Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-bkjnw Total loading time: 0.389 Render date: 2021-10-21T02:25:25.728Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

4 - Black hole binaries

Published online by Cambridge University Press:  01 September 2009

Jeffrey E. McClintock
Affiliation:
Harvard–Smithsonian Center for Astrophysics
Ronald A. Remillard
Affiliation:
Center for Space Research, MIT
Walter Lewin
Affiliation:
Massachusetts Institute of Technology
Michiel van der Klis
Affiliation:
Universiteit van Amsterdam
Get access

Summary

Introduction

Scope of this review

We focus on 18 black holes with measured masses that are located in X-ray binary systems. These black holes are the most visible representatives of an estimated ∼300 million stellar-mass black holes that are believed to exist in the Galaxy (van den Heuvel 1992; Brown & Bethe 1994; Timmes et al. 1996; Agol et al. 2002). Thus the mass of this particular form of dark matter, assuming ∼10 M per black hole, is ∼4% of the total baryonic mass (i.e., stars plus gas) of the Galaxy (Bahcall 1986; Bronfman et al. 1988). Collectively this vast population of black holes outweighs the galactic-center black hole, SgrA*, by a factor of ∼1000. These stellar-mass black holes are important to astronomy in numerous ways. For example, they are one endpoint of stellar evolution for massive stars, and the collapse of their progenitor stars enriches the Universe with heavy elements (Woosley et al. 2002). Also, the measured mass distribution for even the small sample of 18 black holes featured here is used to constrain models of black hole formation and binary evolution (Brown et al. 2000a; Fryer & Kalogera 2001; Nelemans & van den Heuvel 2001). Lastly, some black hole binaries appear to be linked to the hypernovae believed to power gamma-ray bursts (Israelian et al. 1999; Brown et al. 2000b; Orosz et al. 2001).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
348
Cited by

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×