Skip to main content Accessibility help
Hostname: page-component-5db6c4db9b-s6gjx Total loading time: 0 Render date: 2023-03-23T06:14:58.267Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

5 - Social Living and Rethinking the Concept of “Prosociality”

from Part II - Neural Mechanisms

Published online by Cambridge University Press:  08 February 2021

Walter Wilczynski
Georgia State University
Sarah F. Brosnan
Georgia State University
Get access


The study of prosocial behavior has been an active area of research in social psychology that dates back to the beginnings of the last century. (For a review see Penner et al., 2005,) This large body of literature includes a diverse range of phenomena centering around the origins and tendencies of humans helping other humans, including traits such as empathy. In psychology the term “prosocial behavior” is typically used to indicate a behavior that provides benefit to another person. However, this same term, and all that it implies, has been increasingly applied to nonhuman vertebrate animal behavior and the neural mechanisms regulating these behaviors. It is within this latter context that the term prosocial has been used rather loosely with no clear definitions provided.

Cooperation and Conflict
The Interaction of Opposites in Shaping Social Behavior
, pp. 89 - 103
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Albers, H. E. (2012) The regulation of social recognition, social communication and aggression: Vasopressin in the social behavior neural network. Hormones and Behavior, 61(3): 283292.CrossRefGoogle ScholarPubMed
Albers, H. E. (2015) Species, sex and individual differences in the vasotocin/vasopressin system: Relationship to neurochemical signaling in the social behavior neural network. Frontiers in Neuroendocrinology, 36: 4971.CrossRefGoogle ScholarPubMed
Albers, H. E., Dean, A., Karom, M. C., Smith, D., and Huhman, K. L. (2006) Role of V1a vasopressin receptors in the control of aggression in Syrian hamsters. Brain Research, 1073–1074: 425430.CrossRefGoogle Scholar
Albers, H. E., Huhman, K. L., and Meisel, R. L. (2002) Hormonal basis of social conflict and communication. In Pfaff, D. W., Arnold, A. P., Etgen, A. M., Fahrbach, S. E., and Rubin, R. T., eds., Hormones, Brain and Behavior. Amsterdam: Academic Press, 393433.CrossRefGoogle Scholar
Alexander, R. D. (1974) The evolution of social behavior. Annual Review of Ecology and Systematics, 5: 325383.CrossRefGoogle Scholar
Bales, K. L., Arias Del Razo, R., Conklin, Q. A. et al. (2017) Titi Monkeys as a novel non-human primate model for the neurobiology of pair bonding. Yale Journal of Biology and Medicine, 90(3): 373387.Google ScholarPubMed
Bester-Meredith, J. K., and Marler, C. A. (2001) Vasopressin and aggression in cross-fostered California mice (Peromyscus californicus) and white-footed mice (Peromyscus leucopus). Hormones and Behavior, 40(1): 5164.CrossRefGoogle ScholarPubMed
Borland, J. M., Grantham, K. N., Aiani, L. M., Frantz, K. J., and Albers, H. E. (2018) Role of oxytocin in the ventral tegmental area in social reinforcement. Psychoneuroendocrinology, 95: 128137.CrossRefGoogle ScholarPubMed
Borland, J. M., Rilling, J. K., Frantz, K. J., and Albers, H. E. (2019) Sex-dependent regulation of social reward by oxytocin: An inverted U hypothesis. Neuropsychopharmacology, 44(1): 97110.CrossRefGoogle Scholar
Bosch, O. J., Meddle, S. L., Beiderbeck, D. I., Douglas, A. J., and Neumann, I. D. (2005) Brain oxytocin correlates with maternal aggression: Link to anxiety. Journal of Neuroscience, 25(29): 68076815.CrossRefGoogle ScholarPubMed
Bosch, O. J., and Neumann, I. D. (2010) Vasopressin released within the central amygdala promotes maternal aggression. European Journal of Neuroscience, 31(5): 883891.CrossRefGoogle ScholarPubMed
Bosch, O. J., and Neumann, I. D. (2012) Both oxytocin and vasopressin are mediators of maternal care and aggression in rodents: From central release to sites of action. Hormones and Behavior, 61(3): 293303.CrossRefGoogle ScholarPubMed
Bosch, O. J., and Young, L. J. (2017) Oxytocin and social relationships: From attachment to bond disruption. In Hurlemann, R., and Grinevich, V., eds., Behavioral Pharmacology of Neuropeptides: Oxytocin. Current Topics in Behavioral Neurosciences, vol. 35. Cham: Springer, pp. 97117.CrossRefGoogle Scholar
Bredewold, R., Nascimento, N. F., Ro, G. S., Cieslewski, S. E., Reppucci, C. J., and Veenema, A. H. (2018) Involvement of dopamine, but not norepinephrine, in the sex-specific regulation of juvenile socially rewarding behavior by vasopressin. Neuropsychopharmacology, 43(10): 21092117.CrossRefGoogle Scholar
Bridges, R. S. (2015) Neuroendocrine regulation of maternal behavior. Frontiers in Neuroendocrinology, 36: 178196.CrossRefGoogle ScholarPubMed
Brunnlieb, C., Nave, G., Camerer, C. F., Schosser, S., Vogt, B., Munte, T. F., and Heldmann, M. (2016) Vasopressin increases human risky cooperative behavior. Proceedings of the National Academy of Science USA, 113(8): 20512056.CrossRefGoogle ScholarPubMed
Calcagnoli, F., Stubbendorff, C., Meyer, N., de Boer, S. F., Althaus, M., and Koolhaas, J. M. (2015) Oxytocin microinjected into the central amygdaloid nuclei exerts anti-aggressive effects in male rats. Neuropharmacology, 90: 7481.CrossRefGoogle ScholarPubMed
Caldwell, H. K. (2017) Oxytocin and vasopressin: Powerful regulators of social behavior. Neuroscientist, 23(4): 517528.CrossRefGoogle ScholarPubMed
Caldwell, H. K. (2018) Oxytocin and sex differences in behavior. Current Opinion in Behavioral Sciences, 23: 1320.CrossRefGoogle Scholar
Caldwell, H. K., and Albers, H. E. (2004) Effect of photoperiod on vasopressin-induced aggression in Syrian hamsters. Hormones and Behavior, 46(4): 444449.CrossRefGoogle ScholarPubMed
Caldwell, H. K., and Albers, H. E. (2016) Oxytocin, vasopressin, and the motivational forces that drive social behaviors. Current Topics in Behavioral Neuroscience, 27: 51103.CrossRefGoogle ScholarPubMed
Caldwell, H. K., Aulino, E. A., Freeman, A. R., Miller, T. V., and Witchey, S. K. (2017) Oxytocin and behavior: Lessons from knockout mice. Developmental Neurobiology, 77(2): 190201.CrossRefGoogle ScholarPubMed
Carter, C. S. (2017) The oxytocin-vasopressin pathway in the context of love and fear. Frontiers in Endocrinology, 8: 356.CrossRefGoogle ScholarPubMed
Chen, X., Gautam, P., Haroon, E., and Rilling, J. K. (2017) Within vs. between-subject effects of intranasal oxytocin on the neural response to cooperative and non-cooperative social interactions. Psychoneuroendocrinology, 78: 2230.CrossRefGoogle ScholarPubMed
Chen, X., Nishitani, S., Haroon, E., Smith, A. K., and Rilling, J. K. (2020) OXTR methylation modulates exogenous oxytocin effects on human brain activity during social interaction. Genes Brain and Behavior, 19: e12555.CrossRefGoogle ScholarPubMed
Cohen, D., Perry, A., Mayseless, N., Kleinmintz, O., and Shamay-Tsoory, S. G. (2018) The role of oxytocin in implicit personal space regulation: An fMRI study. Psychoneuroendocrinology, 91: 206215.CrossRefGoogle Scholar
Cohen, D., and Shamay-Tsoory, S. G. (2018) Oxytocin regulates social approach. Social Neuroscience, 13(6): 680687.CrossRefGoogle ScholarPubMed
Compaan, J. C., Buijs, R. M., Pool, C. W., de Ruiter, A. J., and Koolhaas, J. M. (1993) Differential lateral septal vasopressin innervation in aggressive and nonaggressive male mice. Brain Research Bulletin 30(1–2): 16.CrossRefGoogle ScholarPubMed
Consigli, A. R., Borsoi, A., Pereira, G. A., and Lucion, A. B. (2005) Effects of oxytocin microinjected into the central amygdaloid nucleus and bed nucleus of stria terminalis on maternal aggressive behavior in rats. Physiology and Behavior, 85(3): 354362.CrossRefGoogle Scholar
Delville, Y., Mansour, K. M., and Ferris, C. F. (1996) Testosterone facilitates aggression by modulating vasopressin receptors in the hypothalamus. Physiology and Behavior, 60(1): 2529.CrossRefGoogle ScholarPubMed
Doherty, J. M., Cooke, B. M., and Frantz, K. J. (2013) A role for the prefrontal cortex in heroin-seeking after forced abstinence by adult male rats but not adolescents. Neuropsychopharmacology, 38(3): 446454.CrossRefGoogle Scholar
Dolen, G., Darvishzadeh, A., Huang, K. W., and Malenka, R. C. (2013) Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature, 501(7466): 179184.CrossRefGoogle ScholarPubMed
Dumais, K. M., and Veenema, A. H. (2016) Vasopressin and oxytocin receptor systems in the brain: Sex differences and sex-specific regulation of social behavior. Frontiers in Neuroendocrinology, 40: 123.CrossRefGoogle ScholarPubMed
Duque-Wilckens, N., Steinman, M. Q., Busnelli, M. et al. (2017) Oxytocin receptors in the anteromedial bed nucleus of the stria terminalis promote stress-induced social avoidance in female California Mice. Biological Psychiatry, 3(3): 203213.Google Scholar
Eckstein, M., Scheele, D., Weber, K., Stoffel-Wagner, B., Maier, W., and Hurlemann, R. (2014) Oxytocin facilitates the sensation of social stress. Human Brain Mapping, 35(9): 47414750.CrossRefGoogle ScholarPubMed
Everts, H. G. J., De Ruiter, A. J. H., and Koolhaas, J. M. (1997) Differential lateral septal vasopressin in wild-type rats: Correlation with aggression. Hormones and Behavior, 31: 136144.CrossRefGoogle ScholarPubMed
Fernald, R. D. (2014) Communication about social status. Current Opinion in Neurobiology, 28: 14.CrossRefGoogle ScholarPubMed
Ferris, C. F., Foote, K. B., Meltser, H. M., Plenby, M. G., Smith, K. L., and Insel, T. R. (1992) Oxytocin in the amygdala facilitates maternal aggression. Annals of the New York Academy of Science, 652: 456457.CrossRefGoogle ScholarPubMed
Ferris, C. F., Melloni, R. Jr., Koppel, G., Perry, K. W., Fuller, R. W., and Delville, Y. (1997) Vasopressin/serotonin interactions in the anterior hypothalamus control aggressive behavior in golden hamsters. Journal of Neuroscience, 17(11): 43314340.CrossRefGoogle ScholarPubMed
Freeman, A. R., Hare, J. F., Anderson, W. G., and Caldwell, H. K. (2018) Effects of arginine vasopressin on Richardson’s ground squirrel social and vocal behavior. Behavioral Neuroscience, 132(1): 3450.CrossRefGoogle ScholarPubMed
Freeman, S. M., and Bales, K. L. (2018) Oxytocin, vasopressin, and primate behavior: Diversity and insight. American Journal of Primatology, 80(10): e22919.CrossRefGoogle ScholarPubMed
Gil, M., Nguyen, N. T., McDonald, M., and Albers, H. E. (2013) Social reward: Interactions with social status, social communication, aggression, and associated neural activation in the ventral tegmental area. European Journal of Neuroscience, 38(2): 23082318.CrossRefGoogle ScholarPubMed
Goodson, J. L., and Kabelik, D. (2009) Dynamic limbic networks and social diversity in vertebrates: From neural context to neuromodulatory patterning. Frontiers in Neuroendocrinology, 30(4): 429441.CrossRefGoogle ScholarPubMed
Goodson, J. L., and Thompson, R. R. (2010) Nanopeptide mechanisms of social cognition, behavior and species-specific social systems. Current Opinion in Neurobiology, 20(6): 784794.CrossRefGoogle Scholar
Gordon, I., Zagoory-Sharon, O., Schneiderman, I., Leckman, J. F., Weller, A., and Feldman, R. (2008) Oxytocin and cortisol in romantically unattached young adults: Associations with bonding and psychological distress. Psychophysiology, 45(3): 349352.CrossRefGoogle ScholarPubMed
Grace, S. A., Rossell, S. L., Heinrichs, M., Kordsachia, C., and Labuschagne, I. (2018) Oxytocin and brain activity in humans: A systematic review and coordinate-based meta-analysis of functional MRI studies. Psychoneuroendocrinology, 96: 624.CrossRefGoogle ScholarPubMed
Gutzler, S. J., Karom, M., Erwin, W. D., and Albers, H. E. (2010) Arginine-vasopressin and the regulation of aggression in female Syrian hamsters (Mesocricetus auratus). European Journal of Neuroscience, 31(9): 16551663.Google ScholarPubMed
Harmon, A. C., Huhman, K. L., Moore, T. O., and Albers, H. E. (2002a) Oxytocin inhibits aggression in female Syrian hamsters. Journal of Neuroendocrinology, 14(12): 963969.CrossRefGoogle ScholarPubMed
Harmon, A. C., Moore, T. O., Huhman, K. L., and Albers, H. E. (2002b) Social experience and social context alter the behavioral response to centrally administered oxytocin in female Syrian hamsters. Neuroscience, 109(4): 767772.CrossRefGoogle ScholarPubMed
Holt-Lunstad, J., Birmingham, W. A., and Light, K. C. (2008) Influence of a “warm touch” support enhancement intervention among married couples on ambulatory blood pressure, oxytocin, alpha amylase, and cortisol. Psychosomatic Medicine, 70(9): 976985.CrossRefGoogle ScholarPubMed
Hung, L. W., Neuner, S., Polepalli, J. S. et al. (2017) Gating of social reward by oxytocin in the ventral tegmental area. Science, 357(6358): 14061411.Google ScholarPubMed
Insel, T. R. (1992) Oxytocin – A neuropeptide for affiliation: Evidence from behavioral, receptor autoradiographic, and comparative studies. Psychoneuroendocrinology, 17(1): 335.CrossRefGoogle ScholarPubMed
Jarcho, M. R., Mendoza, S. P., Mason, W. A., Yang, X., and Bales, K. L. (2011) Intranasal vasopressin affects pair bonding and peripheral gene expression in male Callicebus cupreus. Genes Brain and Behavior, 10(3): 375383.CrossRefGoogle ScholarPubMed
Johnson, Z. V., Walum, H., Xiao, Y., Riefkohl, P. C., and Young, L. J. (2017) Oxytocin receptors modulate a social salience neural network in male prairie voles. Hormones and Behavior, 87: 1624.CrossRefGoogle ScholarPubMed
Johnson, Z. V., and Young, L. J. (2017) Oxytocin and vasopressin neural networks: Implications for social behavioral diversity and translational neuroscience. Neuroscience Biobehavioral Reviews, 76(Pt A): 8798.Google ScholarPubMed
Kleiman, D. G. (1977) Monogamy in mammals. Quarterly Review of Biology, 52: 3969.CrossRefGoogle ScholarPubMed
Maldonado, R., Robledo, P., Chover, A. J., Caine, S. B., and Koob, G. F. (1993) D1 dopamine receptors in the nucleus accumbens modulate cocaine self-administration in the rat. Pharmacology Biochemistry and Behavior, 45(1): 239242.CrossRefGoogle ScholarPubMed
Maninger, N., Hinde, K., Mendoza, S. P. et al. (2017) Pair bond formation leads to a sustained increase in global cerebral glucose metabolism in monogamous male titi monkeys (Callicebus cupreus). Neuroscience, 348: 302312.CrossRefGoogle ScholarPubMed
Marlin, B. J., and Froemke, R. C. (2017) Oxytocin modulation of neural circuits for social behavior. Developmental Neurobiology, 77(2): 169189.CrossRefGoogle ScholarPubMed
Martinez, M., Guillen-Salazar, F., Salvador, A., and Simon, V. M. (1995) Successful intermale aggression and conditioned place preference in mice. Physiology and Behavior, 58(2): 323328.CrossRefGoogle ScholarPubMed
Meisel, R. L., and Joppa, M. A. (1994) Conditioned place preference in female hamsters following aggressive or sexual encounters. Physiology and Behavior, 56(5): 11151118.CrossRefGoogle ScholarPubMed
Murphy, M. R., Seckl, J. R., Burton, S., Checkley, S. A., and Lightman, S. L. (1987) Changes in oxytocin and vasopressin secretion during sexual activity in men. Journal of Clinical Endocrinology and Metabolism, 65: 738741.CrossRefGoogle ScholarPubMed
Newman, S. W. (1999) The medial extended amygdala in male reproductive behavior. A node in the mammalian social behavior network. Annals of the New York Academy of Science, 877: 242257.CrossRefGoogle ScholarPubMed
O’Connell, L. A., and Hofmann, H. A. (2011a) Genes, hormones, and circuits: An integrative approach to study the evolution of social behavior. Frontiers in Neuroendocrinology, 32(3): 320335.CrossRefGoogle Scholar
O’Connell, L. A., and Hofmann, H. A. (2011b) The vertebrate mesolimbic reward system and social behavior network: A comparative synthesis. Journal of Comparative Neurology, 519(18): 35993639.CrossRefGoogle ScholarPubMed
Ophir, A. G. (2017) Navigating monogamy: Nanopeptide sensitivity in a memory neural circuit may shape social behavior and mating decisions. Frontiers in Neuroscience, 11: 397.CrossRefGoogle Scholar
Oxford English Dictionary (2018) “OED Online.” From December 20, 2018, Scholar
Penner, L. A., Dovidio, J. F., Piliavin, J. A., and Schroeder, D. A. (2005) Prosocial behavior: Multilevel perspectives. Annual Review of Psychology, 56: 365392.CrossRefGoogle ScholarPubMed
Perkeybile, A. M., and Bales, K. L. (2017) Intergenerational transmission of sociality: The role of parents in shaping social behavior in monogamous and non-monogamous species. Journal of Experimental Biology, 220(Pt 1): 114123.CrossRefGoogle ScholarPubMed
Phelps, S. M., Okhovat, M., and Berrio, A. (2017) Individual differences in social behavior and cortical vasopressin receptor: Genetics, epigenetics, and evolution. Frontiers in Neuroscience, 11: 537.CrossRefGoogle Scholar
Samuni, L., Preis, A., Mielke, A., Deschner, T., Wittig, R. M., and Crockford, C. (2018) Social bonds facilitate cooperative resource sharing in wild chimpanzees. Proceedings of the Royal Society B Biological Science, 285: 20181643.CrossRefGoogle ScholarPubMed
Sauer, C., Montag, C., Reuter, M., and Kirsch, P. (2019) Oxytocinergic modulation of brain activation to cues related to reproduction and attachment: Differences and commonalities during the perception of erotic and fearful social scenes. International Journal of Psychophysiology, 136: 8796.CrossRefGoogle ScholarPubMed
Scheele, D., Wille, A., Kendrick, K. M. et al. (2013) Oxytocin enhances brain reward system responses in men viewing the face of their female partner. Proceedings of the National Academy of Science USA, 110(50): 2030820313.CrossRefGoogle ScholarPubMed
Schneiderman, I., Kanat-Maymon, Y., Ebstein, R. P., and Feldman, R. (2014) Cumulative risk on the oxytocin receptor gene (OXTR) underpins empathic communication difficulties at the first stages of romantic love. Social Cognitive and Affective Neuroscience, 9(10): 15241529.CrossRefGoogle ScholarPubMed
Schneiderman, I., Zagoory-Sharon, O., Leckman, J. F., and Feldman, R. (2012) Oxytocin during the initial stages of romantic attachment: Relations to couples’ interactive reciprocity. Psychoneuroendocrinology, 37(8): 12771285.CrossRefGoogle ScholarPubMed
Song, Z., and Albers, H. E (2018) Cross-talk among oxytocin and arginine-vasopressin receptors: Relevance for basic and clinical studies of the brain and periphery. Frontiers in Neuroendocrinology, 51: 1424.CrossRefGoogle ScholarPubMed
Song, Z., Borland, J. M., Larkin, T. E., O’Malley, M., and Albers, H. E. (2016) Activation of oxytocin receptors, but not arginine-vasopressin V1a receptors, in the ventral tegmental area of male Syrian hamsters is essential for the reward-like properties of social interactions. Psychoneuroendocrinology, 74: 164172.CrossRefGoogle Scholar
Sosnowski, M. J., and Brosnan, S. F. (2019) Pro-social behavior. In Vonk, J. and Shackelford, T. K., eds., Encyclopedia of Animal Cognition and Behavior. New York: Springer, DOI: Scholar
Stetzik, L., Payne, R. E. 3rd, Roache, L. E., Ickes, J. R., and Cushing, B. S. (2018) Maternal and paternal origin differentially affect prosocial behavior and neural mechanisms in prairie voles. Behavioral Brain Research, 360: 94102.CrossRefGoogle ScholarPubMed
Tabbaa, M., Paedae, B., Liu, Y., and Wang, Z. (2016) Neuropeptide regulation of social attachment: The Prairie Vole model. Comprehensive Physiology, 7(1): 81104.CrossRefGoogle ScholarPubMed
Tamborski, S., Mintz, E. M., and Caldwell, H. K. (2016) Sex differences in the embryonic development of the central oxytocin system in mice. Journal of Neuroendocrinology, 28(4), DOI: ScholarPubMed
Teles, M. C., Almeida, O., Lopes, J. S., and Oliveira, R. F. (2015) Social interactions elicit rapid shifts in functional connectivity in the social decision-making network of zebrafish. Proceedings of the Royal Society B Biological Science, 282: 20151099.CrossRefGoogle ScholarPubMed
Walum, H., and Young, L. J. (2018) The neural mechanisms and circuitry of the pair bond. Nature Reviews Neuroscience, 19(11): 643-654.CrossRefGoogle ScholarPubMed
Wilczynski, W., Quispe, M., Munoz, M. I., and Penna, M. (2017) Arginine vasotocin, the social neuropeptide of amphibians and reptiles. Frontiers in Endocrinology, 8: 186.CrossRefGoogle ScholarPubMed
Winslow, J. T., and Insel, T. R. (1991) Social status in pairs of male squirrel monkeys determines the behavioral response to central oxytocin administration. Journal of Neuroscience, 11(7): 20322038.CrossRefGoogle ScholarPubMed
Young, K. A., Gobrogge, K. L., Liu, Y., and Wang, Z. (2011) The neurobiology of pair bonding: Insights from a socially monogamous rodent. Frontiers in Neuroendocrinology, 32(1): 5369.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats