
Ellers, J., Toby, K. E., Currie, C. R., McDonald, B. R., and Visser, B. (2012) Ecological interactions drive evolutionary loss of traits. Ecology Letters, 15: 10711082.CrossRefGoogle ScholarPubMed
Eshel, I., and Shaked, A. (2002) Partnership. Journal of Theoretical Biology, 208: 457474.CrossRefGoogle Scholar
Field, T., Hernandez-Reif, M., and Diego, M. (2005) Cortisol decreases and serotonin and dopamine increase following massage therapy. International Journal of Neuroscience, 115: 13971413.CrossRefGoogle ScholarPubMed
FitzGibbon, C. D. (1990) Mixed-species grouping in Thomson’s and Grant’s gazelles: The antipredator benefits. Animal Behaviour, 39: 11161126.CrossRefGoogle Scholar
Flower, T. (2011) Fork-tailed drongos use deceptive mimicked alarm calls to steal food. Proceedings of the Royal Society of London B: Biological Sciences, 278: 15481555.Google ScholarPubMed
Gray, M. W., and Doolittle, W. F. (1982) Has the endosymbiont hypothesis been proven?. Microbiological Reviews, 46(1): 142.CrossRefGoogle ScholarPubMed
Grutter, A. S. (1995) Relationship between cleaning rates and ectoparasite loads in coral reef fishes. Marine Ecology Progress Series, 118: 5158.CrossRefGoogle Scholar
Grutter, A. S., and Bshary, R. (2003) Cleaner wrasse prefer client mucus: Support for partner control mechanisms in cleaning interactions. Proceedings of the Royal Society of London B Biological Science, 270: S242S244.CrossRefGoogle ScholarPubMed
Guimarães, P. R., Jr., Pires, M. M., Jordano, P., Bascompte, J., and Thompson, J. N. (2017) Indirect effects drive coevolution in mutualistic networks. Nature, 550(7677): 511.CrossRefGoogle ScholarPubMed
Hamilton, W. D. (1964a) The genetical evolution of social behaviour. I Journal of Theoretical Biology, 7(1): 116.CrossRefGoogle ScholarPubMed
Hamilton, W. D. (1964b) The genetical evolution of social behaviour. II. Journal of Theoretical Biology, 7(1): 1752.CrossRefGoogle ScholarPubMed
Hammerstein, P., and Noë, R. (2016) Biological trade and markets. Philosophical Transactions of the Royal Society B, 371(1687): 20150101.CrossRefGoogle ScholarPubMed
Hata, H., and Kato, M. (2006) A novel obligate cultivation mutualism between damselfish and Polysiphonia algae. Biology Letters, 2: 593596.CrossRefGoogle ScholarPubMed
Hauser, M. D. (1997) Minding the behaviour of deception. In Byrne, R. W., and Whiten, A., eds., Machiavellian Intelligence II: Extensions and Evaluations. Cambridge: Cambridge University Press, pp. 112143.CrossRefGoogle Scholar
Herre, E. A., Knowlton, N., Mueller, U. G., and Rehner, S. A. (1999) The evolution of mutualisms: Exploring the paths between conflict and cooperation. Trends in Ecology and Evolution, 14: 4953.CrossRefGoogle ScholarPubMed
Huertas, V., and Bellwood, D. R. (2018) Feeding innovations and the first coral-feeding fishes. Coral Reefs, 37(3): 649658.CrossRefGoogle Scholar
Hulcr, J., and Cognato, A. I. (2010) Repeated evolution of crop theft in fungus-farming ambrosia beetles. Evolution, 64: 32053212.CrossRefGoogle ScholarPubMed
Janzen, D. H. (1966) Coevolution of mutualism between ants and acacias in Central America. Evolution, 20: 249275.CrossRefGoogle ScholarPubMed
Johnstone, R. A., and Bshary, R. (2008) Mutualism, market effects and partner control. Journal of Evolutionary Biology, 21(3): 879888.CrossRefGoogle ScholarPubMed
Jones, E. I., Afkhami, M. E., Akçay, E. et al. (2015) Cheaters must prosper: Reconciling theoretical and empirical perspectives on cheating in mutualism. Ecology Letters, 18(11): 12701284.CrossRefGoogle ScholarPubMed
Kenward, R. E. (1978) Hawks and doves: Factors affecting success and selection in goshawk attacks on woodpigeons. Journal of Animal Ecology, 47: 449460.CrossRefGoogle Scholar
Kiers, E. T., Duhamel, M., Beesetty, Y. et al. (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science, 333(6044): 880882.CrossRefGoogle ScholarPubMed
Kiers, E. T., Rousseau, R. A., West, S. A., and Denison, R. F. (2003) Host sanctions and the legume–rhizobium mutualism. Nature, 425: 7881.CrossRefGoogle ScholarPubMed
Kohda, M., Takashi, H., Takeyama, T., Awata, S., Tanaka, H., Asai, J., and Jordan, A. (2018) Cleaner wrasse pass the mark test. What are the implications for consciousness and self-awareness testing in animals? BioRxiv, 397067.Google Scholar
Kokko, H., Johnstone, R. A., and Clutton-Brock, T. H. (2001) The evolution of cooperative breeding through group augmentation. Proceedings of the Royal Society of London B Biological Science, 268: 187196.CrossRefGoogle ScholarPubMed
Kolodny, O., Lotem, A., and Edelman, S. (2015) Learning a generative probabilistic grammar of experience: A process-level model of language acquisition. Cognitive Science, 39(2): 227267.CrossRefGoogle ScholarPubMed
Landeau, L., and Terborgh, J. (1986) Oddity and the “confusion effect” in predation. Animal Behaviour, 34: 13721380.CrossRefGoogle Scholar
Lehmann, L., and Keller, L. (2006) The evolution of cooperation and altruism – A general framework and a classification of models. Journal of Evolutionary Biology, 19: 13651376.CrossRefGoogle Scholar
Lehmann, L., and Rousset, F. (2010) How life history and demography promote or inhibit the evolution of helping behaviours. Philosophical Transactions of the Royal Society of London B, 365(1553): 25992617.CrossRefGoogle ScholarPubMed
Leimar, O., and Connor, R. C. (2003) By-product benefits, reciprocity, and pseudoreciprocity in mutualism. In Hammerstein, P., ed., Genetic and Cultural Evolution of Cooperation. Cambridge, MA: MIT Press, pp. 203222.Google Scholar
Lieberman, D., Tooby, J., and Cosmides, L. (2007) The architecture of human kin detection. Nature, 445(7129): 727.CrossRefGoogle ScholarPubMed
Machado, C. A., Robbins, N., Gilbert, M. T. P., and Herre, E. A. (2005) Critical review of host specificity and its coevolutionary implications in the fig/fig-wasp mutualism. Proceedings of the National Academy of Sciences USA, 102(Suppl 1): 65586565.CrossRefGoogle ScholarPubMed
McGregor, P. K. (1993) Signalling in territorial systems: A context for individual identification, ranging and eavesdropping. Philosophical Transactions of the Royal Society London B, 340(1292): 237244.Google Scholar
Melis, A. P., Hare, B., and Tomasello, M. (2006) Chimpanzees recruit the best collaborators. Science, 311(5765): 12971300.CrossRefGoogle ScholarPubMed
Müller, C. B., and Krauss, J. (2005) Symbiosis between grasses and asexual fungal endophytes. Current Opinion in Plant Biology, 8: 450456.CrossRefGoogle ScholarPubMed
Nelsen, M. P., Ree, R. H., and Moreau, C. S. (2018) Ant–plant interactions evolved through increasing interdependence. Proceedings of the National Academy of Sciences USA, 115 (48): 1225312258.CrossRefGoogle ScholarPubMed
Noë, R. (1990) A veto game played by baboons: A challenge to the use of the Prisoner’s Dilemma as a paradigm for reciprocity and cooperation. Animal Behaviour, 39(1): 7890.CrossRefGoogle Scholar
Noë, R., and Hammerstein, P. (1994) Biological markets: Supply and demand determine the effect of partner choice in cooperation, mutualism and mating. Behavioral Ecology and Sociobiology, 35(1): 111.CrossRefGoogle Scholar
Noë, R., and Hammerstein, P. (1995) Biological markets. Trends in Ecology and Evolution, 10: 336339.CrossRefGoogle ScholarPubMed
Noë, R., and Kiers, E. T. (2018) Mycorrhizal markets, firms, and co-ops. Trends in Ecology and Evolution, 33(10): 777789.CrossRefGoogle ScholarPubMed
Noë, R., van Schaik, C. P., and van Hooff, J. A. R. A. M. (1991) The market effect: An explanation for pay-off asymmetries among collaborating animals. Ethology, 87: 97118.CrossRefGoogle Scholar
Olesen, J. M., Bascompte, J., Dupont, Y. L., and Jordano, P. (2007) The modularity of pollination networks. Proceedings of the National Academy of Sciences USA, 104(50): 1989119896.CrossRefGoogle ScholarPubMed
Palmer, T. M., Stanton, M. L., and Young, T. P. (2003) Competition and coexistence: Exploring mechanisms that restrict and maintain diversity within mutualist guilds. The American Naturalist, 162(S4): S63S79.CrossRefGoogle ScholarPubMed
Pepperberg, I. M., and Hartsfield, L. A. (2014) Can grey parrots (Psittacus erithacus) succeed on a “complex” foraging task failed by nonhuman primates (Pan troglodytes, Pongo abelii, Sapajus paella) but solved by wrasse fish (Labroides dimidiatus)? Journal of Comparative Psychology, 128(3): 298306.CrossRefGoogle Scholar
Pierce, N. E., Braby, M. F., Heath, A., Lohman, D. J., Mathew, J., Rand, D. B., and Travassos, M. A. (2002) The ecology and evolution of ant association in the Lycaenidae (Lepidoptera) Annual Review of Entomology, 47: 733771.CrossRefGoogle Scholar
Pinto, A., Oates, J., Grutter, A., and Bshary, R. (2011) Cleaner wrasses Labroides dimidiatus are more cooperative in the presence of an audience. Current Biology, 21(13): 11401144.CrossRefGoogle ScholarPubMed
Pion, M., Spangenberg, J. E., Simon, A. et al. (2013) Bacterial farming by the fungus Morchella crassipes. Proceedings of the Royal Society of London B: Biological Sciences, 280(1773): 20132242.Google ScholarPubMed
Quiñones, A., Lotem, A., Leimar, O., and Bshary, R (2020) Reinforcement learning theory reveals the cognitive requirements for solving the cleaner fish market task. American Naturalist, 195(4): 664677.CrossRefGoogle ScholarPubMed
Raihani, N. J., Grutter, A. S., and Bshary, R. (2010) Punishers benefit from third-party punishment in fish. Science, 327(5962): 171171.CrossRefGoogle ScholarPubMed
Raihani, N. J., Thornton, A., and Bshary, R. (2012) Punishment and cooperation in nature. Trends in Ecology and Evolution, 27(5): 288295.CrossRefGoogle ScholarPubMed
Roberts, G. (2005) Cooperation through interdependence. Animal Behaviour, 70(4): 901908.CrossRefGoogle Scholar
Robertson, D. R. (1973) Field observations on the reproductive behaviour of a pomacentrid fish, Acanthochromis polyacanthus. Zeitschrift Für Tierpsychologie, 32(3): 319324.CrossRefGoogle ScholarPubMed
Sachs, J. L., Mueller, U. G., Wilcox, T. P., and Bull, J. J. (2004) The evolution of cooperation. Quarterly Review of Biology, 79(2): 135160.CrossRefGoogle ScholarPubMed
Salwiczek, L. H., and Bshary, R. (2011) Cleaner wrasses keep track of the ‘when’ and ‘what’ in a foraging task 1. Ethology, 117(11): 939948.CrossRefGoogle Scholar
Salwiczek, L. H., Prétôt, L., Demarta, L. et al. (2012) Adult cleaner wrasse outperform capuchin monkeys, chimpanzees and orang-utans in a complex foraging task derived from cleaner – client reef fish cooperation. PLoS ONE, 7(11): e49068.CrossRefGoogle Scholar
Schino, G., and Aureli, F. (2008) Grooming reciprocation among female primates: A meta-analysis. Biology Letters, 4: 911.CrossRefGoogle ScholarPubMed
Seyfarth, R. M. (1977) A model of social grooming among adult female monkeys. Journal of Theoretical Biology, 65(4): 671698.CrossRefGoogle Scholar
Silk, J. B., Alberts, S. C., and Altmann, J. (2003) Social bonds of female baboons enhance infant survival. Science, 302: 12311234.CrossRefGoogle ScholarPubMed
Soares, M. C., Cardoso, S. C., Nicolet, K. J., Côté, I. M., and Bshary, R. (2013) Indo-Pacific parrotfish exert partner choice in interactions with cleanerfish but Caribbean parrotfish do not. Animal Behaviour, 86: 611615.CrossRefGoogle Scholar
Soares, M. C., Côté, I. M., Cardoso, S. C., Oliveira, R. F., and Bshary, R. (2010) Caribbean cleaning gobies prefer client ectoparasites over mucus. Ethology, 116: 12441248.CrossRefGoogle Scholar
Soares, M. C., Côté, I. M., Cardoso, S. C., and Bshary, R. (2008) The cleaning goby mutualism: A system without punishment, partner switching or tactile stimulation: Choice options and partner control. Journal of Zoology, 276(3): 306312.CrossRefGoogle Scholar
Soares, M. S., Oliveira, R. F., Ros, A. F. H., Grutter, A. S., and Bshary, R. (2011) Tactile stimulation lowers stress in fish. Nature Communications, 2: 534.CrossRefGoogle ScholarPubMed
Spottiswoode, C. N., Begg, K. S., and Begg, C. M. (2016) Reciprocal signaling in honeyguide-human mutualism. Science, 353(6297): 387389.CrossRefGoogle ScholarPubMed
Stander, P. E. (1992) Foraging dynamics of lions in a semi-arid environment. Canadian Journal of Zoology, 70: 821.CrossRefGoogle Scholar
Taborsky, M. (1984) Broodcare helpers in the cichlid fish Lamprologus brichardi: Their costs and benefits. Animal Behaviour, 32(4): 12361252.CrossRefGoogle Scholar
Tebbich, S., Bshary, R., and Grutter, A. S. (2002) Cleaner fish Labroides dimidiatus recognise familiar clients. Animal Cognition, 5(3): 139145.CrossRefGoogle ScholarPubMed
Tomasello, M., Melis, A. P., Tennie, C., Wyman, E., Herrmann, E. (2012) Two key steps in the evolution of human cooperation: The interdependence hypothesis. Current Anthropology, 53(6), 000000.CrossRefGoogle Scholar
Triki, Z., Wismer, S., Levorato, E., and Bshary, R. (2018) A decrease in the abundance and strategic sophistication of cleaner fish after environmental perturbations. Global Change Biology, 24: 481489.CrossRefGoogle ScholarPubMed
Triki, Z., Wismer, S., Rey, O., Binning, S. A., Levorato, E., and Bshary, R. (2019) Biological market effects predict cleaner fish strategic sophistication. Behavioral Ecology, online https://doi. org/10.1093/beheco/arz111.CrossRefGoogle Scholar
Vail, A. L., Manica, A., and Bshary, R. (2013) Referential gestures in fish collaborative hunting. Nature Communications, 4: 1765.CrossRefGoogle ScholarPubMed
Vail, A. L., Manica, A., and Bshary, R. (2014) Fish choose appropriately when and with whom to collaborate. Current Biology, 24: R791R793.CrossRefGoogle ScholarPubMed
Vaughan, D. B., Grutter, A. S., Costello, M. J., and Hutson, K. S. (2017) Cleaner fishes and shrimp diversity and a re‐evaluation of cleaning symbioses. Fish and Fisheries, 18(4): 698716.CrossRefGoogle Scholar
Vázquez, D. P., Blüthgen, N., Cagnolo, L., and Chacoff, N. P. (2009) Uniting pattern and process in plant–animal mutualistic networks: A review. Annals of Botany, 103: 14451457.CrossRefGoogle ScholarPubMed
Wainwright, P. C., Bellwood, D. R., Westneat, M. W., Grubich, J. R., and Hoey, A. S. (2004) A functional morphospace for the skull of labrid fishes: Patterns of diversity in a complex biomechanical system. Biological Journal of the Linnean Society, 82(1): 125.CrossRefGoogle Scholar
Weeks, P. (2000) Red-billed oxpeckers: Vampires or tickbirds? Behavioral Ecology, 11: 154160.CrossRefGoogle Scholar
Werren, J. H. (1997) Biology of Wolbachia. Annual Review of Entomology, 42: 587609.CrossRefGoogle ScholarPubMed
West, S. A., Pen, I., and Griffin, A. S. (2002) Cooperation and competition between relatives. Science, 296: 7275.CrossRefGoogle ScholarPubMed
Wismer, S., Grutter, A., and Bshary, R. (2016) Generalized rule application in bluestreak cleaner wrasse (Labroides dimidiatus): Using predator species as social tools to reduce punishment. Animal Cognition, 19(4): 769778.CrossRefGoogle ScholarPubMed
Wismer, S., Pinto, A. I., Vail, A. L., Grutter, A. S., and Bshary, R. (2014) Variation in cleaner wrasse cooperation and cognition: Influence of the developmental environment? Ethology, 120(6): 519531.CrossRefGoogle Scholar
Wubs, M., Bshary, R., and Lehmann, L. (2018) A reinforcement learning model for grooming up the hierarchy in primates. Animal Behaviour, 138: 165185.CrossRefGoogle Scholar
Zappes, C. A., Andriolo, A., Simões-Lopes, P. C., and Di Beneditto, A. P. M. (2011) “Human?dolphin (Tursiops truncatus Montagu, 1821) cooperative fishery” and its influence on cast net fishing activities in Barra de Imbé/Tramandaí, Southern Brazil. Ocean and Coastal Management, 54(5): 427432.CrossRefGoogle Scholar
Zentall, T. R., Case, J. P., and Berry, J. R. (2017) Rats’ acquisition of the ephemeral reward task. Animal Cognition, 20(3): 419425.CrossRefGoogle ScholarPubMed
Zentall, T. R., Case, J. P., and Luong, J. (2016) Pigeon’s (Columba livia) paradoxical preference for the suboptimal alternative in a complex foraging task. Journal of Comparative Psychology, 130(2): 138144.CrossRefGoogle Scholar


Alaux, C., Sinha, S., Hasadsri, L. et al. (2009) Honey bee aggression supports a link between gene regulation and behavioral evolution. Proceedings of the National Academy of Science USA, 106(36): 1540015405.CrossRefGoogle ScholarPubMed
Amdam, G. V., Csondes, A., Fondrk, M. K., and Page, R. E., Jr. (2006) Complex social behaviour derived from maternal reproductive traits. Nature, 439(7072): 7678.CrossRefGoogle ScholarPubMed
Amsalem, E., Grozinger, C. M., Padilla, M., and Hefetz, A. (2015) The physiological and genomic bases of bumble bee social behaviour. Advances in Insect Physiology: Genomics, Physiology and Behavior of Social Insects, 48 : 3794.CrossRefGoogle Scholar
Amsalem, E., and Hefetz, A. (2010) The appeasement effect of sterility signaling in dominance contests among Bombus terrestris workers. Behavioral Ecology and Sociobiology, 64(10): 16851694.CrossRefGoogle Scholar
Amsalem, E., and Hefetz, A. (2011) The effect of group size on the interplay between dominance and reproduction in Bombus terrestris. PLoS ONE, 6(3): e18238.CrossRefGoogle ScholarPubMed
Andersson, M. (1984) The evolution of eusociality. Annual Review of Ecology and Systematics, 15(1): 165189.CrossRefGoogle Scholar
Asahina, K. (2017) Neuromodulation and strategic action choice in Drosophila aggression. Annual Review of Neuroscience, 40: 5175.CrossRefGoogle ScholarPubMed
Barron, A. B., and Robinson, G. E. (2008) The utility of behavioral models and modules in molecular analyses of social behavior. Genes Brain and Behavior, 7(3): 257265.CrossRefGoogle ScholarPubMed
Bee, M. A. (2003) Experience-based plasticity of acoustically evoked aggression in a territorial frog. Journal of Comparative Physiology A, 189(6): 485496.CrossRefGoogle Scholar
Bloch, G., and Grozinger, C. M. (2011) Social molecular pathways and the evolution of bee societies. Philosophical Transactions of the Royal Society B Biological Science, 366(1574): 21552170.CrossRefGoogle ScholarPubMed
Bourke, A. F. G. (2011) Principles of Social Evolution. Oxford: Oxford University Press.CrossRefGoogle Scholar
Breed, M. D. (1983) Nestmate recognition in honey bees. Animal Behaviour, 31: 8691.CrossRefGoogle Scholar
Breed, M. D., Guzman-Novoa, E., and Hunt, G. J. (2004) Defensive behavior of honey bees: Organization, genetics, and comparisons with other bees. Annual Review of Entomology, 49: 271298.CrossRefGoogle ScholarPubMed
Breed, M. D., Robinson, G. E., and Page, R. E. (1990) Division of labor during honey bee colony defense. Behavioral Ecology and Sociobiology, 27: 395401.CrossRefGoogle Scholar
Brunton, D. H. (1990) The effects of nesting stage, sex, and type of predator on parental defense by Killdeer (Charadrius-Vociferus) – Testing models of avian parental defense. Behavioral Ecology and Sociobiology, 26(3): 181190.CrossRefGoogle Scholar
Bruschini, C., Cervo, R., and Turillazzi, S. (2006) Evidence of alarm pheromones in the venom of Polistes dominulus workers (Hymenoptera: Vespidae). Physiological Entomology, 31(3): 286293.CrossRefGoogle Scholar
Cant, M. A. (2011) The role of threats in animal cooperation. Proceedings of the Royal Society B Biological Science, 278: 170178.CrossRefGoogle ScholarPubMed
Cardinal, S., Straka, J., and Danforth, B. N. (2010) Comprehensive phylogeny of apid bees reveals evolutionary origins and antiquity of cleptoparasitism. Proceedings of the National Academy of Sciences USA, 107(37): 1620716211.CrossRefGoogle ScholarPubMed
Carey, J. R. (2001) Demographic mechanisms for the evolution of long life in social insects. Experimental Gerontology, 36: 713722.CrossRefGoogle ScholarPubMed
Chandrasekaran, S., Rittschof, C. C., Djukovic, D., Gu, H., Raftery, D., Price, N. D., and Robinson, G. E. (2015) Aggression is associated with aerobic glycolysis in the honey bee brain. Genes Brain and Behavior, 14(2): 158166.CrossRefGoogle ScholarPubMed
Chapman, R. F. (2012) The Insects: Structure and Function. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Couvillon, M. J., Robinson, E. J. H., Atkinson, B., Child, L., Dent, K. R., and Ratnieks, F. L. W. (2008) En garde: Rapid shifts in honeybee, Apis mellifera, guarding behaviour are triggered by onslaught of conspecific intruders. Animal Behaviour, 76(5): 16531658.CrossRefGoogle Scholar
Crespi, B. J. (1994) Three conditions for the evolution of eusociality: Are they sufficient? Insectes Sociaux, 41: 395400.CrossRefGoogle Scholar
De Fine Licht, H. H., Boomsma, J. J., and Tunlid, A. (2014) Symbiotic adaptations in the fungal cultivar of leaf-cutting ants. Nature Communications, 5: 5675.CrossRefGoogle ScholarPubMed
Doke, M. A., Frazier, M., and Grozinger, C. M. (2015) Overwintering honey bees: Biology and management. Current Opinion in Insect Science, 10: 185193.CrossRefGoogle ScholarPubMed
Fahrbach, S. E., Farris, S. M., Sullivan, J. P., and Robinson, G. E. (2003) Limits on volume changes in the mushroom bodies of the honey bee brain. Journal of Neurobiology, 57(2): 141151.CrossRefGoogle ScholarPubMed
Farris, S. M., Robinson, G. E., and Fahrbach, S. E. (2001) Experience- and age-related outgrowth of intrinsic neurons in the mushroom bodies of the adult worker honeybee. The Journal of Neuroscience, 21(16): 63956404.CrossRefGoogle ScholarPubMed
Fawcett, T. W., and Johnstone, R. A. (2010) Learning your own strength: Winner and loser effects should change with age and experience. Proceedings of the Royal Society B Biological Science, 277(1686): 14271434.CrossRefGoogle ScholarPubMed
Fjerdingstad, E. J., and Crozier, R. H. (2006) The evolution of worker caste diversity in social insects. The American Naturalist, 167(3): 390400.CrossRefGoogle ScholarPubMed
Galbraith, D. A., Wang, Y., Amdam, G. V., Page, R. E., and Grozinger, C. M. (2015) Reproductive physiology mediates honey bee (Apis mellifera) worker responses to social cues. Behavioral Ecology and Sociobiology, 69(9): 15111518.CrossRefGoogle Scholar
Giray, T., Giovanetti, M., and West-Eberhard, M. J. (2005) Juvenile hormone, reproduction, and worker behavior in the neotropical social wasp Polistes canadensis. Proceedings of the National Academy of Science USA, 102(9): 33303335.CrossRefGoogle ScholarPubMed
Giray, T., Guzman-Novoa, E., Aron, C. W., Zelinsky, B., Fahrbach, S. E., and Robinson, G. E. (2000) Genetic variation in worker temporal polyethism and colony defensiveness in the honey bee Apis mellifera. Behavioral Ecology, 11(1): 4455.CrossRefGoogle Scholar
Groom, M. J. (1992) Sand-colored Nighthawks parasitize the antipredator behavior of three nesting bird species. Ecology, 73(3): 785793.CrossRefGoogle Scholar
Gruter, C., Menezes, C., Imperatriz-Fonseca, V. L., and Ratnieks, F. L. W. (2012) A morphologically specialized soldier caste improves colony defense in a neotropical eusocial bee. Proceedings of the National Academy of Sciences USA, 109(4): 11821186.CrossRefGoogle Scholar
Hartfelder, K. (2000) Insect juvenile hormone: From “status quo” to high society. Brazilian Journal of Medical and Biological Research, 33: 157177.CrossRefGoogle Scholar
Hirschenhauser, K., and Oliveira, R. F. (2006) Social modulation of androgens in male vertebrates: Meta-analyses of the challenge hypothesis. Animal Behaviour, 71(2): 265277.CrossRefGoogle Scholar
Hölldobler, B. (1981) Foraging and spatiotemporal territories in the honey ant Myrmecocystus mimicus (Hymenoptera: Formicidae). Behavioral Ecology and Sociobiology, 9: 301314.CrossRefGoogle Scholar
Hölldobler, B., and Wilson, E. O. (1994) War and Foreign Policy. Journey to the Ants. Cambridge, MA: Harvard University Press, p. 70.Google Scholar
Huang, Z., and Robinson, G. E. (1992) Honeybee colony integration: Worker–worker interactions mediate hormonally regulated plasticity in division of labor. Proceedings of the National Academy of Sciences USA, 89: 1172611729.CrossRefGoogle ScholarPubMed
Huang, Z. Y., Robinson, G. E., and Borst, D. W. (1994) Physiological correlates of division of labor among similarly aged honey bees. Journal of Comparative Physiology A, 174(6): 731739.CrossRefGoogle ScholarPubMed
Hunt, G. J., Guzmán-Novoa, E., Uribe-Rubio, J. L., and Prieto-Merlos, D. (2003) Genotype–environment interactions in honeybee guarding behaviour. Animal Behaviour, 66(3): 459467.CrossRefGoogle Scholar
Hunt, J. H., Kensinger, B. J., Kossuth, J. A., Henshaw, M. T., Norberg, K., Wolschin, F., and Amdam, G. V. (2007) A diapause pathway underlies the gyne phenotype in Polistes wasps, revealing an evolutionary route to caste-containing insect societies. Proceedings of the National Academy of Science USA, 104(35): 1402014025.CrossRefGoogle ScholarPubMed
Ishikawa, Y., and Miura, T. (2012) Hidden aggression in termite workers: Plastic defensive behaviour dependent upon social context. Animal Behaviour, 83(3): 737745.CrossRefGoogle Scholar
Jandt, J. M., Suryanarayanan, S., Hermanson, J. C., Jeanne, R. L., and Toth, A. L. (2017) Maternal and nourishment factors interact to influence offspring developmental trajectories in social wasps. Proceedings of the Royal Society London B Biological Science, 284(1857): 19.Google ScholarPubMed
Jandt, J. M., and Toth, A. L. (2015) Physiological and genomic mechanisms of social organization in wasps (Family: Vespidae). Advances in Insect Physiology: Genomics, Physiology and Behavior of Social Insects, 48: 95130.CrossRefGoogle Scholar
Kapheim, K. M. (2017) Nutritional, endocrine, and social influences on reproductive physiology at the origins of social behavior. Current Opinion in Insect Science, 22: 6270.CrossRefGoogle ScholarPubMed
Kastberger, G., Thenius, R., Stabentheiner, A., and Hepburn, R. (2008) Aggressive and docile colony defence patterns in Apis mellifera: A retreater–releaser concept. Journal of Insect Behavior, 22(1): 6585.CrossRefGoogle Scholar
Keller, L., and Chapuiset, M. (1999) Cooperation among selfish individuals in insect societies. BioScience, 49(11): 899909.CrossRefGoogle Scholar
Keller, L., and Nonacs, P. (1993) The role of queen pheromones in social insects: Queen control or queen signal? Animal Behavior, 45(4): 787794.CrossRefGoogle Scholar
Khila, A., and Abouheif, E. (2008) Reproductive constraint is a developmental mechanism that maintains social harmony in advanced ant societies. Proceedings of the National Academy of Science USA, 105(46): 1788417889.CrossRefGoogle ScholarPubMed
Kocher, S. D., Ayroles, J. F., Stone, E. A., and Grozinger, C. M. (2010) Individual variation in pheromone response correlates with reproductive traits and brain gene expression in worker honey bees. PLoS ONE, 5(2): e9116.CrossRefGoogle ScholarPubMed
Kocher, S. D., and Grozinger, C. M. (2011) Cooperation, conflict, and the evolution of queen pheromones. Journal of Chemical Ecology, 37(11): 12631275.CrossRefGoogle ScholarPubMed
Lawson, S. P., Helmreich, S. L., and Rehan, S. M. (2017) Effects of nutritional deprivation on development and behavior in the subsocial bee Ceratina calcarata (Hymenoptera: Xylocopinae). Journal of Experimental Biology, 220(Pt 23): 44564462.CrossRefGoogle Scholar
Li-Byarlay, H., Rittschof, C. C., Massey, J. H., Pittendrigh, B. R., and Robinson, G. E. (2014) Socially responsive effects of brain oxidative metabolism on aggression. Proceedings of the National Academy of Science USA, 111(34): 1253312537.CrossRefGoogle ScholarPubMed
Machado, G. (2002) Maternal care, defensive behavior, and sociality in neotropical Goniosoma harvestmen (Arachnida, Opiliones). Insectes Sociaux, 49: 388393.CrossRefGoogle Scholar
Maleszka, R. (2018) Beyond Royalactin and a master inducer explanation of phenotypic plasticity in honey bees. Communications Biology, 1: 8.CrossRefGoogle Scholar
Mao, W., Schuler, M. A., and Berenbaum, M. R. (2015) A dietary phytochemical alters caste-associated gene expression in honey bees. Science Advances, 1(7): e1500795.CrossRefGoogle ScholarPubMed
Mathiron, A. G. E., Earley, R. L., and Goubault, M. (2019) Juvenile hormone manipulation affects female reproductive status and aggressiveness in a non-social parasitoid wasp. General and Comparative Endocrinology, 274: 8086.CrossRefGoogle Scholar
Mcdonald, P., and Topoff, H. H. (1985) Social regulation of behavioral development in the ant, Novomessor albisetosus (Mayr). Journal of Comparative Psychology, 99(1): 314.CrossRefGoogle Scholar
Moczek, A. P. (2010) Phenotypic plasticity and diversity in insects. Philosophical Transactions of the Royal Society London B Biological Science, 365(1540): 593603.CrossRefGoogle ScholarPubMed
Moritz, R. F., Lattorff, H. M., and Crewe, R. M. (2004) Honeybee workers (Apis mellifera capensis) compete for producing queen-like pheromone signals. Proceedings of the Royal Society London B Biological Science, 271 (Suppl 3): S98S100.CrossRefGoogle ScholarPubMed
Muscedere, M. L., Traniello, J. F. A., and Gronenberg, W. (2011) Coming of age in an ant colony: Cephalic muscle maturation accompanies behavioral development in Pheidole dentata. Naturwissenschaften, 98(9): 783793.CrossRefGoogle Scholar
Naeger, N. L., Peso, M., Even, N., Barron, A. B., and Robinson, G. E. (2013) Altruistic behavior by egg-laying worker honeybees. Current Biology, 23(16): 15741578.CrossRefGoogle ScholarPubMed
Nakahira, T., and Kudo, S.-I. (2008) Maternal care in the burrower bug Adomerus triguttulus: Defensive behavior. Journal of Insect Behavior, 21(4): 306316.CrossRefGoogle Scholar
Nowak, M. A., Tarnita, C. E., and Wilson, E. O. (2010) The evolution of eusociality. Nature, 466(7310): 10571062.CrossRefGoogle ScholarPubMed
O’Dowd, D. J., and Hay, M. E. (1980) Mutualism between harvester ants and a desert ephemeral: Seed escape from rodents. Ecology, 61(3): 531540.CrossRefGoogle Scholar
Page, R. E., and Erickson, E. H. (1988) Reproduction by worker honey bees (Apis mellifera L.). Behavioral Ecology and Sociobiology, 23: 117126.CrossRefGoogle Scholar
Passera, L., Roncin, E., Kaufman, B. A., and Keller, L. (1996) Increased soldier production in ant colonies exposed to intraspecific competition. Nature, 379: 630631.CrossRefGoogle Scholar
Plowright, R. C., and Jay, S. C. (1966) Rearing bumble bee colonies in captivity. Journal of Apicultural Research, 5(3): 155165.CrossRefGoogle Scholar
Rajakumar, R., San Mauro, D., Dijkstra, M. B. et al. (2012) Ancestral developmental potential facilitates parallel evolution in ants. Science, 335: 7982.CrossRefGoogle ScholarPubMed
Ratnieks, F. L., Foster, K. R., and Wenseleers, T. (2006) Conflict resolution in insect societies. Annual Review of Entomology, 51: 581608.CrossRefGoogle ScholarPubMed
Ratnieks, F. L., and Wenseleers, T. (2008) Altruism in insect societies and beyond: Voluntary or enforced? Trends in Ecology and Evolution, 23(1): 4552.CrossRefGoogle ScholarPubMed
Rehan, S. M., and Toth, A. L. (2015) Climbing the social ladder: The molecular evolution of sociality. Trends in Ecology and Evolution, 30(7): 426433.CrossRefGoogle ScholarPubMed
Rittschof, C. C., Bukhari, S. A., Sloofman, L. G. et al. (2014) Neuromolecular responses to social challenge: Common mechanisms across mouse, stickleback fish, and honey bee. Proceedings of the National Academy of Science USA, 111(50): 1792917934.CrossRefGoogle ScholarPubMed
Rittschof, C. C., Coombs, C. B., Frazier, M., Grozinger, C. M., and Robinson, G. E. (2015) Early-life experience affects honey bee aggression and resilience to immune challenge. Science Reports, 5: 15572.CrossRefGoogle ScholarPubMed
Rittschof, C. C., and Robinson, G. E. (2016) Behavioral genetic toolkits: Toward the evolutionary origins of complex phenotypes. Current Topics in Developmental Biology, 119: 157204.Google ScholarPubMed
Rittschof, C. C., Vekaria, H. J., Palmer, J. H., and Sullivan, P. G. (2018) Brain mitochondrial bioenergetics change with rapid and prolonged shifts in aggression in the honey bee, Apis mellifera. Journal of Experimental Biology, 221(Pt 8): jeb176917, DOI: 10.1242/jeb.176917.CrossRefGoogle ScholarPubMed
Rittschof, C. C., Vekaria, H. J., Palmer, J. H., and Sullivan, P. G. (2019) Biogenic amines and activity levels alter the neural energetic response to aggressive social cues in the honey bee Apis mellifera. Journal of Neuroscience Research, 97: 9911003.CrossRefGoogle ScholarPubMed
Robinson, G. E. (1987) Modulation of alarm pheromone perception in the honey bee: Evidence for division of labor based on hormonally regulated response thresholds. Journal of Comparative Physiology A, 160: 613619.CrossRefGoogle Scholar
Robinson, G. E. (1992) Regulation of division of labor in insect societies. Annual Review of Entomology, 37: 637665.CrossRefGoogle ScholarPubMed
Robinson, G. E., Fernald, R. D., and Clayton, D. F. (2008) Genes and social behavior. Science, 322(5903): 896900.CrossRefGoogle ScholarPubMed
Robinson, G. E., Winston, M. L., Huang, Z., and Pankiw, T. (1998) Queen mandibular gland pheromone influences worker honey bee (Apis mellifera L.) foraging ontogeny and juvenile hormone titers. Journal of Insect Physiology, 44(7–8): 685692.Google ScholarPubMed
Rubenstein, D. R., and Hofmann, H. A. (2015) Editorial overview: The integrative study of animal behavior. Current Opinion in Behavioral Sciences, 6: vviii.CrossRefGoogle Scholar
Sakagami, S. F. (1958) The false queen: Fourth adjustive response in dequeened honeybee colonies. Behaviour, 13: 280296.CrossRefGoogle Scholar
Scott, M. P. (1998) The ecology and behavior of burying beetles. Annual Review of Entomology, 43: 595618.CrossRefGoogle ScholarPubMed
Seeley, T. D. (2012) Progress in understanding how the waggle dance improves the foraging efficiency of honey bee colonies. In Galizia, C., Eisenhardt, D., Giurfa, M., eds., Honeybee Neurobiology and Behavior. Dordrecht: Springer, pp. 7787.CrossRefGoogle Scholar
Seid, M. A., and Traniello, J. F. A. (2006) Age-related repertoire expansion and division of labor in Pheidole dentata (Hymenoptera: Formicidae): A new perspective on temporal polyethism and behavioral plasticity in ants. Behavioral Ecology and Sociobiology, 60(5): 631644.CrossRefGoogle Scholar
Shorter, J. R., and Tibbetts, E. A. (2008) The effect of juvenile hormone on temporal polyethism in the paper wasp Polistes dominulus. Insectes Sociaux, 56(1): 713.CrossRefGoogle Scholar
Sibbald, E. D., and Plowright, C. M. S. (2012) On the relationship between aggression and reproduction in pairs of orphaned worker bumblebees (Bombus impatiens). Insectes Sociaux, 60(1): 2330.CrossRefGoogle Scholar
Smith, C., Toth, A., Suarez, A. et al. (2008) Genetic and genomic analyses of the division of labour in insect societies. Nature Reviews Genetics, 9: 735748, DOI: ScholarPubMed
Skukla, S., Pareek, V., and Gadagkar, R. (2014) Ovarian development in a primitively eusocial wasp: Social interactions affect behaviorally dominant and subordinate wasps in opposite directions relative to solitary females Behavioral Processes, 106: 22026.Google Scholar
Strassmann, J. E. (1981) Parasitoids, predators, and group size in the paper wasp Polistes exclamans. Ecology, 62(5): 12251233.CrossRefGoogle Scholar
Strassmann, J. E., Queller, D. C., and Hughes, C. R. (1988) Predation and the evolution of sociality in the paper wasp Polistes bellicosus. Ecology, 69(5): 14971505.CrossRefGoogle Scholar
Suryanarayanan, S., Hermanson, J. C., and Jeanne, R. L. (2011) A mechanical signal biases caste development in a social wasp. Current Biology, 21(3): 231235.CrossRefGoogle Scholar
Szathmary, E., and Smith, J. M. (1995) The major evolutionary transitions. Nature, 374(6519): 227232.CrossRefGoogle ScholarPubMed
Tallamy, D. W., and Brown, W. P. (1999) Semelparity and the evolution of maternal care in insects. Animal Behaviour, 57: 727730.CrossRefGoogle ScholarPubMed
Thorne, B. L., Breisch, N. L., and Muscedere, M. L. (2003) Evolution of eusociality and the soldier caste in termites: Influence of intraspecific competition and accelerated inheritance. Proceedings of the National Academy of Sciences USA, 100(22): 1280812813.CrossRefGoogle ScholarPubMed
Tibbetts, E. A., and Crocker, K. C. (2014) The challenge hypothesis across taxa: Social modulation of hormone titres in vertebrates and insects. Animal Behaviour, 92: 281290.CrossRefGoogle Scholar
Tibbetts, E. A., and Lindsay, R. (2008) Visual signals of status and rival assessment in Polistes dominulus paper wasps. Biology Letters, 4(3): 237239.CrossRefGoogle ScholarPubMed
Tibbetts, E. A., and Sheehan, M. J. (2012) The effect of juvenile hormone on Polistes wasp fertility varies with cooperative behavior. Hormones and Behavior, 61(4): 559564.CrossRefGoogle ScholarPubMed
Toth, A. L., and Robinson, G. E. (2005) Worker nutrition and division of labour in honeybees. Animal Behaviour, 69(2): 427435.CrossRefGoogle Scholar
Toth, A. L., Tooker, J. F., Radhakrishnan, S., Minard, R., Henshaw, M. T., and Grozinger, C. M. (2014) Shared genes related to aggression, rather than chemical communication, are associated with reproductive dominance in paper wasps (Polistes metricus) BMC Genomics, 15: 75.CrossRefGoogle Scholar
Toth, A. L., Varala, K., Newman, T. C. et al. (2007) Wasp gene expression supports an evolutionary link between maternal behavior and eusociality. Science, 318(5849): 441444.CrossRefGoogle ScholarPubMed
Vásquez, G. M., and Silverman, J. (2008) Intraspecific aggression and colony fusion in the Argentine ant. Animal Behaviour, 75(2): 583593.CrossRefGoogle Scholar
Weiner, S. A., Woods, W. A., Jr., and Starks, P. T. (2009) The energetic costs of stereotyped behavior in the paper wasp, Polistes dominulus. Naturwissenschaften, 96(2): 297302.CrossRefGoogle ScholarPubMed
West-Eberhard, M. J. (1967) Foundress associations in Polistine wasps: Dominance hierarchies and the evolution of social behavior. Science, 157(3796): 15841585.Google Scholar
Wheeler, D. E., and Nijhout, H. F. (1981) Soldier determination in ants: New role for juvenile hormone. Science, 213(4505): 361363.CrossRefGoogle ScholarPubMed
Wilson, E. O. (2000) Sociobiology: The New Synthesis. Cambridge, MA: The Belknap Press of Harvard University Press.Google Scholar
Wingfield, J. C., Hegner, R. E., Dufty, A. M., and Ball, G. F. (1990) The “Challenge Hypothesis”: Theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. The American Naturalist, 136(6): 829846.Google Scholar
Winston, M. L. (1991) The Biology of the Honey Bee. Cambridge, MA: Harvard University Press.Google Scholar
Wittemyer, G., and Getz, W. M. (2007) Hierarchical dominance structure and social organization in African elephants, Loxodonta africana. Animal Behaviour, 73: 671681.CrossRefGoogle Scholar
Wong, J. W. Y., Meunier, J., and Kölliker, M. (2013) The evolution of parental care in insects: The roles of ecology, life history and the social environment. Ecological Entomology, 38(2): 123137.CrossRefGoogle Scholar
Wray, M. K., Mattila, H. R., and Seeley, S. D. (2011) Collective personalities in honeybee colonies are linked to colony fitness. Animal Behavior, 81(3): 559568.Google Scholar
Wright, C. M., Skinker, V. E., Izzo, A. S., Tibbetts, E. A., and Pruitt, J. N. (2017) Queen personality type predicts nest-guarding behaviour, colony size and the subsequent collective aggressiveness of the colony. Animal Behavior, 124: 713.CrossRefGoogle Scholar
Yang, A. S., Martin, C. H., and Nijhout, H. F. (2004) Geographic variation of caste structure among ant populations. Current Biology, 14(6): 514519.CrossRefGoogle ScholarPubMed
Zayed, A., and Robinson, G. E. (2012) Understanding the relationship between brain gene expression and social behavior: Lessons from the honey bee. Annual Review of Genetics, 46: 591615.CrossRefGoogle ScholarPubMed