Skip to main content Accessibility help
×
Hostname: page-component-cd4964975-8cclj Total loading time: 0 Render date: 2023-03-27T15:02:23.271Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

9 - Cooperation and Conflict in Mutualisms with a Special Emphasis on Marine Cleaning Interactions

from Part III - Species Comparisons

Published online by Cambridge University Press:  08 February 2021

Walter Wilczynski
Affiliation:
Georgia State University
Sarah F. Brosnan
Affiliation:
Georgia State University
Get access

Summary

Take any ecology textbook and look up the chapter on interactions between species, and you will find that ecologists distinguish among three outcomes: mutualism, commensalism and parasitism/predation. Mutualisms are mutually beneficial (+/+), commensalisms are beneficial for one partner and neutral for the other (+/0), and parasitism/predation is beneficial for one and detrimental for the other (+/−). Mutualisms are at the core of the world as we know it; the evolution of the eukaryotic cell warranted the mutualistic integration of cell organelles (mitochondria and chloroplasts) into prokaryotic cells, and the radiation of flowering plants as a nutritional basis for the animal food chain is dependent on soil microorganisms for the fixation of nitrogen and phosphate as well as on pollinators (Bronstein, 2015). Therefore, studying mutualism is an integral part of ecological research and one that connects directly to understanding the evolution of cooperation. (See Chapter 4 for a discussion of mutualisms at the cell and genomic levels.)

Type
Chapter
Information
Cooperation and Conflict
The Interaction of Opposites in Shaping Social Behavior
, pp. 185 - 211
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aanen, D. K., Eggleton, P., Rouland-Lefèvre, C., Guldberg-Frøslev, T., Rosendahl, S., and Boomsma, J. J. (2002) The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proceedings of the National Academy of Sciences USA, 99(23): 1488714892.CrossRefGoogle ScholarPubMed
Axen, A. H., Leimar, O., and Hoffman, V. (1996) Signalling in a mutualistic interaction. Animal Behaviour, 52: 321333.CrossRefGoogle Scholar
Barbu, L., Guinand, C., Alvarez, N., Bergmüller, R., and Bshary, R. (2011) Cleaning wrasse species vary with respect to dependency on the mutualism and behavioural adaptations in interactions. Animal Behaviour, 82: 10671074.CrossRefGoogle Scholar
Binning, S. A., Rey, O., Wismer, S., Triki, Z., Glauser, G., Soares, M. C., and Bshary, R. (2017) Reputation management promotes strategic adjustment of service quality in cleaner wrasse. Scientific Reports, 7(1): 8425.CrossRefGoogle ScholarPubMed
Boesch, C. (1994) Cooperative hunting in wild chimpanzees. Animal Behaviour, 48: 653667.CrossRefGoogle Scholar
Borgeaud, C., and Bshary, R. (2015) Wild vervet monkeys trade tolerance and specific coalitionary support for grooming in experimentally induced conflicts. Current Biology, 25: 30113016.CrossRefGoogle ScholarPubMed
Bossan, B., Koehncke, A., and Hammerstein, P. (2011) A new model and method for understanding Wolbachia-induced cytoplasmic incompatibility. PLoS ONE, 6(5): e19757.CrossRefGoogle ScholarPubMed
Brandenburg, A., Kuhlemeier, C., and Bshary, R. (2012) Hawkmoth pollinators decrease seed set of a low nectar Petunia axillaris line through reduced probing time. Current Biology, 22:16351639.CrossRefGoogle ScholarPubMed
Brock, D. A., Douglas, T. E., Queller, D. C., and Strassmann, J. E. (2011) Primitive agriculture in a social amoeba. Nature, 469(7330): 393396.CrossRefGoogle Scholar
Bronstein, J. L. (1994) Conditional outcomes in mutualistic interactions. Trends in Ecology and Evolution, 9(6): 214217.CrossRefGoogle ScholarPubMed
Bronstein, J. L. (2001) Mutualisms. In Fox, C., Fairbairn, D., and Roff, D., eds., Evolutionary Ecology: Perspectives and Synthesis. Oxford University Press, pp. 315330.Google Scholar
Bronstein, J. L., ed. (2015) Mutualism. Oxford: Oxford University Press.CrossRefGoogle Scholar
Brosnan, S. F., Salwiczek, L., and Bshary, R. (2010) The interplay of cognition and cooperation. Philosophical Transactions of the Royal Society B: Biological Sciences, 365: 26992710.CrossRefGoogle ScholarPubMed
Brown, C. (2015) Fish intelligence, sentience and ethics. Animal Cognition, 18: 117.CrossRefGoogle ScholarPubMed
Bshary, R. (2001) The cleaner fish market. In Noë, R., Van Hooff, J. A. R. A. M., and Hammerstein, P., eds., Economics in Nature: Social Dilemmas, Mate Choice and Biological Markets. Cambridge: Cambridge University Press, pp. 146172.CrossRefGoogle Scholar
Bshary, R. (2002) Biting cleaner fish use altruism to deceive image-scoring client reef fish. Proceedings of the Royal Society London B Biological Sciences, 269: 20872093.CrossRefGoogle ScholarPubMed
Bshary, R., and Bergmüller, R. (2008) Distinguishing four fundamental approaches to the evolution of helping. Journal of Evolutionary Biology, 21: 405420.CrossRefGoogle ScholarPubMed
Bshary, R., and Bronstein, J. L. (2004) Game structures in mutualisms: What can the evidence tell us about the kind of models we need? Advances in the Study of Behaviour, 34: 59101.CrossRefGoogle Scholar
Bshary, R., and Bronstein, J. S. (2011) A general scheme to predict partner control mechanisms in pairwise cooperative interactions between unrelated individuals. Ethology, 117: 271283.CrossRefGoogle Scholar
Bshary, R., and D’Souza, A. (2005) Indirect reciprocity in interactions between cleaner fish and client reef fish. In McGregor, P., ed., Communication Networks. Cambridge: Cambridge University Press, pp. 521539.Google Scholar
Bshary, R., Gingins, S., and Vail, A. L. (2014) Social cognition in fishes. Trends in Cognitive Sciences, 8(9): 465471.CrossRefGoogle Scholar
Bshary, R., and Grutter, A. S. (2002a) Asymmetric cheating opportunities and partner control in a cleaner fish mutualism. Animal Behaviour, 63: 547555.CrossRefGoogle Scholar
Bshary, R., and Grutter, A. S. (2002b) Experimental evidence that partner choice is a driving force in the payoff distribution among cooperators or mutualists: The cleaner fish case. Ecology Letters, 5(1): 130136.CrossRefGoogle Scholar
Bshary, R., and Grutter, A. S. (2005) Punishment and partner switching cause cooperative behaviour in a cleaning mutualism. Biology Letters, 1(4): 396399.CrossRefGoogle Scholar
Bshary, R., and Grutter, A. S. (2006) Image scoring and cooperation in a cleaner fish mutualism. Nature, 441: 975978.CrossRefGoogle Scholar
Bshary, R., Grutter, A. S., Willener, A. S. T., and Leimar, O. (2008) Pairs of cooperating cleaner fish provide better service quality than singletons. Nature, 455(7215): 964966.CrossRefGoogle ScholarPubMed
Bshary, R., and Noë, R. (1997) Red colobus and diana monkeys provide mutual protection against predators. Animal Behaviour, 54: 14611474.CrossRefGoogle ScholarPubMed
Bshary, R., and Schäffer, D. (2002) Choosy reef fish select cleaner fish that provide high-quality service. Animal Behaviour, 63: 557564.CrossRefGoogle Scholar
Bshary, R., Wickler, W., and Fricke, H. (2002) Fish cognition: A primate’s eye view. Animal Cognition, 5(1): 113.CrossRefGoogle ScholarPubMed
Bshary, R., and Würth, M. (2001) Cleaner fish Labroides dimidiatus manipulate client reef fish by providing tactile stimulation. Proceedings of the Royal Society of London B Biological Science, 268: 14951501.CrossRefGoogle ScholarPubMed
Bshary, R., Zuberbühler, K., and van Schaik, C. P. (2016) Why mutual helping in most natural systems is neither conflict-free nor based on maximal conflict. Philosophical Transactions of the Royal Society B, 371: 20150091.CrossRefGoogle ScholarPubMed
Cheney, D. L., Moscovice, L. R., Heesen, M., Mundry, R., and Seyfarth, R. M. (2010) Contingent cooperation between wild female baboons. Proceedings of the National Academy of Sciences USA, 107(21): 95629566.CrossRefGoogle ScholarPubMed
Clutton-Brock, T. H., O’Riain, M. J., Brotherton, P. N. M., Gaynor, D., Kansky, R., Griffin, A. S., and Manser, M. (1999) Selfish sentinels in cooperative mammals. Science, 284: 16401644.CrossRefGoogle ScholarPubMed
Connor, R. C. (1986) Pseudo-reciprocity: Investing in altruism. Animal Behaviour, 34: 15621566.CrossRefGoogle Scholar
Côté, I. M. (2000) Evolution and ecology of cleaning symbioses in the sea. Oceanography and Marine Biology Annual Review, 38: 311355.Google Scholar
Curio, E. (1978) The adaptive significance of avian mobbing. I. Teleonomic hypotheses and predictions. Zeitschrift fur Tierpsychology, 48: 175183.Google Scholar
Currie, C. R., and Stuart, A. E. (2001) Weeding and grooming of pathogens in agriculture by ants. Proceedings of the Royal Society of London B Biological Science, 268: 10331039.CrossRefGoogle ScholarPubMed
Currie, C. R., Wong, B., Stuart, A. E. et al. (2003) Ancient tripartite coevolution in the attine ant–microbe symbiosis. Science, 299(5605): 386388.CrossRefGoogle ScholarPubMed
De Vos, A., and O’Riain, M. J. (2009) Sharks shape the geometry of a selfish seal herd: Experimental evidence from seal decoys. Biology Letters, 6(1): 4850.CrossRefGoogle ScholarPubMed
Diamond, J. (2002) Evolution, consequences and future of plant and animal domestication. Nature, 418: 700707.CrossRefGoogle ScholarPubMed
Ellers, J., Toby, K. E., Currie, C. R., McDonald, B. R., and Visser, B. (2012) Ecological interactions drive evolutionary loss of traits. Ecology Letters, 15: 10711082.CrossRefGoogle ScholarPubMed
Eshel, I., and Shaked, A. (2002) Partnership. Journal of Theoretical Biology, 208: 457474.Google Scholar
Field, T., Hernandez-Reif, M., and Diego, M. (2005) Cortisol decreases and serotonin and dopamine increase following massage therapy. International Journal of Neuroscience, 115: 13971413.CrossRefGoogle ScholarPubMed
FitzGibbon, C. D. (1990) Mixed-species grouping in Thomson’s and Grant’s gazelles: The antipredator benefits. Animal Behaviour, 39: 11161126.CrossRefGoogle Scholar
Flower, T. (2011) Fork-tailed drongos use deceptive mimicked alarm calls to steal food. Proceedings of the Royal Society of London B: Biological Sciences, 278: 15481555.Google ScholarPubMed
Gray, M. W., and Doolittle, W. F. (1982) Has the endosymbiont hypothesis been proven?. Microbiological Reviews, 46(1): 142.CrossRefGoogle ScholarPubMed
Grutter, A. S. (1995) Relationship between cleaning rates and ectoparasite loads in coral reef fishes. Marine Ecology Progress Series, 118: 5158.CrossRefGoogle Scholar
Grutter, A. S., and Bshary, R. (2003) Cleaner wrasse prefer client mucus: Support for partner control mechanisms in cleaning interactions. Proceedings of the Royal Society of London B Biological Science, 270: S242S244.CrossRefGoogle ScholarPubMed
Guimarães, P. R., Jr., Pires, M. M., Jordano, P., Bascompte, J., and Thompson, J. N. (2017) Indirect effects drive coevolution in mutualistic networks. Nature, 550(7677): 511.CrossRefGoogle ScholarPubMed
Hamilton, W. D. (1964a) The genetical evolution of social behaviour. I Journal of Theoretical Biology, 7(1): 116.CrossRefGoogle ScholarPubMed
Hamilton, W. D. (1964b) The genetical evolution of social behaviour. II. Journal of Theoretical Biology, 7(1): 1752.CrossRefGoogle ScholarPubMed
Hammerstein, P., and Noë, R. (2016) Biological trade and markets. Philosophical Transactions of the Royal Society B, 371(1687): 20150101.CrossRefGoogle ScholarPubMed
Hata, H., and Kato, M. (2006) A novel obligate cultivation mutualism between damselfish and Polysiphonia algae. Biology Letters, 2: 593596.CrossRefGoogle ScholarPubMed
Hauser, M. D. (1997) Minding the behaviour of deception. In Byrne, R. W., and Whiten, A., eds., Machiavellian Intelligence II: Extensions and Evaluations. Cambridge: Cambridge University Press, pp. 112143.Google Scholar
Herre, E. A., Knowlton, N., Mueller, U. G., and Rehner, S. A. (1999) The evolution of mutualisms: Exploring the paths between conflict and cooperation. Trends in Ecology and Evolution, 14: 4953.CrossRefGoogle ScholarPubMed
Huertas, V., and Bellwood, D. R. (2018) Feeding innovations and the first coral-feeding fishes. Coral Reefs, 37(3): 649658.CrossRefGoogle Scholar
Hulcr, J., and Cognato, A. I. (2010) Repeated evolution of crop theft in fungus-farming ambrosia beetles. Evolution, 64: 32053212.CrossRefGoogle ScholarPubMed
Janzen, D. H. (1966) Coevolution of mutualism between ants and acacias in Central America. Evolution, 20: 249275.CrossRefGoogle ScholarPubMed
Johnstone, R. A., and Bshary, R. (2008) Mutualism, market effects and partner control. Journal of Evolutionary Biology, 21(3): 879888.CrossRefGoogle ScholarPubMed
Jones, E. I., Afkhami, M. E., Akçay, E. et al. (2015) Cheaters must prosper: Reconciling theoretical and empirical perspectives on cheating in mutualism. Ecology Letters, 18(11): 12701284.CrossRefGoogle ScholarPubMed
Kenward, R. E. (1978) Hawks and doves: Factors affecting success and selection in goshawk attacks on woodpigeons. Journal of Animal Ecology, 47: 449460.CrossRefGoogle Scholar
Kiers, E. T., Duhamel, M., Beesetty, Y. et al. (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science, 333(6044): 880882.CrossRefGoogle ScholarPubMed
Kiers, E. T., Rousseau, R. A., West, S. A., and Denison, R. F. (2003) Host sanctions and the legume–rhizobium mutualism. Nature, 425: 7881.CrossRefGoogle ScholarPubMed
Kohda, M., Takashi, H., Takeyama, T., Awata, S., Tanaka, H., Asai, J., and Jordan, A. (2018) Cleaner wrasse pass the mark test. What are the implications for consciousness and self-awareness testing in animals? BioRxiv, 397067.Google Scholar
Kokko, H., Johnstone, R. A., and Clutton-Brock, T. H. (2001) The evolution of cooperative breeding through group augmentation. Proceedings of the Royal Society of London B Biological Science, 268: 187196.CrossRefGoogle ScholarPubMed
Kolodny, O., Lotem, A., and Edelman, S. (2015) Learning a generative probabilistic grammar of experience: A process-level model of language acquisition. Cognitive Science, 39(2): 227267.CrossRefGoogle ScholarPubMed
Landeau, L., and Terborgh, J. (1986) Oddity and the “confusion effect” in predation. Animal Behaviour, 34: 13721380.CrossRefGoogle Scholar
Lehmann, L., and Keller, L. (2006) The evolution of cooperation and altruism – A general framework and a classification of models. Journal of Evolutionary Biology, 19: 13651376.CrossRefGoogle Scholar
Lehmann, L., and Rousset, F. (2010) How life history and demography promote or inhibit the evolution of helping behaviours. Philosophical Transactions of the Royal Society of London B, 365(1553): 25992617.CrossRefGoogle ScholarPubMed
Leimar, O., and Connor, R. C. (2003) By-product benefits, reciprocity, and pseudoreciprocity in mutualism. In Hammerstein, P., ed., Genetic and Cultural Evolution of Cooperation. Cambridge, MA: MIT Press, pp. 203222.Google Scholar
Lieberman, D., Tooby, J., and Cosmides, L. (2007) The architecture of human kin detection. Nature, 445(7129): 727.CrossRefGoogle ScholarPubMed
Machado, C. A., Robbins, N., Gilbert, M. T. P., and Herre, E. A. (2005) Critical review of host specificity and its coevolutionary implications in the fig/fig-wasp mutualism. Proceedings of the National Academy of Sciences USA, 102(Suppl 1): 65586565.CrossRefGoogle ScholarPubMed
McGregor, P. K. (1993) Signalling in territorial systems: A context for individual identification, ranging and eavesdropping. Philosophical Transactions of the Royal Society London B, 340(1292): 237244.Google Scholar
Melis, A. P., Hare, B., and Tomasello, M. (2006) Chimpanzees recruit the best collaborators. Science, 311(5765): 12971300.CrossRefGoogle ScholarPubMed
Müller, C. B., and Krauss, J. (2005) Symbiosis between grasses and asexual fungal endophytes. Current Opinion in Plant Biology, 8: 450456.CrossRefGoogle ScholarPubMed
Nelsen, M. P., Ree, R. H., and Moreau, C. S. (2018) Ant–plant interactions evolved through increasing interdependence. Proceedings of the National Academy of Sciences USA, 115 (48): 1225312258.CrossRefGoogle ScholarPubMed
Noë, R. (1990) A veto game played by baboons: A challenge to the use of the Prisoner’s Dilemma as a paradigm for reciprocity and cooperation. Animal Behaviour, 39(1): 7890.CrossRefGoogle Scholar
Noë, R., and Hammerstein, P. (1994) Biological markets: Supply and demand determine the effect of partner choice in cooperation, mutualism and mating. Behavioral Ecology and Sociobiology, 35(1): 111.CrossRefGoogle Scholar
Noë, R., and Hammerstein, P. (1995) Biological markets. Trends in Ecology and Evolution, 10: 336339.CrossRefGoogle ScholarPubMed
Noë, R., and Kiers, E. T. (2018) Mycorrhizal markets, firms, and co-ops. Trends in Ecology and Evolution, 33(10): 777789.CrossRefGoogle ScholarPubMed
Noë, R., van Schaik, C. P., and van Hooff, J. A. R. A. M. (1991) The market effect: An explanation for pay-off asymmetries among collaborating animals. Ethology, 87: 97118.CrossRefGoogle Scholar
Olesen, J. M., Bascompte, J., Dupont, Y. L., and Jordano, P. (2007) The modularity of pollination networks. Proceedings of the National Academy of Sciences USA, 104(50): 1989119896.CrossRefGoogle ScholarPubMed
Palmer, T. M., Stanton, M. L., and Young, T. P. (2003) Competition and coexistence: Exploring mechanisms that restrict and maintain diversity within mutualist guilds. The American Naturalist, 162(S4): S63S79.CrossRefGoogle ScholarPubMed
Pepperberg, I. M., and Hartsfield, L. A. (2014) Can grey parrots (Psittacus erithacus) succeed on a “complex” foraging task failed by nonhuman primates (Pan troglodytes, Pongo abelii, Sapajus paella) but solved by wrasse fish (Labroides dimidiatus)? Journal of Comparative Psychology, 128(3): 298306.CrossRefGoogle Scholar
Pierce, N. E., Braby, M. F., Heath, A., Lohman, D. J., Mathew, J., Rand, D. B., and Travassos, M. A. (2002) The ecology and evolution of ant association in the Lycaenidae (Lepidoptera) Annual Review of Entomology, 47: 733771.CrossRefGoogle Scholar
Pinto, A., Oates, J., Grutter, A., and Bshary, R. (2011) Cleaner wrasses Labroides dimidiatus are more cooperative in the presence of an audience. Current Biology, 21(13): 11401144.CrossRefGoogle ScholarPubMed
Pion, M., Spangenberg, J. E., Simon, A. et al. (2013) Bacterial farming by the fungus Morchella crassipes. Proceedings of the Royal Society of London B: Biological Sciences, 280(1773): 20132242.Google ScholarPubMed
Quiñones, A., Lotem, A., Leimar, O., and Bshary, R (2020) Reinforcement learning theory reveals the cognitive requirements for solving the cleaner fish market task. American Naturalist, 195(4): 664677.CrossRefGoogle ScholarPubMed
Raihani, N. J., Grutter, A. S., and Bshary, R. (2010) Punishers benefit from third-party punishment in fish. Science, 327(5962): 171171.CrossRefGoogle ScholarPubMed
Raihani, N. J., Thornton, A., and Bshary, R. (2012) Punishment and cooperation in nature. Trends in Ecology and Evolution, 27(5): 288295.CrossRefGoogle ScholarPubMed
Roberts, G. (2005) Cooperation through interdependence. Animal Behaviour, 70(4): 901908.CrossRefGoogle Scholar
Robertson, D. R. (1973) Field observations on the reproductive behaviour of a pomacentrid fish, Acanthochromis polyacanthus. Zeitschrift Für Tierpsychologie, 32(3): 319324.CrossRefGoogle ScholarPubMed
Sachs, J. L., Mueller, U. G., Wilcox, T. P., and Bull, J. J. (2004) The evolution of cooperation. Quarterly Review of Biology, 79(2): 135160.CrossRefGoogle ScholarPubMed
Salwiczek, L. H., and Bshary, R. (2011) Cleaner wrasses keep track of the ‘when’ and ‘what’ in a foraging task 1. Ethology, 117(11): 939948.CrossRefGoogle Scholar
Salwiczek, L. H., Prétôt, L., Demarta, L. et al. (2012) Adult cleaner wrasse outperform capuchin monkeys, chimpanzees and orang-utans in a complex foraging task derived from cleaner – client reef fish cooperation. PLoS ONE, 7(11): e49068.CrossRefGoogle Scholar
Schino, G., and Aureli, F. (2008) Grooming reciprocation among female primates: A meta-analysis. Biology Letters, 4: 911.CrossRefGoogle ScholarPubMed
Seyfarth, R. M. (1977) A model of social grooming among adult female monkeys. Journal of Theoretical Biology, 65(4): 671698.CrossRefGoogle Scholar
Silk, J. B., Alberts, S. C., and Altmann, J. (2003) Social bonds of female baboons enhance infant survival. Science, 302: 12311234.CrossRefGoogle ScholarPubMed
Soares, M. C., Cardoso, S. C., Nicolet, K. J., Côté, I. M., and Bshary, R. (2013) Indo-Pacific parrotfish exert partner choice in interactions with cleanerfish but Caribbean parrotfish do not. Animal Behaviour, 86: 611615.CrossRefGoogle Scholar
Soares, M. C., Côté, I. M., Cardoso, S. C., Oliveira, R. F., and Bshary, R. (2010) Caribbean cleaning gobies prefer client ectoparasites over mucus. Ethology, 116: 12441248.Google Scholar
Soares, M. C., Côté, I. M., Cardoso, S. C., and Bshary, R. (2008) The cleaning goby mutualism: A system without punishment, partner switching or tactile stimulation: Choice options and partner control. Journal of Zoology, 276(3): 306312.CrossRefGoogle Scholar
Soares, M. S., Oliveira, R. F., Ros, A. F. H., Grutter, A. S., and Bshary, R. (2011) Tactile stimulation lowers stress in fish. Nature Communications, 2: 534.CrossRefGoogle ScholarPubMed
Spottiswoode, C. N., Begg, K. S., and Begg, C. M. (2016) Reciprocal signaling in honeyguide-human mutualism. Science, 353(6297): 387389.CrossRefGoogle ScholarPubMed
Stander, P. E. (1992) Foraging dynamics of lions in a semi-arid environment. Canadian Journal of Zoology, 70: 821.CrossRefGoogle Scholar
Taborsky, M. (1984) Broodcare helpers in the cichlid fish Lamprologus brichardi: Their costs and benefits. Animal Behaviour, 32(4): 12361252.CrossRefGoogle Scholar
Tebbich, S., Bshary, R., and Grutter, A. S. (2002) Cleaner fish Labroides dimidiatus recognise familiar clients. Animal Cognition, 5(3): 139145.CrossRefGoogle ScholarPubMed
Tomasello, M., Melis, A. P., Tennie, C., Wyman, E., Herrmann, E. (2012) Two key steps in the evolution of human cooperation: The interdependence hypothesis. Current Anthropology, 53(6), 000000.CrossRefGoogle Scholar
Triki, Z., Wismer, S., Levorato, E., and Bshary, R. (2018) A decrease in the abundance and strategic sophistication of cleaner fish after environmental perturbations. Global Change Biology, 24: 481489.CrossRefGoogle ScholarPubMed
Triki, Z., Wismer, S., Rey, O., Binning, S. A., Levorato, E., and Bshary, R. (2019) Biological market effects predict cleaner fish strategic sophistication. Behavioral Ecology, online https://doi. org/10.1093/beheco/arz111.CrossRefGoogle Scholar
Vail, A. L., Manica, A., and Bshary, R. (2013) Referential gestures in fish collaborative hunting. Nature Communications, 4: 1765.CrossRefGoogle ScholarPubMed
Vail, A. L., Manica, A., and Bshary, R. (2014) Fish choose appropriately when and with whom to collaborate. Current Biology, 24: R791R793.CrossRefGoogle ScholarPubMed
Vaughan, D. B., Grutter, A. S., Costello, M. J., and Hutson, K. S. (2017) Cleaner fishes and shrimp diversity and a re‐evaluation of cleaning symbioses. Fish and Fisheries, 18(4): 698716.Google Scholar
Vázquez, D. P., Blüthgen, N., Cagnolo, L., and Chacoff, N. P. (2009) Uniting pattern and process in plant–animal mutualistic networks: A review. Annals of Botany, 103: 14451457.CrossRefGoogle ScholarPubMed
Wainwright, P. C., Bellwood, D. R., Westneat, M. W., Grubich, J. R., and Hoey, A. S. (2004) A functional morphospace for the skull of labrid fishes: Patterns of diversity in a complex biomechanical system. Biological Journal of the Linnean Society, 82(1): 125.CrossRefGoogle Scholar
Weeks, P. (2000) Red-billed oxpeckers: Vampires or tickbirds? Behavioral Ecology, 11: 154160.CrossRefGoogle Scholar
Werren, J. H. (1997) Biology of Wolbachia. Annual Review of Entomology, 42: 587609.CrossRefGoogle ScholarPubMed
West, S. A., Pen, I., and Griffin, A. S. (2002) Cooperation and competition between relatives. Science, 296: 7275.CrossRefGoogle ScholarPubMed
Wismer, S., Grutter, A., and Bshary, R. (2016) Generalized rule application in bluestreak cleaner wrasse (Labroides dimidiatus): Using predator species as social tools to reduce punishment. Animal Cognition, 19(4): 769778.Google ScholarPubMed
Wismer, S., Pinto, A. I., Vail, A. L., Grutter, A. S., and Bshary, R. (2014) Variation in cleaner wrasse cooperation and cognition: Influence of the developmental environment? Ethology, 120(6): 519531.CrossRefGoogle Scholar
Wubs, M., Bshary, R., and Lehmann, L. (2018) A reinforcement learning model for grooming up the hierarchy in primates. Animal Behaviour, 138: 165185.CrossRefGoogle Scholar
Zappes, C. A., Andriolo, A., Simões-Lopes, P. C., and Di Beneditto, A. P. M. (2011) “Human?dolphin (Tursiops truncatus Montagu, 1821) cooperative fishery” and its influence on cast net fishing activities in Barra de Imbé/Tramandaí, Southern Brazil. Ocean and Coastal Management, 54(5): 427432.CrossRefGoogle Scholar
Zentall, T. R., Case, J. P., and Berry, J. R. (2017) Rats’ acquisition of the ephemeral reward task. Animal Cognition, 20(3): 419425.CrossRefGoogle ScholarPubMed
Zentall, T. R., Case, J. P., and Luong, J. (2016) Pigeon’s (Columba livia) paradoxical preference for the suboptimal alternative in a complex foraging task. Journal of Comparative Psychology, 130(2): 138144.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×