Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-05T21:19:11.973Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

Bibliography

José Luis Bermúdez
Affiliation:
Texas A & M University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Cognitive Science
An Introduction to the Science of the Mind
, pp. 473 - 485
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adolphs, R., and Tranel, D. (2000). Emotion recognition and the human amygdala. In Aggleton, J. P. (ed.), The Amygdala: A Functional Analysis. Oxford: Oxford University Press.Google Scholar
Adolphs, R., Tranel, D., Damasio, H., and Damasio, A. (1994). Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature, 372, 669–72.CrossRefGoogle ScholarPubMed
Anderson, J. A. (2003). McCulloch-Pitts neurons. In Nadel, L. (ed.), Encyclopedia of Cognitive Science. New York: Nature Publishing Group.Google Scholar
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., and Qin, Y. (2004). An integrated theory of the mind. Psychological Review, 4, 1036–160.CrossRefGoogle Scholar
Apperly, I. A., Samson, D., Chiavarino, C., and Humphreys, G. W. (2004). Frontal and temporo-parietal lobe contributions to theory of mind: Neuropsychological evidence from a false-belief task with reduced language and executive demands. Journal of Cognitive Neuroscience, 16, 1773–84.CrossRefGoogle ScholarPubMed
Apperly, I. A., Samson, D., and Humphreys, G. W. (2005). Domain-specificity and theory of mind: Evaluating neuropsychological evidence. Trends in Cognitive Science, 9, 572–7.CrossRefGoogle ScholarPubMed
Arbib, M. A. (1987). Brains, Machines, and Mathematics. New York: Springer.CrossRefGoogle Scholar
Arbib, M. A. (2003). The Handbook of Brain Theory and Neural Networks. Cambridge, MA; London: MIT Press.Google Scholar
Arkin, R. C. (1998). Behavior-Based Robotics. Cambridge, MA: MIT Press.Google Scholar
Baddeley, A. D. (2003). Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4, 829–39.CrossRefGoogle ScholarPubMed
Baddeley, A. (2007). Working Memory, Thought, and Action. New York: Oxford University Press.CrossRefGoogle Scholar
Baddeley, A. D., and Hitch, G. J. L. (1974). Working memory. In Bower, G. A. (ed.), The Psychology of Learning and Motivation: Advances and Research. New York: Academic Press.Google Scholar
Baillargeon, R. (1986). Representing the existence and the location of hidden objects: Object permanence in 6- and 8-month-old infants. Cognition, 23, 21–41.CrossRefGoogle ScholarPubMed
Baillargeon, R. (1987). Object permanence in 3- and 4-month-old infants. Developmental Psychology, 23, 655–64.CrossRefGoogle Scholar
Bandettini, P. A., and Ungerleider, L. G. (2001). From neuron to BOLD: New connections. Nature Neuroscience, 4, 864–6.CrossRefGoogle ScholarPubMed
Baron-Cohen, S. (1995). Mindblindness: An Essay on Autism and Theory of Mind. Cambridge MA: MIT Press.Google Scholar
Baron-Cohen, S. (2005). The empathizing system: A revision of the 1994 model of the mindreading system. In Ellis, B. and Bjorklund, D. (eds.), Origins of the Social Mind. New York: Guilford.Google Scholar
Baron-Cohen, S., Leslie, A. M., and Frith, U. (1985). Does the autistic child have a “theory of mind”?Cognition, 21, 37–46.CrossRefGoogle ScholarPubMed
Baron-Cohen, S., Tager-Flusberg, H., and Cohen, D. J. (eds.) (2000). Understanding Other Minds: Perspectives from Developmental Cognitive Neuroscience. New York: Oxford University Press.
Bassett, D. S., and Bullmore, E. (2006). Small-world brain networks. Neuroscientist, 12, 512–23.CrossRefGoogle ScholarPubMed
Bechtel, W. (1999). Unity of science. In Wilson, R. A. and Keil, F. (eds.), The MIT Encyclopedia Of Cognitive Science. Cambridge, MA: MIT Press.Google Scholar
Bechtel, W., Mandik, P., Mundale, J., and Stufflebeam, R. S. (eds.) (2001). Philosophy and the Neurosciences: A Reader. Malden, MA: Blackwell.Google Scholar
Bechtel, W., and Abrahamsen, A. A. (2002). Connectionism and the Mind: Parallel Processing, Dynamics and Evolution in Networks. Cambridge, MA: Blackwell.Google Scholar
Bermúdez, J. L. (2005). Philosophy of Psychology: A Contemporary Introduction. New York: Routledge.Google Scholar
Bermúdez, J. L. (ed.) (2006). Philosophy of Psychology: Contemporary Readings. London: Routledge.Google Scholar
Block, N. (ed.) (1981). Imagery. Cambridge, MA: MIT Press.
Block, N. (1995). The mind as the software of the brain. In Osherson, D., Gleitman, L., Kosslyn, S. M., Smith, E., and Sternberg, R. J. (eds.), An Invitation to Cognitive Science. Cambridge, MA: MIT Press.
Bloom, P., and German, T. P. (2000). Two reasons to abandon the false belief task as a test of theory of mind. Cognition, 77, B25–B31.CrossRefGoogle ScholarPubMed
Boden, M. A. (1990a). Escaping from the Chinese room. In The Philosophy of Artificial Intelligence. Oxford: Oxford University Press.Google Scholar
Boden, M. A. (ed). (1990b). The Philosophy of Artificial Intelligence. Oxford; New York: Oxford University Press.
Boden, M. A. (2006). Mind as Machine: A History of Cognitive Science. Oxford; New York: Oxford University Press.
Boucher, J. (1996). What could possibly cause autism? In Carruthers, P. and Smith, P. K. (eds.), Theories of Theory of Mind. Cambridge:Cambridge University Press.Google Scholar
Brachman, R. J., and Levesque, H. J. (eds.) (1985). Readings in Knowledge Representation. Los Altos, CA: M. Kaufmann.
Bremner, G. J. (1994). Infancy. Oxford: Wiley-Blackwell.Google Scholar
Bressler, S. L., Tang, W., Sylvester, C. M., Shulman, G. L., and Corbetta, M. (2008). Top-down control of human visual cortex by frontal and parietal cortex in anticipatory visual spatial attention. Journal of Neuroscience, 28, 10056–61.CrossRefGoogle ScholarPubMed
Broadbent, D. E. (1954). The role of auditory localization in attention and memory span. Journal of Experimental Psychology, 47, 191–6.CrossRefGoogle ScholarPubMed
Broadbent, D. E. (1958). Perception and Communication. London: Pergamon Press.CrossRefGoogle Scholar
Brook, A. (2007). The Prehistory of Cognitive Science. Basingstoke; New York: Palgrave Macmillan.Google Scholar
Brooks, R. (1991). Intelligence without representation. Artificial Intelligence, 47, 139–59.CrossRefGoogle Scholar
Brooks, R. Reprinted in J. Haugeland (ed.) (1997), Mind Design II: Philosophy, Psychology, Artificial Intelligence. Cambridge, MA: MIT Press.Google Scholar
Brooks, R. (1999). Cambrian Intelligence: The Early History of the New AI. Cambridge, MA: MIT Press.Google Scholar
Carruthers, P. (2006). The Architecture of the Mind. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Carruthers, P. (2008a). On Fodor-fixation, flexibility, and human uniqueness: A reply to Cowie, Machery, and Wilson. Mind and Language, 23, 293–303.CrossRefGoogle Scholar
Carruthers, P. (2008b). Precis of The Architecture of the Mind: Massive Modularity and the Flexibility of Thought. Mind and Language, 23, 257–62.CrossRefGoogle Scholar
Carruthers, P., and Smith, P. K. (eds.) (1996). Theories of Theory of Mind. Cambridge: Cambridge University Press.CrossRef
Chelazzi, L., and Corbetta, M. (2000). Cortical mechanisms of visuospatial attention in the primate brain. In Gazzaniga, M. S. (ed.), The New Cognitive Neurosciences (2nd edn.). Cambridge, MA: MIT Press.Google Scholar
Chomsky, N. (1957). Syntactic Structures. Gravenhage: Mouton.Google Scholar
Chomsky, N. (1959). A review of B. F. Skinner's Verbal Behavior. Language, 35, 26–58.CrossRefGoogle Scholar
Christiansen, M. H., and Chater, N. (2001). Connectionist Psycholinguistics. Westport, CT: Ablex.Google ScholarPubMed
Churchland, P. M. (1990a). On the nature of theories: A neurocomputational perspective. In A Neurocomputational Perspective: The Nature of Mind and the Structure of Science. Cambridge, MA: MIT Press.Google Scholar
Churchland, P. M. (1990b). Cognitive activity in artificial neural networks. In Block, N. and Osherson, D. (eds.), Invitation to Cognitive Science. Cambridge, MA: MIT Press. Reprinted in Cummins, R. and Cummins, D. D. (2000), Minds, Brains, and Computers: The Foundations of Cognitive Science: An Anthology. Malden, MA: Blackwell.Google Scholar
Churchland, P. M. (2007). Neurophilosophy at Work. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Churchland, P. S. (1986). Neurophilosophy: Toward a Unified Science of the Mind/Brain. Cambridge, MA: MIT Press.Google Scholar
Churchland, P. S., and Sejnowski, T. J. (1992). The Computational Brain. Cambridge, MA: MIT Press.Google Scholar
Clancey, W. J. (1997). Situated Cognition: On Human Knowledge and Computer Representations. Cambridge: Cambridge University Press.Google Scholar
Clark, A. (1989). Microcognition: Philosophy, Cognitive Science, and Parallel Distributed Processing. Cambridge, MA: MIT Press.Google Scholar
Clark, A. (1993). Associative Engines: Connectionism, Concepts, and Representational Change. Cambridge, MA: MIT Press.Google Scholar
Clark, A. (1997). Being There: Putting Brain, Body, and World Together Again. Cambridge, MA: MIT Press.Google Scholar
Clark, A. (1998). Time and mind. Journal of Philosophy, 95, 354–76.CrossRefGoogle Scholar
Clark, A. (2001). Mindware: An Introduction to the Philosophy of Cognitive Science. New York: Oxford University Press.Google Scholar
Cooper, L. A., and Shepard, R. N. (1973). The time required to prepare for a rotated stimulus. Memory and Cognition, 1, 246–50.CrossRefGoogle Scholar
Copeland, J. G. (1993). Artificial Intelligence: A Philosophical Introduction. Oxford; Cambridge, MA: Blackwell.Google Scholar
Corkin, S. (2002). What's new with the amnesic patient H.M.?Nature Reviews Neuroscience, 3, 153–60.CrossRefGoogle ScholarPubMed
Cosmides, L. (1989). The logic of social exchange: Has natural selection shaped how humans reason? Studies with the Wason selection task. Cognition, 31, 187–276.CrossRefGoogle ScholarPubMed
Cosmides, L., and Tooby, J. (1992). Cognitive adaptations for social exchange. In J. Berkow, L. Cosmides, and J. Tooby (eds.), The Adapted Mind: Evolutionary Psychology and the Generation of Culture. New York: Oxford University Press.Google Scholar
Cosmides, L., and Tooby, J. (1994). Origins of domain-specificity: The evolution of functional organization. In Hirschfeld, L. A. and Gelman, S. F. (eds.), Mapping the Mind: Domain Specificity in Cognition and Culture. Cambridge: Cambridge University Press. Reprinted inBermúdez, J. L. (ed.) (2006), Philosophy of Psychology: Contemporary Readings. London: Routledge.Google Scholar
Cowie, F. (2008). Us, them and it: Modules, genes, environments and evolution. Mind and Language, 23, 284–92.CrossRefGoogle Scholar
Crane, T. (2003). The Mechanical Mind: A Philosophical Introduction to Minds, Machines, and Mental Representation. London; New York: Routledge.Google Scholar
Craver, C. (2007). Explaining the Brain: Mechanisms and the Mosaic Unity of Neuroscience. New York: Oxford University Press.CrossRefGoogle Scholar
Cummins, R. (2000). “How does it work?” versus “What are the laws?” In Keil, F. C. and Wilson, R. A. (eds.), Explanation and Cognition. Cambridge, MA: MIT Press.Google Scholar
Cummins, R., and Cummins, D. D. (2000). Minds, Brains, and Computers: The Foundations of Cognitive Science: An Anthology. Malden, MA: Blackwell.Google Scholar
Cutland, N. J. (1980). Computability: An Introduction to Recursive Function Theory. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Davies, M., and Stone, T. (eds.) (1995a). Folk Psychology. Oxford: Blackwell.
Davies, M., and Stone, T. (eds.) (1995b). Mental Simulation. Oxford: Blackwell.
Davis, M. (2000). The Universal Computer: The Road from Leibniz to Turing. New York: Norton.Google Scholar
Davis, M. (2001). Engines of Logic: Mathematicians and the Origin of the Computer. New York: Norton.Google Scholar
Davis, S. (1993). Connectionism: Theory and Practice. New York:Oxford University Press.Google Scholar
Dawkins, R. (1979). Twelve misunderstandings of kin selection. Zeitschrift für Tierpsychologie, 51, 184–200.Google Scholar
Dawson, M. R. W. (1998). Understanding Cognitive Science. Oxford: Blackwell.Google Scholar
Dawson, M. R. W. (2004). Minds and Machines: Connectionism and Psychological Modeling. Oxford:Blackwell.CrossRefGoogle Scholar
Dawson, M. R. W. (2005). Connectionism: A Hands-On Approach. Oxford: Blackwell.CrossRefGoogle Scholar
Dennett, D. (1984). Cognitive wheels: The frame problem in artificial intelligence. In Hookway, C. (ed.), Minds, Machines, and Evolution. Cambridge: Cambridge University Press.Google Scholar
Dreyfus, H. L. (1977). Artificial Intelligence and Natural Man. New York: Basic Books.Google Scholar
Eliasmith, C. (1996). The third contender: A critical exmination of the dynamicist theory of cognition. Philosophical Psychology, 9, 441–63.CrossRefGoogle Scholar
Elliott, M. H. (1928). The effect of change or reward on the maze performance of rats. University of California Publications in Psychology, 4, 19–30.Google Scholar
Elman, J. L., Bates, E. A., Johnson, M. H., and Karmiloff-Smith, A. (1996). Rethinking Innateness: A Connectionist Perspective on Development. Cambridge, MA: MIT Press.Google Scholar
Evans, J. S. B. T., and Over, D. (2004). If. Oxford:Oxford University Press.CrossRefGoogle Scholar
Felleman, D. J., and Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1, 1–47.CrossRefGoogle ScholarPubMed
Flanagan, O. J. (1991). The Science of the Mind. Cambridge, MA: MIT Press.Google Scholar
Fodor, J. (1975). The Language of Thought. Cambridge, MA: Harvard University Press.Google Scholar
Fodor, J. (1983). The Modularity of Mind. Cambridge, MA: MIT Press.Google Scholar
Fodor, J. (1985). Precis of The Modularity of Mind. Behavioral and Brain Sciences, 1, 1–5.CrossRefGoogle Scholar
Fodor, J. (1987). Psychosemantics. Cambridge, MA: MIT Press.Google Scholar
Fodor, J. (2000). The Mind Doesn't Work That Way: The Scope and Limits of Computational Psychology. Cambridge, MA: MIT Press.Google Scholar
Fodor, J., and Pylyshyn, Z. (1988). Connectionism and cognitive architecture: A critical analysis. Cognition, 28, 3–71.CrossRefGoogle ScholarPubMed
Franklin, S. (1995). Artificial Minds. Cambridge, MA: MIT Press.Google Scholar
Friedenberg, J., and Silverman, G. (2006). Cognitive Science : An Introduction to the Study of Mind. Thousand Oaks, CA: Sage.Google Scholar
Funt, B. V. (1980). Problem-solving with diagrammatic representations. Artificial Intelligence, 13, 201–30. Reprinted in Brachman, R. J. and Levesque, H. J. (eds.) (1985), Readings in Knowledge Representation. Los Altos, CA: M. Kaufmann.Google Scholar
Gallistel, C. R. (1990). The Organization of Learning. Cambridge, MA: MIT Press.Google Scholar
Gardner, H. (1985). The Mind's New Science : A History of the Cognitive Revolution. New York: Basic Books.Google Scholar
Gazzaniga, M. S. (ed.) (1995). The New Cognitive Neurosciences (1st edn.). Cambridge, MA: MIT Press.
Gazzaniga, M. S. (ed.) (2000). The New Cognitive Neurosciences (2nd edn.). Cambridge, MA: MIT Press.
Gazzaniga, M. S. (ed.) (2004). The New Cognitive Neurosciences (3rd edn.). Cambridge, MA: MIT Press.
Gazzaniga, M. S., Ivry, R. B., and Mangun, G. R. (2008). Cognitive Neuroscience: The Biology of the Mind. New York: Norton.Google Scholar
Gleitman, H., Fridlund, A. J., and Reisberg, D. (2004). Psychology. New York: Norton.Google Scholar
Goldman, A. (2006). Simulating Minds. New York: Oxford University Press.CrossRefGoogle Scholar
Gopnik, A., and Meltzoff, A. N. (1997). Words, Thoughts, and Theories. Cambridge, MA: MIT Press.Google Scholar
Gordon, R. (1986). Folk psychology as simulation. Mind and Language, 1, 158–71.CrossRefGoogle Scholar
Gorman, R. P., and Sejnowski, T. J. (1988). Analysis of hidden units in a layered network trained to identify sonar targets. Neural Networks, 1, 75–89.CrossRefGoogle Scholar
Grainger, J., and Jacobs, A. M. (1998). Localist Connectionist Approaches to Human Cognition. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
Griggs, R. A., and Cox, J. R. (1982). The elusive thematic materials effect in the Wason selection task. British Journal of Psychology, 73, 407–20.CrossRefGoogle Scholar
Hadley, R. F. (2000). Cognition and the computational power of connectionist networks. Connection Science, 12, 95–110.CrossRefGoogle Scholar
Harnad, S. (1990). The symbol-grounding problem. Physica D, 42, 335–46.CrossRefGoogle Scholar
Haugeland, J. (1985). Artificial Intelligence: The Very Idea. Cambridge, MA: MIT Press.Google Scholar
Haugeland, J. (1997). Mind Design II : Philosophy, Psychology, Artificial Intelligence. Cambridge, MA: MIT Press.Google Scholar
Heal, J. (1986) Replication and functionalism. In Butterfield, J. (ed.), Language, Mind and Logic. Cambridge: Cambridge University Press.Google Scholar
Hebb, D. O. (1949). The Organization of Behavior: A Neuropsychological Theory. New York: Wiley.Google Scholar
Heeger, D. J., and Ress, D. (2002). What does fMRI tell us about neuronal activity?Nature Reviews Neuroscience, 3, 142–51.CrossRefGoogle ScholarPubMed
Heil, J. (2004). Philosophy of Mind: A Guide and Anthology. New York: Oxford University Press.Google Scholar
Henson, R. (2006). Forward inference using functional neuroimaging: Dissociations versus associations. Trends in Cognitive Sciences, 10, 64–9.CrossRefGoogle ScholarPubMed
Hinton, G. E., McClelland, J. L., and Rumelhart, D. E. (1986). Distributed representations. In Rumelhart, D. E. and McClelland, J. L. and the PDP Research Group, (eds.), Parallel Distributed Processing: Explorations in the Microstructures of Cognition, vol. 1: Foundations. Cambridge, MA: MIT Press.Google Scholar
Hirschfeld, L. A., and Gelman, S. F. (eds.) (1994). Mapping the Mind: Domain Specificity in Cognition and Culture. Cambridge: Cambridge University Press.CrossRef
Hopfinger, J. B., Luck, S. J., and Hillyard, S. A. (2004). Selective attention: Electrophysiological and neuromagnetic studies. In Gazzaniga, M. (ed.), The Cognitive Neurosciences (3rd edn.). Cambridge, MA: MIT Press.Google Scholar
Houghton, G. (2005). Connectionist Models in Cognitive Psychology. Oxford: Oxford University Press.Google Scholar
Humphreys, G. W., Duncan, J., and Treisman, A. (eds.) (1999). Attention, Space, and Action: Studies in Cognitive Neuroscience. Oxford; New York: Oxford University Press.
Hutchins, E. (1995). Cognition in the Wild. Cambridge, MA: MIT Press.Google Scholar
Iacoboni, M., and Dapretto, M. (2006). The mirror neuron system and the consequences of its dysfunction. Nature Reviews Neuroscience, 7, 942–51.CrossRefGoogle ScholarPubMed
Jackson, P. (1998). Introduction to Expert Systems. Harlow, UK: Addison-Wesley.Google Scholar
Jacob, P., and Jeannerod, M. (2003). Ways of Seeing: The Scope and Limits of Visual Cognition. New York: Oxford University Press.CrossRefGoogle Scholar
Jirsa, V. K., and McIntosh, A. R. (eds.) (2007). The Handbook of Brain Connectivity. Berlin: Springer.CrossRef
Johnson, K. (2004). Gold's theorem and cognitive science. Philosophy of Science, 71, 571–92.CrossRefGoogle Scholar
Johnson-Laird, P. N. (1988). Computer and the Mind : An Introduction to Cognitive Science. Cambridge, MA: Harvard University Press.Google Scholar
Jones, J., and Roth, D. (2003). Robot Programming: A Practical Guide to Behavior-Based Robotics. New York: McGraw-Hill.Google Scholar
Kalat, J. W. (2001). Introduction to Psychology. Belmont, CA; London: Wadsworth.Google Scholar
Kandel, E. R., Schwarz, J. H., and Jessell, T. M. (2000). Principles of Neural Science. New York: McGraw-Hill Medical.Google Scholar
Kelly, W. M., Macrae, C. N., Wyland, C. L., Caglar, S., Inati, S., and Heatherton, T. F. (2002). Finding the self? An event-related fMRI study. Journal of Cognitive Neuroscience, 14, 785–94.CrossRefGoogle Scholar
Kosslyn, S. M. (1973). Scanning visual images: Some structural implications. Perception and Psychophysics, 14, 341–70.CrossRefGoogle Scholar
Kosslyn, S. M., Thompson, W. L., and Ganis, G. (2006). The Case for Mental Imagery. Oxford: Oxford University Press.CrossRefGoogle Scholar
Lashley, K. S. (1951). The problem of serial order in behavior. In Jeffress, A. L. (ed.), Cerebral Mechanisms in Behavior: The Hixon Symposium. New York: Wiley.Google Scholar
Lebiere, C. (2003). ACT. In Nadel, L. (ed.), Encyclopedia of Cognitive Science. New York: Nature Publishing Group.Google Scholar
Leslie, A. M. (1987). Pretense and representation: The origins of “theory of mind.” Psychological Review, 94, 412–26.CrossRefGoogle Scholar
Leslie, A. M., Friedman, O., and German, T. P. (2004). Core mechanisms in “theory of mind.”Trends in Cognitive Sciences, 8, 529–33.CrossRefGoogle ScholarPubMed
Leslie, A.M., German, T. P., and Polizzi, P. (2005). Belief–desire reasoning as a process of selection. Cognitive Psychology, 50, 45–85.CrossRefGoogle Scholar
Leslie, A. M., and Polizzi, P. (1998). Inhibitory processing in the false belief task: Two conjectures. Developmental Science, 1, 247–53.CrossRefGoogle Scholar
Logothetis, N. K. (2001). The underpinnings of the BOLD functional magnetic resonance imaging signal. Journal of Neuroscience, 23, 3963–71.CrossRefGoogle Scholar
Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453, 869–78.CrossRefGoogle Scholar
Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., and Oeltermann, A. (2001). Neurophysiological investigation of the fMRI signal. Nature, 412, 150–7.CrossRefGoogle ScholarPubMed
Lovett, M. C., and Anderson, J. R. (2005). Thinking as a production system. In Holyoak, K. J. and Morrison, R. G. (eds.), The Cambridge Handbook of Thinking and Reasoning. Cambridge: Cambridge University Press.Google Scholar
Luck, S. J. (2005). An Introduction to the Event-Related Potential Technique. Cambridge, MA: MIT Press.Google Scholar
Luck, S. J., and Ford, M. A. (1998). On the role of selective attention in visual perception. Proceedings of the National Academy of Sciences, USA, 95, 825–30.CrossRefGoogle ScholarPubMed
Luria, A. R. (1970). The functional organization of the brain. Scientific American, 222, 66–72.CrossRefGoogle Scholar
Macdonald, C., and Macdonald, G. (1995). Connectionism. Oxford, UK; Cambridge, MA: Blackwell.Google Scholar
Machery, E. (2008). Massive modularity and the flexibility of human cognition. Mind and Language, 23, 263–72.CrossRefGoogle Scholar
Marcus, G. (2003). The Algebraic Mind: Integrating Connectionism and Cognitive Science. Cambridge, MA: MIT Press.Google Scholar
Marcus, G., Ullman, M., Pinker, S., Hollander, M., Rosen, T. J., and Xu, F. (1992). Overregularization in Language Acquisition. Chicago: University of Chicago Press.Google ScholarPubMed
Mareschal, D., and Johnson, S. P. (2002). Learning to perceive object unity: A connectionist account. Developmental Science, 5, 151–85.CrossRefGoogle Scholar
Mareschal, D., Plunkett, K., and Harris, P. (1995). Developing object permanence: A connectionist model. In Moore, J. D. and Lehman, J. F. (eds.), Proceedings of the Seventeenth Annual Conference of the Cognitive Science Society. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
Marr, D. (1982). Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. San Francisco: W. H. Freeman.Google Scholar
Marr, D., and Hilldreth, E. (1980). Theory of edge detection. Proceedings of the Royal Society of London, 204, 187–217.CrossRefGoogle Scholar
Matarić, M. (1997). Behavior-based control: Examples from navigation, learning, and group behavior. Journal of Experimental and Theoretical Artificial Intelligence, 9, 323–36.CrossRefGoogle Scholar
Matarić, M. (1998). Behavior-based robotics as a tool for synthesis of artificial behavior and analysis of natural behavior. Trends in Cognitive Science, 2, 82–7.CrossRefGoogle ScholarPubMed
Matarić, M. (2007). The Robotics Primer. Cambridge, MA: MIT Press.Google Scholar
McClelland, J. L., and Jenkins, E. (1991). Nature, nurture, and connectionism: Implications for connectionist models of development. In Lehn, K. (ed.), Architectures for Intelligence: The 22nd (1988) Carnegie Symposium on Cognition. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
McClelland, J. L., and Patterson, K. (2002). Rules or connections in past-tense inflections: What does the evidence rule out?Trends in Cognitive Sciences, 6, 465–72.CrossRefGoogle ScholarPubMed
McClelland, J. L, Rumelhart, D. E., and Group, the PDP Research (1986). Parallel Distributed Processing: Explorations in the Microstructures of Cognition, vol. 2: Psychological and Biological Models. Cambridge, MA: MIT Press.Google Scholar
McCulloch, W. S., and Pitts, W. H. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5, 115–33.CrossRefGoogle Scholar
McLeod, P., Plunkett, K., and Rolls, E. T. (1998). Introduction to the Connectionist Modelling of Cognitive Processes. Oxford; New York: Oxford University Press.Google Scholar
Medsker, L. R., and Schulte, T. W. (2003). Expert systems. In Nadel, L. (ed.), Encyclopedia of Cognitive Science (vol. 2). New York: Nature Publishing Group.Google Scholar
Michalski, R. S., and Chilausky, R. L. (1980). Learning by being told and learning from examples: An experimental comparison of the two methods for knowledge acquisition in the context of developing an expert system for soybean disease diagnosis. International Journal of Policy Analysis and Information Systems, 4, 125–61.Google Scholar
Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 81–97.CrossRefGoogle ScholarPubMed
Miller, G. A. (2003). The cognitive revolution: A historical perspective. Trends in Cognitive Science, 7, 141–4.CrossRefGoogle ScholarPubMed
Milner, A. D., and Goodale, M. A. (2006). The Visual Brain in Action (2nd edn.). Oxford: Oxford University Press.CrossRefGoogle Scholar
Milner, B. (1966). Amnesia following operation on the temporal lobes. In Whitty, C. W. M. and Zangwill, O. L. (eds.), Amnesia. London: Butterworth.Google Scholar
Minsky, M., and Papert, S. (1969). Perceptrons. Cambridge, MA: MIT Press.Google Scholar
Mishkin, M. L., Ungerleider, G., and Macko, K. A. (1983/2001). Object vision and spatial vision: Two cortical pathways. Trends in NeuroSciences, 6, 414–17. Reprinted in W. Bechtel, P. Mandik, Mundale, J., and Stufflebeam, R. (eds.) (2001), Philosophy and the Neurosciences: A Reader. Oxford: Blackwell.CrossRefGoogle Scholar
Mitchell, J. P., Banaji, M. R., and Macrae, C. N. (2005). The link between social cognition and self-referential thought in the medial prefrontal cortex. Journal of Cognitive Neuroscience, 17, 1306–15.CrossRefGoogle ScholarPubMed
Mitchell, T. M. (1997). Machine Learning. Boston, MA: McGraw-Hill.Google Scholar
Mukamel, R., Gelbard, H., Arieli, A., Hasson, U., Fried, I., and Malach, R. (2005). Coupling between neuronal firing, field potentials, and fMRI in human auditory cortex. Science, 309, 951–4.CrossRefGoogle ScholarPubMed
Munakata, Y. (2001). Graded representations in behavioral dissociations. Trends in Cognitive Science, 5, 309–15.CrossRefGoogle ScholarPubMed
Munakata, Y., and McClelland, J. L. (2003). Connectionist models of development. Developmental Science, 6, 413–29.CrossRefGoogle Scholar
Munakata, Y., McClelland, J. L., Johnson, M. H., and Siegler, R. S. (1997). Rethinking infant knowledge: Toward an adaptive process account of successes and failures in object permanence tasks. Psychological Review, 104, 686–713.CrossRefGoogle ScholarPubMed
Newmeyer, F. J. (1986). Linguistic Theory in America. London: Academic Press.Google Scholar
Nichols, S., Stich, S., Leslie, A., and Klein, D. (1996). Varieties of off-line simulation. In Carruthers, P. and Smith, P. K. (eds.), Theories of Theory of Mind. Cambridge: Cambridge University Press.Google Scholar
Nilsson, N. J. (1984). Shakey the robot. SRI International, Technical Note 323.
O'Grady, W., Archibald, J., Aronoff, M., and Rees-Miller, J. (2005). Contemporary Linguistics: An Introduction (5th edn.). Boston: Bedford/St. Martin's.Google Scholar
Oaksford, M., and Chater, N. (1994). A rational analysis of the selection task as optimal data selection. Psychological Review, 101, 608–31.CrossRefGoogle Scholar
Orban, G. A., Essen, D., and Vanduffel, W. (2004). Comparative mapping of higher visual areas in monkeys and humans. Trends in Cognitive Science, 8, 315–24.CrossRefGoogle ScholarPubMed
O'Reilly, R. C., and Munakata, Y. (2000). Computational Explorations in Computational Neuroscience: Understanding the Mind by Simulating the Brain. Cambridge, MA: MIT Press.Google Scholar
Page, M. (2000). Connectionist modeling in psychology: A localist manifesto. Behavioral and Brain Sciences, 23, 443–67.CrossRefGoogle Scholar
Perner, J. (1991). Understanding the Representational Mind (new edn. 1993). Cambridge, MA: MIT Press.Google Scholar
Perner, J., and Leekam, S. (2008). The curious incident of the photo that was accused of being false: Issues of domain specificity in development, autism, and brain imaging. Quarterly Journal of Experimental Psychology, 61, 76–89.CrossRefGoogle ScholarPubMed
Petersen, S. E., and Fiez, J. A. (2001). The processing of single words studied with positron emission tomography. In Bechtel, W., P. Mandik, J. Mundale, and R. S. Stufflebeam (eds.), Philosophy and the Neurosciences: A Reader. Malden, MA: Blackwell.Google Scholar
Petersen, S. E., Fox, P. T., Posner, M. I., and Mintun, M. (1988). Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature, 331, 585–9.CrossRefGoogle ScholarPubMed
Pfeifer, R., Iida, F., and Gómez, G. (2006). Morphological computation for adaptive behavior and cognition. International Congress Series, 1291, 22–9.CrossRefGoogle Scholar
Phillips, M. L., Young, A. W., Senior, C., et al. (1997). A specific neural substrate for perceiving facial expressions of disgust. Nature, 389, 495–8.CrossRefGoogle ScholarPubMed
Piaget, J. (1954). The Construction of Reality in the Child. New York: Basic Books.CrossRefGoogle Scholar
Piccinini, G. (2004). The first computational theory of mind and brain: A close look at McCulloch and Pitt's “Logical calculus of the ideas immanent in nervous activity.”Synthese, 141, 175–215.CrossRefGoogle Scholar
Pinker, S. (1997). How the Mind Works. New York: Norton.Google Scholar
Pinker, S. (2005). So how does the mind work?Mind and Language, 20, 1–24.CrossRefGoogle Scholar
Pinker, S., and Prince, A. (1988a). On language and connectionism: Analysis of a parallel distributed processing model of language acquisition. Cognition, 28, 73–193.CrossRefGoogle ScholarPubMed
Pinker, S., and Prince, A. (1988b). Rules and connections in human language. In Morris, R. (ed.), Parallel Distributed Processing. Oxford: Oxford University Press.Google ScholarPubMed
Pinker, S., and Ullman, M. T. (2002). The past and future of the past tense. Trends in Cognitive Sciences, 6, 456–63.CrossRefGoogle ScholarPubMed
Plaut, D. C., Banich, M. T., and Mack, M. (2003). Connectionist modeling of language: Examples and implications. In Banich, M. T. and Mack, M. (eds.), Mind, Brain, and Language: Multidisciplinary Perspectives. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
Plotnik, R. (2005). Introduction to Psychology. Belmont, CA: Wadsworth Thomson Learning.Google Scholar
Plunkett, K., and Elman, J. L. (1997). Exercises in Rethinking Innateness: A Handbook for Connectionist Simulations. Cambridge, MA: MIT Press.Google Scholar
Plunkett, K., and Marchman, V. (1993). From rote learning to system building: Acquiring verb morphology in children and connectionist nets. Cognition, 48, 21–69.CrossRefGoogle ScholarPubMed
Poldrack, R. A. (2006). Can cognitive processes be inferred from neuroimaging data?Trends in Cognitive Sciences, 10, 59–63.CrossRefGoogle ScholarPubMed
Pollard, P., and Evans, J. St. B. T. (1987). Content and context effects in reasoning. American Journal of Psychology, 100, 41–60.CrossRefGoogle Scholar
Port, R. F., and Gelder, T. (1995). Mind as Motion: Explorations in the Dynamics of Cognition. Cambridge, MA: MIT Press.Google Scholar
Posner, M. I. (1989). Foundations of Cognitive Science. Cambridge, MA: MIT Press.Google Scholar
Posner, M. I. (ed.) (2004). The Cognitive Neuroscience of Attention. New York: Guilford.Google Scholar
Posner, M. I., and Raichle, M. E. (1994). Images of Mind. New York: Scientific American Library.Google Scholar
Prince, A., and Pinker, S. (1988). Rules and connections in human language. Trends in Neurosciences, 11, 195–202.CrossRefGoogle ScholarPubMed
Pylyshyn, Z. (1980). Computation and cognition: Issues in the foundations of cognitive science. Behavioral and Brain Sciences, 3, 111–69.CrossRefGoogle Scholar
Pylyshyn, Z. (1984). Computation and Cognition: Toward a Foundation for Cognitive Science. Cambridge, MA: MIT Press.Google Scholar
Pylyshyn, Z. (ed.) (1987). The Robot's Dilemma: The Frame Problem in Artificial Intelligence. Norwood, NJ: Ablex.Google Scholar
Raichle, M. E., and Mintun, M. A. (2006). Brain work and brain imaging. Annual Review of Neuroscience, 29, 449–76.CrossRefGoogle ScholarPubMed
Ramnani, N., Behrens, T. E. J., Penny, W., and Matthews, P. M. (2004). New approaches for exploring functional and anatomical connectivity in the human brain. Biological Psychiatry, 56, 613–19.CrossRefGoogle ScholarPubMed
Ramsey, W., Stich, S. P., and Rumelhart, D. E. (1991). Philosophy and Connectionist Theory. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Rees, G., Friston, K., and Koch, C. (2000). A direct quantitative relationship between the functional properties of human and macaque V5. Nature Neuroscience, 3, 716–23.CrossRefGoogle ScholarPubMed
Ritter, F. E. (2003). Soar. In Nadel, L. (ed.), Encyclopedia of Cognitive Science. New York: Nature Publishing Group.Google Scholar
Rizzolatti, G., Fogassi, L., and Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2, 661–70.CrossRefGoogle Scholar
Rizzolatti, G., Fogassi, L., and Gallese, V. (2006). Mirrors of the mind. Scientific American, 295, 54–61.CrossRefGoogle ScholarPubMed
Rizzolatti, G., and Sinigaglia, C. (2008). Mirrors in the Brain: How Our Minds Share Actions and Emotions. Trans. F. Anderson. Oxford: Oxford University Press.Google Scholar
Robbins, R., and Aydede, M. (eds.) (2008). The Cambridge Handbook of Situated Cognition. Cambridge: Cambridge University Press.CrossRef
Roediger, H. L., Dudai, Y., and Fitzpatrick, S. M. (2007). Science of Memory: Concepts. Oxford; New York: Oxford University Press.CrossRefGoogle Scholar
Rogers, R. (1971). Mathematical Logic and Formalized Theories. Amsterdam: North-Holland.Google Scholar
Rogers, T. T., and McClelland, J. L. (2004). Semantic Cognition: A Parallel Distributed Processing Approach. Cambridge, MA: MIT Press.Google Scholar
Rohde, D., and Plaut, D. C. (1999). Language acquisition in the absence of explicit negative evidence: How important is starting small?Cognition, 72, 67–109.CrossRefGoogle ScholarPubMed
Rollins, M. (1989). Mental Imagery: The Limits of Cognitive Science. Cambridge, MA: MIT Press.Google Scholar
Rolls, E. T., and Milward, ., T. (2000). A model of invariant object recognition in the visual system: Learning rules, activation functions, lateral inhibition, and information-based performance measures. Neural Computation, 12, 2547–72.CrossRefGoogle ScholarPubMed
Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65, 386–408.CrossRefGoogle Scholar
Rowe, J. B., and Frackowiak, R. S. J. (2003). Neuroimaging. In Nadel, L. (ed.), Encyclopedia of Cognitive Science. New York: Nature Publishing Group.Google Scholar
Rumelhart, D. E. (1989). The architecture of mind: A connectionist approach. In Posner, M. I. (ed.), Foundations of Cognitive Science. Cambridge, MA: MIT Press. Reprinted in Haugeland, J. (ed.) (1997), Mind Design II: Philosophy, Psychology, Artificial Intelligence. Cambridge, MA: MIT Press.Google Scholar
Rumelhart, D. E., and McClelland, J. L. (1986). On learning the past tenses of English verbs. In McClelland, J. L., Rumelhart, D. E., and The PDP Research Group (eds.), Parallel Distributed Processing: Explorations in the Microstructures of Cognition, vol. 2: Psychological and Biological Models. Cambridge, MA: MIT Press.Google Scholar
Rumelhart, D. E., McClelland, J. L., and ,The PDP Research Group (1986). Parallel Distributed Processing: Explorations in the Microstructures of Cognition, vol. 1: Foundations. Cambridge, MA: MIT Press. For vol. 2, see McClelland et al. (1986).Google Scholar
Russell, S. J., and Norvig, P. (2003). Artificial Intelligence: A Modern Approach (2nd edn.). Upper Saddle River: Prentice Hall.Google Scholar
Russell, S. J., and Norvig, P. (2009). Artificial Intelligence: A Modern Approach (3rd edn.). New Delhi: Prentice-Hall of India.Google Scholar
Samson, D., Apperly, I. A., Chiavarino, C., and Humphreys, G. W. (2004). Left temporoparietal junction is necessary for representing someone else's belief. Nature Neuroscience, 7, 499–500.CrossRefGoogle ScholarPubMed
Samson, D., Apperly, I. A., Kathirgamanathan, U., and Humphreys, G. W. (2005). Seeing it my way: A case of a selective deficit in inhibiting self-perspective. Brain: A Journal of Neurology, 128, 1102–11.CrossRefGoogle ScholarPubMed
Saxe, R., Carey, S., and Kanwisher, N. (2004). Understanding other minds: Linking developmental psychology and functional neuroimaging. Annual Review of Psychology, 55, 87–124.CrossRefGoogle ScholarPubMed
Saxe, R., and Kanwisher, N. (2005). People thinking about thinking people: The role of the temporo-parietal junction in “Theory of Mind.” In Cacioppo, J. T. and Berntson, G. G. (eds.), Social Neuroscience: Key Readings. New York: Psychology Press.Google Scholar
Searle, J. (1980). Minds, brains, and programs. Behavioral and Brain Sciences, 3, 417–57.CrossRefGoogle Scholar
Searle, J. (2004). Mind: A Brief Introduction. New York: Oxford University Press.Google Scholar
Shadmehr, R., and Krakauer, J. W. (2008). A computational neuroanatomy for motor control. Experimental Brain Research, 185, 359–81.CrossRefGoogle ScholarPubMed
Shallice, T., and Warrington, E. K. (1970). Independent functioning of memory stores: A neuropsychological study. Quarterly Journal of Experimental Psychology, 22, 261–73.CrossRefGoogle ScholarPubMed
Shanahan, M. P. (2003). The frame problem. In Nadel, L. (ed.), Encyclopedia of Cognitive Science. New York: Nature Publishing Group.Google Scholar
Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379–423 and 623–56.CrossRefGoogle Scholar
Shepard, R. N., and Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171, 701–3.CrossRefGoogle ScholarPubMed
Shepherd, G. (1994). Neurobiology (3rd edn.). New York: Oxford University Press.Google Scholar
Siegelmann, H., and Sontag, E. (1991). Turing computability with neural nets. Applied Mathematics Letters, 4, 77–80.CrossRefGoogle Scholar
Sloman, A. (1999). Cognitive architecture. In Wilson, R. A. and Keil, F. C. (eds.), TheMIT Encyclopedia of Cognitive Science. Cambridge, MA: MIT Press.Google Scholar
Smith, L., and Thelen, E. (2003). Development as a dynamical system. Trends in Cognitive Science, 7, 343–8.CrossRefGoogle Scholar
Spelke, E. S. (1988). The origins of physical knowledge. In Weiskrantz, L. (ed.), Thought without Language. Oxford: Oxford University Press.Google Scholar
Spelke, E. S., Gutheil, G., Walle, G., Kosslyn, S. M., and Osherson, D. N. (1995). The development of object perception. In Kosslyn, S. M. and Osherson, D. N. (eds.), An Invitation to Cognitive Science, vol. 2: Visual Cognition (2nd edn.). Cambridge, MA: MIT Press.Google Scholar
Spelke, E. S., and Kinzler, K. D. (2007). Core knowledge. Developmental Science, 10, 89–96.CrossRefGoogle ScholarPubMed
Spelke, E. S., and Walle, G. (1993). Perceiving and reasoning about objects: Insights from infants. In Eilan, N., McCarthy, R., and Brewer, B. (eds.), Spatial Representation. Oxford: Blackwell.Google Scholar
Sperber, D., Cara, F., and Girotto, V. (1995). Relevance theory explains the selection task. Cognition, 57, 31.CrossRefGoogle ScholarPubMed
Spivey, M. (2007). The Continuity of Mind. New York: Oxford University Press.Google Scholar
Stein, J. F., and Stoodley, C. S. (2006). Neuroscience: An Introduction. Oxford: Oxford University Press.Google Scholar
Sterelny, K. (1990). The Representational Theory of Mind. Oxford: Blackwell.Google Scholar
Thelen, E., Schöner, G., Scheier. C., and Smith, L. B. (2001). The dynamics of embodiment: A field theory of infant perseverative reaching. Behavioral and Brain Sciences, 24, 1–86.CrossRefGoogle ScholarPubMed
Thelen, E., and Smith, L. (eds.) (1993). A Dynamical Systems Approach to the Development of Cognition and Action. Cambridge, MA: MIT Press.
Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55, 189–208.CrossRefGoogle ScholarPubMed
Tolman, E. C., and Honzik, C. H. (1930). “Insight” in rats. University of California Publications in Psychology, 4, 215–32.Google Scholar
Tolman, E. C., Ritchie, B. F., and Kalish, D. (1946). Studies in spatial learning, II: Place learning versus response learning. Journal of Experimental Psychology, 36, 221–9.CrossRefGoogle Scholar
Trappenberg, T. P. (2002). Fundamentals of Computational Neuroscience. Oxford: Oxford University Press.Google Scholar
Tulving, E. (1972). Episodic and semantic memory. In Tulving, E. and Donaldson, W. (eds.), Organization of Memory. New York: Academic Press.Google Scholar
Turing, A. M. (1936–7). On computable numbers: With an application to the Entscheidungsproblem [Decision Problem]. Proceedings of the London Mathematical Society, 42, 3–4.Google Scholar
Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59, 433–60.CrossRefGoogle Scholar
Tye, M. (1991). The Imagery Debate. Cambridge, MA: MIT Press.Google Scholar
Umilta, M. A., Kohler, E., Gallese, V., et al. (2001). I know what you are doing: A neurophysiological study. Neuron, 31, 155–65.CrossRefGoogle ScholarPubMed
Ungerleider, L. G., and Mishkin, M. (1982). Two cortical visual systems. In Ingle, D. J., Mansfield, R. J. W., and Goodale, M. A. (eds.), Analysis of Visual Behavior. Cambridge, MA: MIT Press.Google Scholar
Vaina, L. M. (ed.) (1991). From the Retina to the Neocortex. Boston, MA: Springer.CrossRef
Essen, D. C., and Gallant, J. L. (1994). Neural mechanisms of form and motion processing in the primate visual system. Neuron, 13, 1–10. Reprinted (2001) in Bechtel, W., Mandik, P., Mundale, J., and R. S. Stufflebeam (eds.), Philosophy and the Neurosciences: A Reader. Malden, MA: Blackwell.Google Scholar
Gelder, T. (1995). What might cognition be, if not computation?The Journal of Philosophy, 92, 345–81.CrossRefGoogle Scholar
Gelder, T. (1998). The dynamical hypothesis in cognitive science. Behavioral and Brain Sciences, 21, 615–28.Google ScholarPubMed
Wang, S.-H., and Baillargeon, R. (2008). Detecting impossible changes in infancy: A three-system account. Trends in Cognitive Sciences, 12, 17–23.CrossRefGoogle ScholarPubMed
Watson, J. B. (1913). Psychology as the behaviorist sees it. Psychological Review, 20, 158–77.CrossRefGoogle Scholar
Weiskopf, D. A. (2004). The place of time in cognition. British Journal for the Philosophy of Science, 55, 87–105.CrossRefGoogle Scholar
Wicker, B., Keysers, C., Plailly, J., Royet, J. P., Gallese, V., and Rizzolatti, G. (2003). Both of us disgusted in my insula: The common neural basis of seeing and feeling disgust. Neuron, 40, 655–64.CrossRefGoogle Scholar
Wilson, R. A. (2008). The drink you have when you're not having a drink. Mind and Language, 23, 273–83.CrossRefGoogle Scholar
Wimmer, H., and Perner, J. (1983). Beliefs about beliefs: Representation and constraining function of wrong beliefs in young children's understanding of deception. Cognition, 13, 103–28.CrossRefGoogle ScholarPubMed
Winograd, T. (1972). Understanding Natural Language. New York: Academic Press.Google Scholar
Winograd, T. (1973). A procedural model of language understanding. In Schank, R. C. and Colby, A. M. (eds.), Computer Models of Thought and Language. San Francisco: W. H. Freeman.Google Scholar
Woodward, A., and Needham, A. (2009). Learning and the Infant Mind. Oxford; New York: Oxford University Press.Google Scholar
Zeki, S. M. (1978). Functional specialization in the visual cortex of the rhesus monkey. Nature, 274, 423–8.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • José Luis Bermúdez, Texas A & M University
  • Book: Cognitive Science
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511781322.022
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • José Luis Bermúdez, Texas A & M University
  • Book: Cognitive Science
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511781322.022
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • José Luis Bermúdez, Texas A & M University
  • Book: Cognitive Science
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511781322.022
Available formats
×